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I. Introduction
This Note describes a robust modification of the Divided Differ-

ence Filtering technique. The robust technique relies on Huber’s
generalized maximum likelihood approach to estimation.1 Specif-
ically, Huber’s method is a combined minimum `1 and `2 norm
estimation technique, which exhibits robustness with respect to de-
viations from the commonly assumed Gaussian error probability
density functions, for which the least–squares or minimum `2 norm
technique exhibits a severe degradation in estimation accuracy.2

The Huber–based estimates are robust in the sense that they mini-
mize the maximum asymptotic estimation variance when applied
to contaminated Gaussian densities. The Huber technique was
originally developed as a generalization of maximum likelihood
estimation, applied first to estimating the center of a probability
distribution in Ref. 1 and generalized to multiple linear regression
in Refs. 2, 3, 4.

The Kalman filter is a recursive minimum `2 norm technique and
therefore exhibits sensitivity to deviations in the true underlying
error probability distributions.5 For this reason, the Huber tech-
nique has been further extended to dynamic estimation problems.
Boncelet and Dickinson6 first proposed to solve the robust filtering
problem by means of the Huber technique at each measurement, by
expressing the discrete-time Kalman filter as a sequence of linear
regression problems. The authors do not provide any simulation
results to validate the proposed technique. Kovacevic, et al7 fol-
low the work of Ref. 6 and develop a robust Kalman filter using
the Huber technique applied to a linear regression problem at each
measurement update. Refs. 8, 9, 10 express the dynamic filtering
problem as a sequential linear regression to be solved by the Hu-
ber technique, and apply the filter to underwater vehicle tracking,
power system state estimation, and spacecraft rendezvous naviga-
tion, respectively. The increase in computation due to the use of
the Huber technique was found in Ref. 10 to be small. It should
be noted that Refs. 6, 7, 8, 9, 10 apply the Huber methodology to
linearized filters.

The Divided Difference Filter is one of several new estimation
techniques that are collectively known as Sigma–Point Kalman
Filters (SPKF). The First–Order (DD1) and Second–Order (DD2)
Divided Difference Filters11, 12 are generalizations of the filter in-
troduced by Schei,13 and are two examples of SPKF–class estima-
tors; other examples can be found in Refs. 16, 14, 15. Like the
basic Kalman filter, the SPKFs seek to determine a state estimate
that minimizes the `2–norm of the residuals. The SPKF technique
differs from the standard Kalman filter in the sense that the SP-
KFs do not linearize the dynamic system for the propagation, but
instead propagate a cluster of points centered around the current es-
timate in order to form improved approximations of the conditional
mean and covariance. Specifically, the divided difference filters
make use of multidimensional interpolation formulas to approxi-
mate the nonlinear transformations. As a result of this approach,
the filter does not require knowledge or existence of the partial
derivatives of the system dynamics and measurement equations.
SPKFs have the additional advantage over the basic Kalman filter
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in that they can easily be extended to determine second–order so-
lutions to the minimum `2 norm filtering problem, which increases
the estimation accuracy when the system and measurement equa-
tions are nonlinear. It is important to note that the SPKFs use a
minimum `2–norm measurement update and are therefore subject
to the same sensitivity to non-Gaussian measurement errors as the
Kalman filter. Therefore, the purpose of this Note is to modify the
DD1 and DD2 measurement update equations by making use of
the Huber technique to provide robustness again deviations from
Gaussianity without a large increase in computation.

This Note first provides a short review of the DD1 and DD2 fil-
ters, and then shows how the measurement update can be expressed
in terms of a standard regression problem, which can be solved us-
ing the robust Huber technique. The filtering techniques are then
applied to a benchmark problem involving estimating the trajec-
tory of an entry body from discrete–time range data measured by
a radar tracking station. The simulation is conducted using Monte-
Carlo techniques for both Gaussian and non-Gaussian cases. The
computational cost associated with each filter is provided.

