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Coulomb forces associated with charged close-flying satellites can efficiently enable static formation equilibria,

in which separation distances remain constant. However, limited Coulomb force controllability presents many

challenges in maintaining and maneuvering these inherently unstable formations. This paper studies three-craft

collinear equilibria, admitted in the presence of a central body gravity field. Necessary existence conditions for this

class of Coulomb formation are given in previous research, and this paper extends these to be sufficient, while using a

more accurateCoulomb forcemodel. Stability properties of the resulting configuration cases are analyzed for the first

time, and it is shown that each can exhibit marginal stability normal to the orbit plane. Also, it is demonstrated

that in-plane perturbations can be asymptotically stabilized, using only craft charging, for the radially aligned

configurations. A charge feedback law is derived for this case, and numerical results are provided. These stability and

controllability properties correlate with those, previously known, for two- and three-craft (in the absence of gravity)

formations. Lastly, invariant manifolds are generated to illustrate dynamic properties of these systems, and the

possibility of exploiting the manifold flows to target minimum fuel reconfigurations (shape changes), is discussed.

I. Introduction

S PACECRAFT charge control was considered as early as 1966 by
Cover et al. [1], who proposed to use electrostatic forces to inflate

and maintain the shape of a large reflecting mesh. The prospect of
using this concept in spacecraft (S/C) formation flying is introduced
by King et al. [2,3], in which the electric potential (or net charge) of
each vehicle is actively controlled, to yield desired intercraft forces.
Close-proximity spacecraft havemany advantages over a single large
craft: overall mass reduction, shape-changing ability, and multi-
launch assembly. Free-flying formations have applications in Earth
imaging, surveillance, and for enabling separated space-borne
interferometry [2,4]. Initially, electric propulsion (EP) systems were
proposed for controlling the relative craft motions; however, EP
suffers from limited throttle ability and introduces the problem of
thruster plume impingement, where thruster ejecta may damage or
impede neighboring craft [2]. In contrast, active charge control
avoids thruster plumes, has fast throttling (millisecond transitions),
and can sustain a given force using less power and fuel than EP [1,2].
Charge control is highly efficient, with specific impulse values as
high as 1013 s. Active control of a spacecraft chargewas successfully
executed during the SCATHA [5] and ATS [6] missions, and is
currently being used on the CLUSTER [7] mission. Other applica-
tions for electrostatic thrusting include advanced docking and ren-
dezvous, autonomous inspection, contactless removal of hazardous
material [8], and the deployment/retrieval of instruments [9].
Of particular interest in Coulomb formation flying are constant

charge “virtual structures,” referred to as static Coulomb formations,

in which craft separation distances are in equilibrium. Charge control
is demonstrated to be a capable and efficient means for establishing
and maintaining geometries that appear frozen, with respect to the
Hill frame, a rotating frame with origin at the formation center of
mass [2,9]. Milli-Newton levels of forces can be produced over
dozens ofmeters using onlywatt levels of electrical power.Necessary
equilibrium conditions are derived for such formations, analytically
for less than five craft (numerically otherwise) and, thus far, all are
dynamically unstable [2,9]. It is the three-craft, collinear Hill frame
equilibria, in the presence of linearized gravity, that are considered in
the current work. This research expands upon the work of Berryman
and Schaub [9], by deriving sufficient equilibria conditions and by
including the physical effect of plasma shielding. These sufficient
conditions yield unique equilibrium regions with varying stability
properties, which are explored in detail for the first time. Analogous
explicit existence criteria are defined for spinning three-craft
collinear equilibria, in the absence of gravitational forces [10,11],
and Wang and Schaub expand these to be sufficient for real-valued
charges [12]. Stability analyses are carried out for two- and three-
craft spinning configurations [13,14], and stable two-body scenarios
are identified when the plasma shielding is included [13]. A recent
study by Hogan and Schaub demonstrate marginal in-plane stability
of particular collinear spinning equilibria, if proper separation
distance and speed conditions are met [14].
Unfortunately, Coulomb thrusting has limited reach (from plasma

shielding) and controllability and, for example, cannot alter the
overall inertial formation angular momentum [15]. Therefore, it is
often supplemented with the less-desirable inertial thrust (e.g., EP
or chemical), which necessitates hybrid control [16,17]. Methods
for maintaining and maneuvering the inherently unstable Coulomb
formations remains a challenging and active area of research.
Natarajan and Schaub [18] demonstrate that radial two-craft Hill
frame equilibria have marginal out-of-plane stability and that charge
control alone can asymptotically stabilize in-plane perturbations. Lee
et al. [19] go further, developing a Lyapunov stable charge feedback
law to maintain two-craft separation distance and rate. In the current
research, it is shown that the radial three-craft formation shares these
properties, and an in-plane charge feedback law is derived tomaintain
the formation, substantiated by numerical simulation. Also, relative
instability and eigenvector mode properties associated with all of
the three-craft collinear configurations are analyzed. In particular,
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marginal stabilities along particular Hill axes are indicated in the
interest of using these facets to reduce station-keeping control effort.
Marginal axis stability is exploited during controller design for the
two-craft orbit-normal configuration [16] and three-craft spinning
equilibria [10,12,20,21]. In addition, feedback control is derived by
Inampudi for circular restricted three-body problem equilibrium
configurations about Earth–moon libration points [17], and nonlinear
controllers are considered and tested for three-craft spinning
equilibria [10,20,21].
Another advantageous property of free-flying formations is that

