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Nonsingular Attitude Filtering
Using Modified Rodrigues

Parameters

Christopher D. Karlgaard‡ and Hanspeter Schaub§

Abstract
A method to estimate the general rigid body attitude using a minimal Modified Ro-

drigues Parameters (MRP) coordinate set is presented. The singularity avoidance tech-
nique is based on the stereographic projection properties of the MRP set, and makes use
of a simple mapping relationship between MRP representations. Previous work has used
the MRP duality to avoid singular attitude descriptions but has ignored the associated
covariance transformation. This paper presents a mapping to transform the state co-
variance matrix between these two representations as the attitude description is mapped
between the two possible MRP sets. Second–order covariance transformations suitable
for divided difference filtering are also provided. The MRP filter formulation based on
extended Kalman filtering and divided difference filtering is compared with a standard
multiplicative quaternion Kalman filter in an example problem.

Introduction
Attitude estimation techniques often make use of quaternions for the represent-

ing the attitude, for several reasons including globally nonsingular kinematics
and linear state propagation.1, 2 Techniques making use of quaternions as state
variables are complicated by the quaternion constraint. The usual approach to
satisfying the constraint is to estimate an error quaternion at each measurement
update and then form the true quaternion estimate from the composition of the
estimated error quaternion with the predicted quaternion based on the state tran-
sition matrix. Assuming small errors allows for the first three components of
the quaternion to be estimated independently of the fourth component, which is
essentially amounts to a linearization using small angle assumptions. Recently,
constrained filtering approaches have been investigated by Zanetti and Bishop3

and Majji and Mortari.4 These approaches use a Lagrange multiplier formula-
tion to solve a constrained filtering problem for all four components of the error
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quaternion, rather than using a linearization in order to enforce the quaternion
norm constraint.

Other attitude parameterizations can be used, provided that a singularity avoid-
ance method is employed to provide a valid attitude description at any condition.
One representation with several attractive features are the Modified Rodrigues
Parameters (MRP).5 The MRPs have several interesting properties. Firstly, the
MRPs constitute a minimal three parameter set of variables that describe the ori-
entation of a rigid body and are nonsingular for any rotation other than multi-
ples of 2π. Tsiotras and Longuski6 discuss that the MRPs can be viewed as the
result of a stereographic projection of the unit quaternion sphere onto a three-
dimensional hyperplane, illustrated in Fig. 1. Schaub and Junkins7 use this in-
sight to formulate a family of attitude coordinates called the Stereographic Ori-
entation Parameters (SOP), which contain the MRPs as one particular solution
of symmetric SOPs. As part of this development it is noted that the MRPs are
not unique, but rather there are always two possible MRP sets that can describe a
particular orientation. This alternate MRP is known as the shadow MRP set. The
shadow MRP set is singular for zero rotations, but is non-singular for rotations of
2π. This property allows for the development of a singularity avoidance method
by switching to and from the shadow MRP set. For example, this switching
procedure allows for non–singular optimal attitude control problems to be for-
mulated using a minimal three–parameter family of MRPs as discussed in Ref. 8,
in which an analytical mapping is developed for the MRP costates.

The application of MRPs to attitude estimation was first explored in Ref. 9
without discussion of singularity avoidance. Other examples make use of MRPs
for representing attitude error rather than the global attitude, preferring to keep
track of the quaternion.10, 11 In these cases the MRP singularity is never en-
countered in practice but the additional computations to transform the MRP error
estimate to the quaternion may not always be desirable. The two MRP sets are
applied to attitude estimation problems as a singularity avoidance procedure in
Refs. 12–14. In these cases, the transformation of the covariance matrix at the
switching point has been ignored, although it is not actually required in the parti-
cle filtering approach utilized in Ref. 12. The purpose of this paper is to introduce
the covariance transformation to accompany the shadow MRP mapping for sin-
gularity avoidance in attitude estimation problems. The covariance transforma-
tion is introduced for Kalman filtering problems by using a first–order analytical
mapping of the MRP and gyroscope bias state covariance to and from the shadow
MRP set. Subsequently, a divided difference covariance transformation is intro-
duced, suitable for the first and second–order divided difference filters introduced
in Refs. 15 and 16. Numerical examples are provided that demonstrate the singu-
larity avoidance technique applied to the spacecraft attitude estimation problem.