II. Robust Divided Difference Filtering
The filter summary closely follows that given in Refs. 11 and

12. The filter equations rely upon a discrete representation of the
system dynamics, as follows

xk+1 = F (xk,vk, tk) (1)

where xk is the state vector and vk are random inputs to the system
at time tk. The mean value of vk is v̄k = 0 and its covariance is
Qk. Observations of the state are of the form

yk = G (xk,wk, tk) (2)

where yk is the measurement at time tk, and wk is the measure-
ment noise at time tk. The mean value of wk is w̄k = 0 and its
covariance is Rk.

The following square-root decompositions of the predicted state
error covariance, P̄k, corrected state error covariance, P̂k, process
noise covariance, Qk, and measurement noise covariance, Rk, are
introduced as

P̄k = S̄xk S̄T
xk

(3)

P̂k = Ŝxk ŜT
xk

(4)

Qk = SvkST
vk

(5)

Rk = SwkST
wk

(6)

Also, the jth column of S̄xk shall be referred to as s̄xkj
and like-

wise for the other matrices.

A. Overview of the DD1 Filter
The DD1 filter makes use of first–order divided differences to

approximate the system and measurement dynamics rather than the
first–order Taylor series expansions used in the EKF. The following
matrices of first–order divided differences are defined as

S′
xx̂ki,j

=
1

2c

h
Fi

“
x̂ + cŝxkj

, v̄k, tk
”

− Fi

“
x̂k − cŝxkj

, v̄k, tk
” i (7)

S′
xvki,j

=
1

2c

h
Fi

“
x̂k, v̄k + csvkj

, tk
”

− Fi

“
x̂k, v̄k − csvkj

, tk
” i (8)

S′
yx̄ki,j

=
1

2c

h
Gi

“
x̄k + cs̄xkj

, w̄k, tk
”

−Gi

“
x̄k − cs̄xkj

, w̄k, tk
” i (9)

S′
ywki,j

=
1

2c

h
Gi

“
x̄k, w̄k + cswkj

, tk
”

−Gi

“
x̄k, w̄k − cswkj

, tk
” i (10)



2 J.GUIDANCE, VOL. 30, NO. 3: ENGINEERING NOTES

where c the divided–difference perturbing parameter.

The state prediction, x̄k+1 state root–covariance prediction,
S̄xk+1 , measurement prediction, ȳk, and measurement root-
covariance prediction, Syk , are given by

x̄k+1 = F (x̂k, v̄k, tk) (11)

S̄xk+1 = H
`ˆ

S′
xx̂k

S′
xvk

˜´
(12)

ȳk = G (x̄k, w̄k, tk) (13)

Syk = H
`ˆ

S′
yx̄k

S′
ywk

˜´
(14)

where H(·) represents a Householder transformation of the argu-
ment matrix.11, 12

The state, x̂k, and state root-covariance, Ŝxk , measurement up-
date equations are given by

x̂k = x̄k + Kk (yk − ȳk) (15)

Ŝxk = H
`ˆ

S̄xk −KkS
′
yxk

KkS
′
ywk

˜´
(16)

where Kk = S̄xkS′T
yx̄k

`
SykST

yk

´−1
is the Kalman gain matrix.

B. Overview of the DD2 Filter

The DD2 filter makes use of second–order divided differences to
approximate nonlinear transformation of the state and covariance.
The matrices of second–order divided differences are defined as

S′′
xx̂ki,j

=

√
c2 − 1

2c2

h
Fi

“
x̂k + cŝxkj

, v̄k, tk
”

+ Fi

“
x̂k − cŝxkj

, v̄k, tk
”

− 2Fi (x̂k, v̄k, tk)
i (17)

S′′
xvki,j

=

√
c2 − 1

2c2

h
Fi

“
x̂k, v̄k + csvkj

, tk
”

+ Fi

“
x̂k, v̄k − csvkj

, tk
”

− 2Fi (x̂k, v̄k, tk)
i (18)

S′′
yx̄ki,j

=

√
c2 − 1

2c2

h
Gi

“
x̄ + cs̄xkj

, w̄k, tk
”

+ Gi

“
x̄− cs̄xkj

, w̄k, tk
”

− 2Gi (x̄k, w̄k, tk)
i (19)