they can change shape and therefore be reconfigured as necessary for
a particularmission.Methods for realizing the shape-changing ability
of Coulomb formations are just being explored, and doing so
optimally is very new.Natarajan [22] presents a hybrid (Coulomb and
inertial) feedback control to transfer between two-craft Hill frame
configurations, and Inampudi adds optimization to those transfers:
minimizing time, fuel, or total power usage [17]. Jones and Schaub
outline a generalized procedure for targeting minimal ΔV transfers
between Coulomb equilibria, in which a parameter optimization
formulation is used to differentially correct an uncontrolled and
discontinuous initial trajectory along invariant manifolds [23,24].
This method seeks natural flows along manifolds that nearly “hop”
from unstable to stable branches, to partially achieve the reconfigu-
rations and thereby reduce ΔV. This is analogous to work in which
manifolds are used to design low-thrust transfers inmultibody gravity
fields, for example, in thework of Russell andLam [25]. In this paper,
the invariant manifold theory is applied to the three-craft collinear
equilibria for the first time. The intention is to understand how the
method of Jones and Schaub [23,24] may be used and extended to
achieve minimal ΔV shape changes for this class of three-craft
Coulomb formation.

II. Background and General Model

A. Spacecraft Charge Control Background

A conductive craft surface will naturally exchange ions and
electrons with the plasma of space and, as a result, will assume a
nonzero electric potentialϕ (measured in volts).When immersed in a
plasma, the ideal vacuum potential is effectively limited (or shielded)
due to interactions with free particles and photons. The debye length
λd approximates this shielding, such that a charged particle at a
distance r > λd is unaffected by ϕ. Debye length is a measure of the
time-dependent local plasma temperature and density, and experi-
mental data are available in various regimes. For nominal conditions,
λd is on the order of 0.01m at low Earth orbit, 200m at geostationary,
and 10m in the interplanetary regime [26,27]. However, the effective
debye length can be many times greater when ϕ is much greater than
the plasma energy [26,27], and in GEO, λd can be larger for
substantial periods of time [28].
A steady state ϕ occurs when the net current to the craft surface is

zero [2], and altering ϕ artificially has substantial mission heritage
[5–7]. This involves using an electron gun or similar device to eject
electrons/ions into the surrounding plasma with sufficient kinetic
energy to escape the “potentialwell.”Therefore, the devicemust have
sufficient power to supply a voltage equal to the desiredϕ, at a current
at least greater than the incoming environmental current (because this
will tend to drive ϕ back to natural equilibrium). In this work,
perfectly spherical spacecraft (radius Rsc) are assumed and forma-
tions near GEO are considered. Each craft’s net surface charge q is
considered as a control, by allowing q to be analytically related to the
trulymeasurable/controllable parameterϕ, via Eq. (1),where kc is the
Coulomb constant:

ϕ � kc
q

Rsc

(1)

Equation (1) holds in a vacuum so long as all spacecraft are assumed
to have perfectly conductive outer surfaces of uniform charge density.
Additionally, it is accurate in the plasma so long as Rsc ≪ λd, and as
long as the capacitance of any one craft is unaffected by the others.
The former is generally true in the presumed GEO altitude, and the
latter is a good assumption so long as the craft are sufficiently far apart

(>10Rsc) [22,27]. Such separation distances are enforced throughout
this work, in addition to the assumption of a constant and nominal λd.

B. Dynamic Model

Formation dynamics are modeled relative to the Hill frame, which
is centered at and rotates with a nominal center of mass (c.m.) orbit
(assumed circular with semimajor axis a0 near GEO), as shown in
Fig. 1. TheHill frame axes are labeled êR for radial, êT for transverse,
and êN for normal. The vehicles then appear statically fixed with
respect to the rotating Hill frame for equilibrium configurations
admitted by this model. The Hill frame introduces a c.m. constraint
given by Eq. (2), where ri denotes the position vector relative to the
c.m., of craft i (with mass mi and net charge qi). In addition to the
linearized Clohessy–Wiltshire–Hill equations of relative motion
[29], a net Coulomb acceleration defined using the Debye–Hückel
point chargemodel [30] is assumed. The acceleration of craft i is then
defined by Eq. (3), where ω is the rotational rate of the reference
(c.m.) orbit; rij � kri − rjk is the separation distance between crafts
i and j; and x, y, and z denote components along the axes êR, êT , and
êN , respectively: X

i

miri � 0 ri � �xiyizi�T (2)

�ri �

2
4 2ω _yi � 3ω2xi

−2ω _xi
−ω2zi

3
5� kcqi

mi

2
4
P
j
j ≠ i

qj�1�
rij
λd
�

r3ij exp�rij∕λd�
rij

3
5 (3)

The approximate electrostatic model provides a conservative account
of the plasma shielding and is demonstrated to be highly accurate in
GEO, both experimentally and numerically, for rij > 10Rsc [22,27].
The Lorentz force, which arises as an interaction between an orbiting
charged body and Earth’s magnetic field, is many orders of magni-
tude smaller (at GEO) than the Coulomb forces being considered in
this paper [31]. Therefore, those effects, although important to other
related studies, are ignored. Lastly, the charge products Qij � qiqj
are considered here to be fully controllable parameters.

C. Linear Systems and Invariant Manifold Theory Overview

Any equations of formation motion may be written as a first-order
ordinary differential equation (ODE) system defined by Eq. (4a),
where t is time,X is the state vector, and u contains the independent
controls. This system can be linearized about some reference state
X�, as shown in Eq. (4b), in which small state perturbations δX from
X� satisfy a linear ODE system with Jacobian matrix A:

_X � F�X;u; t� (4a)

δ _X �
�
∂F
∂X

�����
X�
δX � AδX (4b)

The matrix A can be transformed to Jordan canonical form and
decomposed into unstable, stable, and center eigenspaces (Eu,Es,Ec

Fig. 1 Rotating Hill frame showing relative position vector ri.
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with dimensions Nu, Ns, and Nc, respectively) [32]. Moreover, the
global stable and unstable manifolds (if they exist) are subspaces
containing all trajectories (or flows) governed by the original
nonlinear systemdynamicsF, and have the following properties [32]:
1) Unstable manifoldWu is the set of all trajectories that approach

X� exponentially as t→ −∞, for t < 0.
2) Stable manifoldWs is the set of all trajectories that approachX�

exponentially as t→ ∞, for t > 0.
3) The manifolds are invariant, and therefore a state contained

withinWu orWs remains in that subspace for all time (e.g.,Wu ↔ Ws

flows cannot occur).
4)Wu is tangent to�Eu (Ws is tangent to�Es) atX�, with�Eu

and −Eu (�Es and −Es) yielding two branches for Wu (Ws). Also,
the manifold subspaces have dimensionality one greater than their
corresponding eigenspaces (i.e.,Wu has a dimension of Nu � 1).
The manifolds can be generated by initiating small maneuvers

(Δvu∕s � �ϵEu∕sv ), where E
u∕s
v indicates the velocity components of

the normalized eigenvectors that span either Eu or Es, and ϵ is a
small number. When constructing Wu, the perturbed states Xu �
X� � ϵEuv are propagated forward in time using F; whereas, forWs,
the corresponding perturbed states are propagated backward in time.

III. Three-Craft Collinear Coulomb
Formation Existence

Berryman and Schaub [9] show that three-craft collinear equi-
librium only exist when the vehicles are aligned along a Hill
axis, and they present necessary equilibria conditions, but without
including plasma shielding. The equilibria conditions do not ensure
real-valued charges (potentials), but a set of real equilibrium charges
are known to exist for all Hill axes and separation distances [9]. In this
work, necessary and sufficient conditions are derived, with the
inclusion of shielding, for the first time. The sufficient conditions
establish bounds on the charge products that ensure nonimaginary
values, and these bounds present discrete equilibria regions or cases.
The stability properties of each of these regions are analyzed here,
also for the first time.
Because each craft is located on a single Hill axis, a concise

notation is adopted to describe these equilibria, where ri denotes the
craft i signed distance along that line, and di denotes the radial
magnitude (di � jrij) [9]. Because the craft numbering is arbitrary, it
is assumed that r1 < 0 and r3 > 0, as illustrated in Fig. 2, where
dij � jrijj � jri − rjj. The three scalar expressions of Eq. (5) define
the three-craft collinear equilibria using this notation, where the term
ad is used to differentiate between the linearized gravitational
terms of radial (ad � −3), along-track (ad � 0), and orbit-normal
(ad � 1) aligned formations.

admiri �
X
j

j ≠ i

� ~Qij�1�
dij
λd
��ri − rj�

d3ij exp�dij∕λd�

�
i; j � 1; 2; 3 (5)

Equation (5) is derived fromEq. (3), with all time derivatives equal to
zero, and with the substitution of scaled charge products ~Qij, defined
in Eq. (6):

~Qij �
kcQij
ω2

(6)

Two of the three Eq. (5) expressions are linearly dependent. With the
inclusion of the Eq. (2) c.m. constraint, a total of three conditions

remain, and there are six unknowns: ~Q12, ~Q13, ~Q23, d1, r2, and d3.