S′′
ywki,j

=

√
c2 − 1

2c2

h
Gi

“
x̄k, w̄k + cswkj

, tk
”

+ Gi

“
x̄kw̄k − cswkj

, tk
”

− 2Gi (x̄k, w̄k, tk)
i (20)

The state, state root–covariance, measurement, and measure-

ment covariance predictions are given by

x̄k+1 =

„
c2 − nx − nv

c2

«
F (x̂k, v̄k, tk)

+
1

2c2

nxX
j=1

h
F

“
x̂k + cŝxkj

, v̄k, tk
”

+ F
“
x̂k − cŝxkj
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” i

+
1

2c2

nvX
j=1

h
F
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”
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” i

(21)

S̄xk+1 =H
`ˆ

S′
xx̂k

S′
xvk

S′′
xx̂k

S′′
xvk

˜´
(22)

ȳk =

„
c2 − nx − nw

c2

«
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+
1

2c2

nxX
j=1

h
G

“
x̄k + cs̄xkj

, w̄k, tk
”

+ G
“
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, w̄k, tk
” i

+
1

2c2
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j=1

h
G
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”

+ G
“
x̄k, w̄k − cswkj

, tk
” i

(23)

Syk =H
`ˆ

S′
yx̄k

S′
ywk

S′′
yx̄k

S′′
ywk

˜´
(24)

where nx is the size of the state dimension, nv is the size of the
process noise dimension, and nw is the size of the measurement
noise dimension.

Lastly, the state and root-covariance update equations are given
by

x̂k = x̄k + Kk (yk − ȳk) (25)

Ŝxk = H
“h

S̄xk −KkS
′
yxk

KkS
′
ywk

· · ·

· · · KkS
′
yxk

KkS
′
ywk

i” (26)

where Kk = S̄xkS′T
yx̄k

`
SykST

yk

´−1
is the Kalman gain matrix.

Note that many of the same state and noise perturbations used to
calculate the first–order divided differences are again used to com-
pute the second–order divided differences. This point has impor-
tant implications with regard to the computational costs, suggesting
that the DD2 filter may not require a great deal more computing
time than the DD1 filter.

C. Modification of Measurement Update Using Huber’s
Technique

This section discusses how the measurement update equations
of the DD1 and DD2 filters can be solved using the Huber method.
To apply this method, it is first required to recast the measurement
update as a regression problem between the observed quantity and
the state prediction. If the true value of the state is written as xk

and the state prediction error is written as δk = xk − x̄k, then
the state prediction can be expressed as x̄k = xk − δk. By defin-
ing the cross-covariance matrix,11 Pxyk = S̄xk

`
S′

yxk

´T , and the
matrix Hk = PT

xyk
P̄−1

k = S′
yxk

`
S̄T

xk

´−1
, then the measurement

equation can be approximated by yk ≈ ȳk + Hk (xk − x̄k). The
measurement update can then be written as the solution to the linear
regression problem10, 17

zk = Mkxk + ξk (27)
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where

zk = Λ−1
k


yk − ȳk + Hkx̄k

x̄k

ff
(28)

Mk = Λ−1
k

»
Hk

I

–
(29)

ξk = Λ−1
k


wk

−δk

ff
(30)

Λk =

»
Swk 0
0 S̄xk

–
(31)

This regression problem can be solved using Huber’s general-
ized maximum likelihood technique, in which the solution is found
by minimizing the cost function

J (x) =

mX
i=1

ρ (ζi) (32)

Here, ζi is the ith component of the residual vector, ζ =
Mkx̂k − zk, m is the dimension of ζ, and ρ is a positive sym-
metric function with ρ(0) = 0, but otherwise arbitrary. Note that
this formulation reduces to the standard maximum likelihood tech-
nique when ρ(ζi) = − ln [f (ζi)], where f (ζi) is the assumed
probability density function. For instance, Huber1 introduces a ρ
function of the form

ρ (ζi) =

8<:
1
2
ζ2

i for |ζi| < γ

γ|ζi| − 1
2
γ2 for |ζi| ≥ γ

(33)

where γ is a tuning parameter. This ρ function is a blend of the `1
and `2 norm functions, and estimates derived from the use of this
ρ function have desirable robustness properties. Specifically, the
estimates minimize the maximum asymptotic estimation variance
when applied to contaminated Gaussian densities. See Ref. 17 for
more information on the Huber technique, including guidelines on
how to choose the value of the tuning parameter γ.