This underdetermined system is handled by specifying ~Q13, d1, and

d3 [r2 found explicitly from Eq. (2)] and then solving ~Q12 and ~Q23

from the Eq. (5) conditions [9]. In addition, in this paper, bounds on
~Q13 are derived, which are sufficient to ensure the individual qi are
nonimaginary.

A. Necessary Equilibrium Conditions with Shielding

Enforcing the assumed sign convention shown in Fig. 2, on the ri
and rij terms of Eq. (5) and then solving ~Q12 and ~Q23, results in
Eqs. (7a) and (7b). These are necessary conditions for three-craft
collinear static equilibria, where the θij terms account for shielding:

~Q12 �
1

θ12
�add1m1 − θ13 ~Q13�

~Q23 �
1

θ32
�add3m3 − θ13 ~Q13� (7a)

θij �
�1� dij∕λd�
d2ij exp�dij∕λd�

(7b)

Also, scaled individual craft charges ~qi are computed, using the
Eq. (8) convention:

~q1 �

����������������
~Q12

~Q13

~Q23

s
~q2 �

~Q12

~q1
~q3 �

~Q13

~q1
(8)

The choice of having ~q1 positive is not unique, and the signs of
charges in Eq. (8) could be reversed if desired.

B. Sufficient Conditions for Real Equilibrium with Shielding

An examination of Eqs. (7a) and (7b) for varying d3, d1, and ~Q13

enables sufficient equilibria conditions (bounds on ~Q13) to be
defined. These yield regions in the design space, outside of which
equilibria cannot exist, and are presented on a case-by-case basis.
1) Along track: ~Q13 ≥ 0
2) Orbit normal

a) Case A: ~Q13 ≥ 0, ~Q13 ≤ m1d1∕θ13, and ~Q13 ≤ m3d3∕θ13.
b) Case B: ~Q13 > 0, ~Q13 ≥ m1d1∕θ13, and ~Q13 ≥ m3d3∕θ13.

3) Radial
Case A: ~Q13 ≥ 0.
Case B: ~Q13 < 0, j ~Q13j ≤ 3m1d1∕θ13, and j ~Q13j ≥ 3m3d3∕

θ13 (m1d1 ≥ m3d3).
Case C: ~Q13 < 0, j ~Q13j ≥ 3m1d1∕θ13, and j ~Q13j ≤ 3m3d3∕

θ13 (m1d1 ≤ m3d3).
The free charge product ~Q13 is thus bounded either from above or

below (or both above and below for radial cases B and C). Also the

sign of ~Q13 explicitly governs the sign for all charge products, and
therefore each of the three forces is repulsive or attractive on the basis
of these cases. For example, radial case B invokes an attractive force
between crafts 1 and 2 and a repulsive force between crafts 2 and 3,
whereas radial case C invokes opposite signs on those forces, all due
to the relative position andmass of crafts 1 and 3. Furthermore, trivial

cases admitted by Eq. (7a), where ~Q12 � ~Q23 � q2 � 0 (r2 � 0),
are included in this categorization. These are defined by Eq. (9) and
are considered trivial because they simply reduce to the two-craft Hill
frame configurations (along each axis):

~Q13 �
adm1d1
θ13

� adm3d3
θ13

d1 �
m3d3
m1

(9)

The only technical difference from the two-craft cases is the addition
of a noninteracting craft (craft 2), which is located at the c.m. (origin).
The two-craft equilibria and their respective stability properties are
examined in detail by various authors [17,18,23].Fig. 2 Three-craft collinear equilibrium geometry and notation.
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C. Computing Optimal Charges for a Given Configuration

Because an infinite number of individual charges can produce the
equilibria cases described in Sec. III.B, computing ideal or optimal
values is of interest. The L∞ norm of the three qi is a sensible
performance measure to use because that minimizes the largest
potential ϕ on any craft. Because ϕ is proportional to the power
required (via Ohm’s law), a minimum L∞ measure ensures the entire
system can use a charge control devicewith the lowest possible power
requirement. In contrast, an L1 or L2 norm would result in a larger
(or equal) maximum ϕ, and therefore an individual craft would
require more power. The remaining vehicles would then have to
accommodate this higher power, with the practical assumption that
identical control hardware is used on each.
Determining a specified equilibrium configuration, withminimum