If the ρ function is differentiable, which is the case for Eq. (33),
then the solution to the generalized maximum likelihood regression
problem can be found from the implicit equation

mX
i=1

φ(ζi)
∂ζi

∂x
= 0 (34)

where φ(ζi) = ρ′(ζi). By defining the functionψ (ζi) = φ(ζi)/ζi,
and the matrix Ψ = diag [ψ (ζi)], the implicit equation can be
written in matrix form as

MT
k Ψ (Mkxk − zk) = 0 (35)

Equation (35) can be expanded to yield MT ΨMxk =
MT Ψzk, which can be solved for xk to give xk =`
MT ΨH

´−1
MT

k Ψzk. Since the matrix Ψ depends on the resid-
uals ζi, and hence on xk, an iterative solution to Eq. (35) is ex-
pressed as

x
(j+1)
k =

“
MT

k Ψ(j)Mk

”−1

MT
k Ψ(j)zk (36)

where the superscript (j) refers to the iteration index. The method
can be initialized by using the least–squares solution x

(0)
k =`

MT
k Mk

´−1
MT

k zk. The converged value from the iterative pro-
cedure is taken as the state estimate, x̂k. This technique is known
as iteratively reweighted least squares,18 and is generally attributed
to Beaton and Tukey.19 This iteration will converge if the ψ func-
tion is non-increasing20 (for ζi > 0), which is the case when using
the ρ function in Eq. (33). The algorithm can be iterated until con-
vergence or can be carried out through only one fixed iteration step,
as discussed by Bickel21 and Rousseeuw and Leroy,22 an approach

that captures the robustness properties and also saves on the com-
putational costs associated with the iterative solution.

Due to the particular structure of the matrix Mk, the discrete
time dynamic state estimation technique can be simplified consid-
erably from the static state estimation technique by application of
the matrix inversion lemma.23 By first decomposing the Ψ matrix
into two portions Ψx and Ψy corresponding to the state prediction
and measurement prediction residuals so that

Ψ =

»
Ψy 0
0 Ψx

–
(37)

then the measurement update can be expressed in the same recur-
sive form as the DD1 and DD2 filter updates. The results for each
filter are as follows.

If the measurement update given in Eq. (15) is taken as the initial
guess for the state then a one-step Huber update for the DD1 filter
can be written as

S(1)
yk

= H
“h

S′
yx̄k

Ψ
−1/2
x S′

ywk
Ψ

−1/2
y

i”
(38)

K
(1)
k = S̄xkΨ−1

x S′T
yx̄k

“
S(1)

yk
S(1)T

yk

”−1

(39)

x̂k = x̄k + K
(1)
k (yk − ȳk) (40)

Ŝxk = H
“h

S̄xkΨ
−1/2
x −K

(1)
k S′

yxk
Ψ

−1/2
x · · ·

· · · K
(1)
k S′

ywk
Ψ

−1/2
y

i” (41)

Similarly for the DD2 filter, if the measurement update given in
Eq. (25) is taken as the initial guess for the state, then a one-step
Huber update can be written as

S(1)
yk

= H
“h

S′
yx̄k

Ψ
−1/2
x S′

ywk
Ψ

−1/2
y · · ·

· · · S′′
yx̄k

Ψ
−1/2
x S′′

ywk
Ψ

−1/2
y

i” (42)

K
(1)
k = S̄xkΨ−1

x S′T
yx̄k

“
S(1)

yk
S(1)T

yk

”−1

(43)

x̂k = x̄k + K
(1)
k (yk − ȳk) (44)

Ŝxk = H
“h

S̄xkΨ
−1/2
x −K

(1)
k S′

yxk
Ψ

−1/2
x · · ·

· · · K
(1)
k S′

ywk
Ψ

−1/2
y K

(1)
k S′′

yxk
Ψ

−1/2
x · · ·

· · · K
(1)
k S′′

ywk
Ψ

−1/2
y

i” (45)

In each case, Ψx and Ψy are diagonal matrices computed from
the Huber ψ function, with residuals that take the form

ζ = Λ−1
k

8<:
yk − ȳk

x̂
(0)
k − x̄k

9=; (46)

where the superscript (0) refers to the initial state estimate com-
puted from the standard DD1 or DD2 update.

Note that as γ →∞, the modified DD1 and DD2 measurement
updates using the Huber technique reduce to the original form pre-
sented in Sec. II.A. and Sec. II.B.. Specifically, when γ →∞, the
matrix Ψ → I, and Eq. (35) can be solved exactly in one itera-
tion step and is equal to the standard DD1 and DD2 measurement
updates.

III. Application to a Benchmark Nonlinear
Filtering Problem

This section discusses the application of the robust filters to the
problem of estimating the trajectory of a target using range mea-
surements recorded from a radar tracking station. The example
problem is to estimate the trajectory of a mass falling through an
exponential atmosphere with a constant, yet unknown, drag coeffi-
cient. The gravitational acceleration acting on the body is neglected
in the dynamic model. This truncated model is valid for high initial
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K !1"
k # !Sxk!

$1
x S0T

y !xk
!S!1"

yk S
!1"T
yk "$1 (43)

x̂ k # !xk %K!1"
k !yk $ !yk" (44)

Ŝ xk #H
!

!Sxk!
$1=2
x $K!1"

k S0
yxk!

$1=2
x K!1"

k S0
ywk!

$1=2
y K!1"

k S00
yxk!

$1=2
y K!1"

k S00
ywk!

$1=2
y

h i"
(45)

In each case,!x and!y are diagonal matrices computed from the
Huber  function, with residuals that take the form

! #"$1
k

n yk $ !yk
x̂!0"
k $ !xk

o
(46)

where the superscript (0) refers to the initial state estimate computed
from the standard DD1 or DD2 update.

Note that as ! ! 1, the modified DD1 and DD2 measurement
updates using the Huber technique reduce to the original form
presented in Secs. II.A and II.B. Specifically, when ! ! 1, the
matrix ! ! I, and Eq. (35) can be solved exactly in one iteration
step and is equal to the standard DD1 and DD2 measurement
updates.

III. Application to a Benchmark Nonlinear Filtering
Problem

This section discusses the application of the robust filters to the
problem of estimating the trajectory of a target using range
measurements recorded from a radar tracking station. The example
problem is to estimate the trajectory of a mass falling through an
exponential atmosphere with a constant, yet unknown, drag
coefficient. The gravitational acceleration acting on the body is
neglected in the dynamic model. This truncated model is valid for
high initial velocities that cause the aerodynamic acceleration to

dominate over the gravitational acceleration. This benchmark
nonlinear filtering problem was initially studied in [24] and has been
repeated numerous times in the literature. Figure 1 shows the
geometry of the problem.

A. Dynamic Model and Measurement Equations
The dynamic model for this problem is

_x 1 #$x2 (47)

_x 2 #$x23x22e$"x1 (48)

_x 3 # 0 (49)

where x1 represents the altitude of the mass, x2 is its downward
velocity, x3 is a constant ballistic parameter, and " is the known
constant inverse atmospheric density scale height.

The radar range measurement equation is

yk #
#####################################
b2 % &x1!tk" $ a'2

p
% wk (50)

where wk represents zero-mean random error, with probability
density function f!wk". Randommeasurement errors are drawn from
the mixture of zero-mean Gaussian probability distributions, defined
by the probability density function:

f!wk" #
$

1 $ #

$1
######
2%

p
%
exp

&
$
$
w2
k

2$2
1

%'
%

$
#

$2
######
2%

p
%
exp

&
$
$
w2
k

2$2
2

%'

(51)

where $1 and $2 are the standard deviations of the individual
Gaussian distributions, and # is a perturbing parameter that
represents error-model contamination. The standard deviations $1
are chosen according to Table 1 and $2 is chosen as $2 # 5$1. The
measurements are assumed to occur at a frequency of 1 Hz. The

b

x 2

x 1

yk

a

radar location

Fig. 1 Geometry of the example problem.