L∞ norm of the charges, is formulated as a constrained nonlinear
programming problem, for which many numerical algorithms
are available. The cost function to be minimized is kqk∞ �
max�jq1j; jq2j; jq3j�. To handle this function numerically, a new
(dummy) variable α is added, along with the constraints α ≥ jqij, ∀ i.
Equations (10a) and (10b) specify the nonlinear program, whereXp
denotes the vector of decision variables:

minimize J�Xp� � α Xp � �q1 q2 q3 α �T (10a)

subject to Ceq�Xp� � 0 C�Xp� ≤ 0 (10b)

The equality constraints correspond to Eqs. (7a) and (7b), and the
inequality constraints correspond to the case-specific sufficient
conditions described in Sec. III.B, and also,

jqij − α ≤ 0 i � 1; 2; 3

Moreover, the Sec. III.A necessary and Sec. III.B sufficient
conditions provide for the determination of a feasible Xp initial
guess. Numerically, this optimization problem is well behaved and
easily solved. Some optimal results, obtained using MATLAB’s
fmincon as the numerical solver, are presented in Table 1, where the
power is computed using Ohm’s law with a potential (in volts)
calculated by substituting jqijmax into Eq. (1). An operating current is
assumed that is sufficient to overcome the incoming plasma current,
during nominal λd conditions in GEO (≈80 μA) [2,26,33]. The
Table 1 results show that, with optimal charge selection, formations
of jd1 − d3j ≤ 100 m can be produced with <10 W of power.
Furthermore, these power requirements should be considered high
estimates because of the use of a conservative plasma-shielding
model, relatively small λd, and large current. The radial and orbit-
normal configurations exhibit nearly equal power requirements for
similar jd1 − d3j, and the power increases in proportion to jd1 − d3j.
Lastly, along-track results are omitted because it is clear from
Eqs. (7a) and (7b) that the optimum occurs when all charges are zero
(trivial case).

IV. Three-Craft Collinear Equilibrium
Linear Stability Analysis

The equilibrium regions presented in Sec. III.B each have distinct
eigenspaces, but all are dynamically unstable. The relative instability

and eigenvector modal properties are especially important in
the design of feedback stabilization. In this section, a numerical
stability analysis demonstrates by example how the eigenspaces (and
associated manifold structures) can change as a function of the dij
and alignment axis. As an illustrative example and not an algebraic
proof, specific parameter values are used (e.g., a0, λd, and mi).
In deriving the linearized ODE system as in Eq. (4b), craft 2 is

removed via the c.m. condition, reducing the system dimension from
18 to 12. The eigenspaces and invariant manifolds are numerically
computed using the Eq. (3) dynamics with λd � 180 m, equal mass
craft m1 � m2 � m3 � m � 150 kg, and a0 � 4.227e7 m. For
along-track and radial case A configurations, ~Q13 � 1.0e4 is used,
whereas ~Q13 is chosen to be just inside the feasible boundary for
orbit-normal cases, and ~Q13 is selected equal to themean of the upper/
lower bounds for radial cases B and C. The resulting eigenspace
properties, for all cases, are as follows.
1) Along-track:Nu � Ns � 1 (distinct real); mode is contained in

the êR − êT plane. Perturbations along êN only are marginally stable.
2) Orbit-normal case A: Nu � Ns � 4 (two complex pairs); all

unstable/stable modes are contained in the êR − êT plane, and
therefore perturbations along êN only are marginally stable.
3) Orbit-normal case B: Nu � Ns � 3 (one complex pair, one

mode real); complex mode in the êR − êT plane.
a) Small jd1 − d3j. Real mode is contained in the êR − êT plane.
Perturbations along êN only are marginally stable.
b) Large jd1 − d3j. Real mode is along êN , making êN only
perturbations unstable.

4) Radial case A:Nu � Ns � 2 (two distinct real); bothmodes are
contained in the êR − êT plane, and perturbations along êN only are
marginally stable.
5) Radial cases B and C:

a) Small jd1 − d3j. Nu � Ns � 3 (one complex pair, one real);
all modes are contained in the êR − êT plane. Perturbations
along êN only are marginally stable.
b) Large jd1 − d3j. Nu � Ns � 3 (three distinct real); two
modes are contained in the êR − êT plane, and the other mode is
entirely along êN . Perturbations along êN only are unstable.