Table 1 Simulation parameters

Parameter Value

a, km 30.5
b, km 30.5
", m$1 1:64 ( 10$4

$1, m 30.5
! 1.345
c2 3.0

Table 2 Initial conditions

Initial state True value Estimated value Standard deviation

x1!0", km 91.5 91.5 0.31
x2!0", km=s 6.1 6.1 0.06
x3!0", 1=

####
m

p
0.06 0.01 0.02
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Figure 1: Geometry of Example Problem

velocities that cause the aerodynamic acceleration to dominate over
the gravitational acceleration. This benchmark nonlinear filtering
problem was initially studied in Ref. 24 and has been repeated nu-
merous times in the literature. Fig. 1 shows the geometry of the
problem.

A. Dynamic Model and Measurement Equations
The dynamic model for this problem is

ẋ1 = −x2 (47)
ẋ2 = −x2

3x
2
2e

−ηx1 (48)
ẋ3 = 0 (49)

where x1 represents the altitude of the mass, x2 its downward
velocity, x3 is a constant ballistic parameter, and η is the known
constant inverse atmospheric density scale height.

The radar range measurement equation is

yk =

q
b2 + [x1 (tk)− a]2 + wk (50)

where wk represents zero-mean random error, with probability
density function f(wk). Random measurement errors are drawn
from the mixture of zero–mean Gaussian probability distributions,
defined by the probability density function

f (wk) =

„
1− ε

σ1

√
2π

«
exp

»
−

„
w2

k

2σ2
1

«–
+

„
ε

σ2

√
2π

«
exp

»
−

„
w2

k

2σ2
2

«–
(51)

where σ1 and σ2 are the standard deviations of the individual Gaus-
sian distributions, and ε is a perturbing parameter that represents
error model contamination. The standard deviations σ1 are chosen
according to Table 1 and σ2 is chosen as σ2 = 5σ1. The mea-
surements are assumed to occur at a frequency of 1 Hz. The model
parameters and initial conditions for the problem are summarized
in Table 1 and Table 2.

B. Results of Example Problem
This section discusses the results of applying several filters to the

benchmark tracking problem. These filters include the EKF, DD1,
DD2 and the robust versions of the EKF (discussed in Ref. 10) and
DD1 and DD2 (discussed in Sec. II.C.), each using the one–step
Huber update. The results of a Monte–Carlo simulation are shown
in the following figures. In this simulation, 2000 trial cases have
been conducted, each case terminating after an elapsed time of 60
s.

Table 1: Simulation Parameters

Parameter Value

a, km 30.5
b, km 30.5
η, m−1 1.64 · 10−4

σ1, m 30.5
γ 1.345
c2 3.0

Table 2: Initial Conditions

Standard
Initial State True Value Estimated Value Deviation

x1(0), km 91.5 91.5 0.31
x2(0), km/s 6.1 6.1 0.06
x3(0), 1/

√
m 0.06 0.01 0.02

Table 3: EKF-Relative Computation Ratios

Filter Computation Ratio

H-EKF 1.08
DD1 2.95
H-DD1 3.14
DD2 3.02
H-DD2 3.19

The absolute value of the median errors are shown for the case of
ε = 0 in Figs. 2(a)–(c). In this case the DD2 filter gives a smaller
estimation error than the other robust and non-robust filters. The
DD1 filter exhibits slightly larger errors than the EKF. These re-
sults are not surprising based on the results given in Ref. 11 and 12.
The robust filters do not perform as well as their non-robust coun-
terparts in this case, because the Huber update does not minimize
the `2 norm during the measurement update. The increase in the
estimation error for the robust filters is to be expected in a perfectly
Gaussian simulation since the minimum `2 norm is the maximum
likelihood estimator in this case.