In this analysis, there are no stability bifurcations (changes toNu or
Ns) within each case, as a function of d1, d3, and ~Q13. Moreover, no
bifurcations occur as λd → ∞ (no shielding) for all cases except for
the along-track case, which bifurcates to Nu � Ns � 0 (all distinct
eigenvalues). What is particularly interesting in this analysis is the
differing out-of-orbit plane êN stability for the orbit-normal case B
and radial cases B and C, as a function of jd1 − d3j. This observation
is especially important because it demonstrates that marginal out-of-
plane stability for the radial configuration (and along-line marginal
stability for the orbit-normal case) can be achieved through careful
selection of the distances d1 and d3 and the charge product ~Q13.
Marginal stability along the line-of-sight vector for orbit-normal
configurations is shared by the two-craft equilibrium, and this
property is used by Natarajan and Schaub [16] to reduce station-
keeping control effort for that case. For either axis of alignment, the
êN instabilities arise when two craft are in close proximity and have a
repulsive Coulomb force that becomes larger than the restorative
differential gravity force. Therefore, this instability depends on jd1 −
d3j as well as ~Qij magnitudes, and its existence and the conditions
under which it can arisewere previously unknown. Jones and Schaub
provide a more detailed analysis and explanation concerning this
modal bifurcation [34].

V. Invariant Manifolds for the Three-Craft
Collinear Equilibria

Invariant manifolds are analyzed to illustrate some of the
previously presented stability properties, but also to understand how
natural motions may be best exploited to aid in reconfiguring the
formations. Reconfigurations of interest include expansions and
contractions of the overall distance d13, transfers between equi-
librium regions, and transfers between one axis of alignment to
another.Moreover, themanifolds could be used to expel or add a craft
by transferring between a two- and three-craft equilibrium (with one

Table 1 Minimum charge selection results for three-craft
collinear cases

Axis Case d1, m d3, m jqijmax, μC Power, w

Orbit normal A 30 25 1.72 1.24
Orbit normal A 40 60 12.29 8.83
Orbit normal B 30 25 3.52 2.54
Orbit normal B 40 60 8.27 5.95
Radial A 30 25 3.33 2.39
Radial A 40 60 10.59 7.61
Radial B 30 25 5.32 3.82
Radial B 30 18 4.64 3.34
Radial C 40 60 13.34 9.60
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craft leaving or entering the system). The linearized ODE systems
and assumptions of Sec. IV are used in all numerically generated
invariant manifolds that follow. Themanifolds are initiated with aΔv
perturbation (for each craft) along the associated eigenspace vectors,
with ϵ � 0.1 mm∕s.

A. Manifold Structures

It is known that all orbit-normal and radial cases B and C (for
jd1 − d3j large) unstable/stable manifolds are in R6, whereas the
remaining cases are inR4, because modal motion is confined to the
êR − êT plane. Radial case A unstable manifolds are illustrated in
Fig. 3a, which shows that motion is confined to the reference
orbit plane. There is strong attractive Coulomb interaction between
two of the inner craft on each branch, which makes the trajectories
have many intersections. Figure 3b demonstrates the out-of-plane
instability for case B, resulting in an R3 (in position) manifold
structure. On one branch, the attractive forces bring all vehicles
together, which, in turn, increases the repulsive force on craft 2,
thereby giving it an increasing z component. On the other branch, the
repulsive force on craft 2 causes it to move away from the other two
craft. For both branches, the purely real êN unstable mode is quite
distinct.
Along-track stable and unstable manifolds are illustrated in

Figs. 4a and 4b. There is great symmetry between stable and unstable

branches, and it is rather intuitive to visualize a transfer trajectory
from unstable to stable manifolds, which could expand or contract
this formation with little control effort. Finally, some orbit-normal
unstable manifolds are illustrated in Figs. 5a and 5b. The case A
manifolds resemble the two-craft orbit-normal manifolds, which also
exhibit along-line marginal stability. The case B manifolds have
strong Coulomb interaction between crafts 2 and 3 because of their
attractive force. It is this attraction that can cause the êN unstable
mode for that case.

B. Reconfigurations Between Three-Craft Collinear
Equilibria Along Manifolds

The motivation here is to identify reconfiguration scenarios, in
which natural manifold flows can nearly provide the transfer, and
also situations in which such an approach becomes impractical.
The identification and improved quality of these initial guess (IG)
trajectories, represent important prerequisite steps to extending
the previously developed method for converging fuel optimal
reconfigurations [23,24] to three-craft collinear formations. As men-
tioned previously, expansions and contractions between along-
track configurations are relatively intuitive to visualize. Figure 6
demonstrates an example IG trajectory, which would expand the
along-track configuration, increasing d13 by 10m and alsomoving r2
from �5 to �3 m. This is an IG only, because there are state

Fig. 3 Three-craft radial unstable manifolds for d1 � 30 m.

Fig. 4 Three-craft along-track invariant manifolds for 1.0Tp, d1 � 30 m, d3 � 25 m, and ~Q13 � 1.0e4.

Fig. 5 Three-craft orbit-normal unstable manifolds for 1.0Tp, d1 � 30 m, and d3 � 25 m.
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discontinuities between unstable and stable manifolds at the
patch point (endpoints of near manifold intersection on the plot).
Nevertheless, it is likely that these discontinuities could be dif-
ferentially corrected to yield a continuous transfer with little control
effort, as demonstrated by Jones and Schaub [23,24] for two-craft
Hill frame equilibria, where ΔV is minimized.

Another IG expansion example is illustrated in Fig. 7 for the orbit-
normal case A configuration and for an increased d13 of 20 m
(r2 constant). This transfer is more difficult to visualize because it is
R3 (in position) and because the velocity directions are hard to
ascertain. In addition, for expansions of this configuration, the
manifolds are best exploitedwhen the spacecraft numbering changes.
Therefore, in Fig. 7, craft 1moves to thed3 slot, craft 2 tod1, and craft
3 to r2. This is completely reasonable, assuming equal mass craft and
because the charges can be transitioned extremely fast (nearly
impulsive).

The radial configuration manifolds are not as readily useful to aid
in contraction and expansion transfers. Fortunately, these configu-
rations turn out to be fully controllable in the êR − êT plane using
only charge control, as demonstrated in Sec. VI. This means that
charge control alone can be used to maintain, expand, and contract
these cases, and therefore using manifolds to reduce inertial thrust
cost is unnecessary.

VI. Three-Craft Collinear Formation Orbit Plane
Feedback Stabilization

The along-track and radial configurations have unstable/stable
manifolds contained in the êR − êT plane (reference orbit plane) and
are considered here. These exhibit marginal out-of-orbit plane
stability, and therefore a reduced system controller is designed
considering only planar êR − êT dynamics. It is assumed that all craft
are of equal mass (m � 150 kg) and, initially, plasma shielding is
assumed negligible (λd → ∞). Scaled charge products ~Qij, defined
by Eq. (6), are then substituted into the �r1 and �r3 Eq. (3) expressions,
after r2 variables are explicitly removed via the Eq. (2) c.m.
constraint. The resulting êR − êT terms, given by Eqs. (11a) and
(11b), represent scaled craft 1 and 3 accelerations:

r 0 01 �
�r1
ω2
�
�
2_y1∕ω� 3x1

−2 _x1∕ω

�
�

~Q13

md313

�
x1 − x3
y1 − y3

�
�

~Q12

md312

�
2x1� x3
2y1� y3

�

(11a)

r 0 03 �
�r3
ω2
�
�
2_y3∕ω� 3x3

−2 _x3∕ω

�
�

~Q13

md313

�
x3 − x1
y3 − y1

�
�

~Q23

md312

�
2x3� x1
2y3� y1

�

(11b)

where the substitution of the scaled charge products has introduced a
time transformation into the equations of motion, as defined
by Eq. (12). This transform to the variable τ reduces numerical
integration error and helps to prevent poor scaling of the linearized
dynamics’ matrices:

dτ � ωdt �ζ� 0 � dζ

dτ
� 1

ω

dζ

dt
(12)

Next, Eqs. (11a) and (11b) are linearized about the equilibrium state
X�, yielding a time-invariant controlled system, defined in general
state-space form by Eq. (13):

δX 0 � AδX�Bu δX �

2
64
δr1
δr3
δv1
δv3

3
75

8×1

u �

2
4 δq1
δq2
δq3

3
5

3×1

(13)

Matrices A and B are given explicitly for the radial configuration in
Eqs. (14a) and (14b), where ~Q�ij ( ~q

�
i ), dij, and ri denote equilibrium

scaled charge products (scaled charges), separation distances, and
signed distances, respectively.
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(14a)

Fig. 6 Along-track initial guess expansion trajectory along manifolds
propagated 1Tp: d1 � 30 → 36 m and d3 � 25 → 34 m.

Fig. 7 Orbit-normal initial guess expansion trajectory along manifolds
propagated 0.7Tp: d1 � 20 → 30 m and d3 � 15 → 25 m.
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The j ~q�i j are used to scale theBmatrix such that it has equal order-of-
magnitude terms as those in A. This numerical scaling is crucial in
successfully computing feedback gains numerically. Also, using the
individual charges in u, as opposed to charge products, ensures that
real-valued qi are maintained. A charge feedback law is then defined
by Eq. (15), where K is a full state feedback gain matrix:

2
664

~q1�τ�
~q2�τ�
~q3�τ�

3
775 �

2
4

~q�1

~q�2

~q�3

3
5�

2
664
j ~q�1 jδq1�τ�
j ~q�2 jδq2�τ�
j ~q�3 jδq3�τ�

3
775

u �

2
664
δq1�τ�
δq2�τ�
δq3�τ�

3
775 � −KδX�τ� (15)

The along-track and all radial cases have linearized systems that are
fully controllable, made possible because of the coupling between x
and y perturbations in theAmatrix [35]. In contrast, the orbit-normal
configurations are not fully controllable in the orbit plane and
some inertial thrusting would be required to maintain them. It is
demonstrated here, for the first time, that êR − êT planar per-
turbations can be asymptotically stabilized for the radial con-
figuration, using only charge control (no inertial thrust). An
analogous result is demonstrated by Natarajan and Schaub [18] for
the radial two-craft configuration. From the state-space model of
Eqs. (14a) and (14b), the gain matrixK is determined by solving the
standard linear quadratic regulator (LQR) problem [35].