The absolute value of the median errors are shown in Figs. 2(d)–
(f) for the case ε = 0.5, for the case where the measurement errors
are highly non–Gaussian. In this case, the Huber–EKF and DD2
filters give comparable results to each other for the position and
velocity errors, but the Huber–EKF gives a smaller error in the es-
timate of the ballistic parameter. Both Huber–EKF and DD2 are
superior to the EKF and DD1 filter in this case. The Huber–DD2
filter exhibits the smallest errors since it captures both nonlinear-
ity and non-Gaussianity. The DD1 and Huber–DD1 filters do not
perform as well as the EKF and the Huber–EKF, respectively, in
the non–Gaussian case, which follows the behavior from the Gaus-
sian case. In the non-Gaussian case, six cases of the EKF and two
cases of the DD1 methods diverged completely, while the Huber-
EKF and Huber-DD1 did not exhibit any divergence. The DD2
filter, being a second–order filter and therefore not as sensitive to
initialization, did not diverge in any of the Monte-Carlo cases, but
clearly the median error is reduced by making use of the Huber
update method.

The computational cost associated with implementing the each
filter is summarized in Table 3. In this table, the computational
costs are divided by the EKF processing time to provide a ratio
of the cost relative to that associated with the EKF. These ratios
are based on the median computation time for each filter during
the Monte-Carlo simulation. The results show that the Huber–EKF
filter requires the smallest relative computational cost whereas the
DD2 and Huber–DD2 filters require more, at 3.12 and 3.15 times
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a) Estimated Position Errors for ε = 0.0
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b) Estimated Velocity Errors for ε = 0.0
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c) Estimated Ballistic Coefficient Errors for ε = 0.0
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d) Estimated Position Errors for ε = 0.5
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e) Estimated Velocity Errors for ε = 0.5
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f) Estimated Ballistic Coefficient Errors for ε = 0.5

Figure 2: Estimated Trajectory Errors
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the total computation, respectively. It is not surprising that the
Huber–DD2 filter has the largest cost since it has the smallest er-
rors for the non-Gaussian case, but it is interesting to note that the
similar levels of accuracy in the non-Gaussian case can be found by
use of the Huber–EKF over that of DD2 filter, for only a fraction
of the computation time.

IV. Conclusions
This paper has discussed robust divided difference filtering tech-

niques based on Huber’s generalized maximum likelihood esti-
mation theory, which provides robustness against deviations from
the Gaussian error distribution. The standard divided difference
filtering problem was recast in the form of a sequence of linear re-
gression problems, to be solved at each measurement point using
the robust Huber technique. The robust filters were applied to a
benchmark tracking problem involving the estimation of the trajec-
tory of an entry body from discrete–time, noisy range measurement
data provided by a radar tracking system. The simulation includes
the standard EKF and an EKF with Huber update, in addition to the
divided difference filtering techniques discussed in this paper. The
simulation was conducted using Monte–Carlo techniques with both
Gaussian and non–Gaussian error distributions in order to asses the
performance of the filtering techniques.

The results show that for perfectly Gaussian error distributions
the standard DD2 filter exhibits the lowest estimation error time
history, which was the expected outcome based on previously pub-
lished results. The DD1 filter exhibited slightly larger estimation
errors than that of the EKF. The filters with the Huber update tech-
nique produced larger errors than the standard update, since the
standard form of the update is a the maximum likelihood esti-
mate for the perfectly Gaussian case. However, for non–Gaussian
error distributions, the modified filters with the Huber update out-
performed the standard filters. The modified DD2 filter with the
Huber update equation exhibited the smallest errors in the non-
Gaussian numerical simulations conducted. The Huber-EKF and
the Huber-DD1 filters were able to mitigate divergence problems
in their non-robust counterparts.

Comparisons of the computational costs associated with each fil-
ter show that the Huber–EKF filter is able to process data at a rate
approximately three times faster than the standard DD2 filter, and
produces similar accuracy levels in the non–Gaussian case. There-
fore, for non-Gaussian cases, the Huber–EKF filter is superior to
the standard DD2 filter. If computation costs are not a concern for
the particular application, then the Huber–DD2 filter exhibits the
best performance.
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