A. Radial Feedback Controller Numerical Simulations

For the presented simulations, the LQR weighting matricesQ and
R are both set to identity. The Coulomb configurations are
numerically integrated using the nonlinear equations of motion given
by Eqs. (11a) and (11b). Also, the values in Secs. IVand V form, a0,
and ~Q13 are used here for a nominal configuration of d1 � 30 m and
d3 � 25 m. Figures 8a and 8b illustrate position perturbation and
charge control histories after an initialΔv to crafts 1 and 3, with equal
x and y components of 0.01 mm∕s. Figures 9a and 9b also show a
controlled response, but after initial disturbances in position to all
three craft, thereby demonstrating additional robustness in the con-
trol. The initial position perturbations for Figs. 9a and 9b are Δx1 �
−0.5, Δx2 � 0.18, Δx3 � 0.32, Δy1 � 0.08, Δy2 � −0.056, and
Δy3 � −0.024 m. Note that the required nominal charge levels for
this radial equilibria are quite small, μC order, despite the fact that
minimum L∞-norm charge selection is not implemented in this
simulation. Also, the charge variations required to remove the initial
disturbances are relatively small. This controller methodology is
easily extended to include shielding, with verifiable asymptotic
stabilization. However, numerical simulations and the linearized
matrices A and B with plasma shielding included are omitted for
brevity. Lastly, the response characteristics and robustness of this
preliminary control design might require refining, specifically by
tuning the LQR weighting matrices, and such improvements should
consider varying parameter values (e.g., craft masses).

B. Along-Track Feedback Control

Natarajan shows that there exist no real-valued gains that can
stabilize the two-craft along-track Coulomb formations, thereby
necessitating some inertial thrusting [22]. In contrast, the three-craft
along-track configuration does satisfy the linear controllability
condition; however, it is very nearly uncontrollable numerically
and highly sensitive to perturbations. This assessment of near
uncontrollability is made by computing a distance measure from the
true system to an uncontrollable state-space system, using themethod
of Boley and Lu [36]. The measure is small for the along-track case,
but relatively large for the radial cases. These difficulties make a
charge-only controller impractical, and perhaps even impossible, for

Fig. 8 Radial case A planar controlled response to initial S/C 1,3 Δv perturbations.

Fig. 9 Radial case A planar controlled response to initial S/C 1-3 Δr perturbations.
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the along-track formation. A coordinate change in the dynamics or
the adoption of a nonlinear controller might alleviate some of these
difficulties; otherwise, a hybrid control would be necessary to
stabilize such a formation.

VII. Conclusions

Necessary and sufficient conditions that enable three-craft
collinear static formations are derived in the presence of a linearized
gravity model and include partial Coulomb force shielding. A
detailed stability analysis for each of the resulting equilibrium is
carried out, which demonstrates that marginal stability, normal to the
orbit plane, can be achieved, although it is not assured for all cases.
Furthermore, numerical simulation illustrates that a linearized charge
feedback law (without inertial thrusting) is capable of asymptotically
stabilizing in-plane perturbations for the radial configuration. These
results were previously unknown and demonstrate how the dynamic
properties of these systems may be used to reduce station-keeping
control effort. Control laws to stabilize the remaining three-craft
collinear configurations are lacking, but this paper presents stability
and controllability properties for these cases, which suggest that
some inertial thrustingwill be required. Furtherwork should focus on
these challenges, as well as on improving the robustness of the radial
configuration control law, relaxing some of the assumptions used,
and possibly incorporating nonlinear control. Lastly, prominent
continuous disturbances, such as solar radiation pressure, should be
tested to validate the control designs.
Invariant manifold theory is applied to all equilibrium con-

figurations and examples are given that illustrate possible scenarios in
which the manifolds may be exploited to reduce the cost associated
with reshaping these formations. This analysis suggests that a
previously demonstrated methodology for targeting minimal ΔV
transfers between two-craft Coulomb equilibria, along manifolds,
can be applied to the three-craft configurations as well. Future
research will continue to investigate initial trajectories, where
unstable manifold flows nearly intersect stable flows and thereby
lend themselves to differential correction to match continuity. Such
reconfigurations realize the advantageous property of Coulomb
formations to change shape using charge control, preferably with as
little inertial thrusting as possible.
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