Review of Modified Rodrigues Parameter Kinematics

The MRPs are defined in terms of the quaternions (q1, q2, q3, q4) as

σ =
q

1 + q4
= e tan

(
θ

4

)
(1)



Nonsingular Attitude Filtering Using MRP 3

Euler Parameter
Unit Constraint
Sphere

Projection
Point

+ 1− 1

Modified Rodrigues
Parameter Hyperplane

q

−q

σ

θ/2

qi

q4

σS

Figure 1. MRP Illustration as the Result of a Stereographic Projection

where q = (q1, q2, q3) is the vector part of the quaternion, q4 is the scalar part
of the quaternion, e is the principal rotation axis, and θ is the principal rotation
angle.

The shadow MRP set is defined as5, 7

σS = − σ

σTσ
= e tan

(
θ − 2π

4

)
(2)

Note that the MRP set σ behaves nearly linearly (with respect to θ) near the
zero rotation and grows infinitely large after a complete revolution, while the
shadow MRP set σS behaves linearly about 2π and is singular about the zero
rotation. Further, while ‖σ‖ < 1 (or > 1), σ describes the short (or long)
rotation back to the origin, the shadow set σS describes the opposite rotation.
The MRP and shadow MRP set can also be described as the inner and outer
MRPs,17 respectively, where inner refers to the MRP set within the unit sphere
(‖σ‖ < 1) and outer refers to the MRP set outside the unit sphere (‖σ‖ > 1).
Both inner and outer sets lie on the unit sphere when ‖σ‖ = 1.

As proposed in Ref. 7, the shadow MRP set can be exploited to yield a glob-
ally non–singular attitude description with a minimal three–parameter coordinate
set at the expense of a discontinuity. To avoid the singularity, the MRP set is
switched to the shadow set before reaching the singularity. A convenient switch-
ing condition is the unit magnitude surface ‖σ‖ = 1, such that the composite
MRP description always satisfies ‖σ(t)‖ ≤ 1. This surface represents all possi-
ble orientations where the body has performed a principal rotation relative to the
origin of θ = π. Note that on this surface there are two possible MRP sets that
describe the same attitude.
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Both sets of MRPs satisfy the same kinematic differential equation5

σ̇ =
1
4
B (σ)ω =

1
4
[(

1− σTσ
)
I + 2σ× + 2σσT

]
ω (3)

where ω is the angular velocity and σ× is the skew-symmetric cross product
matrix.

Aside from providing a non–singular attitude description, another advantage
of the combined MRP set restricted to ‖σ(t)‖ ≤ 1 is that they behave nearly
linearly for a large set of orientations. Figure 2 illustrates tan (θ/4) and the
linearized θ/4 for rotations up to θ = π.

!Π ! Π
2

Π
2

Π

!1

!0.5

0.5

1
tan(θ/4)

θ/4

Figure 2. Illustration of the weakly nonlinear behavior of the MRPs re-
stricted to ‖σ‖ ≤ 1.

Having the analytical mapping between two possible MRP sets allows for two
attitude motion descriptions to be solved simultaneously, using only one inte-
gration of the kinematic equations. After integrating the kinematic equations,
the MRP set can be switched if ‖σ‖ ≥ 1 and then the integration can continue.
Note that the mapping in Eq. (2) is valid for any non–singular switching point.
This observation allows the integration procedure to avoid the need to track the
‖σ‖ = 1 surface crossing precisely. Instead, the mapping step is performed only
if the MRP set falls outside this surface.

Note that in general, the MRP can switched to the shadow set at any surface
of ‖σ‖ ≥ 1. The shadow MRP mapping cannot be performed at conditions
‖σ‖ < 1. For example, suppose a switching condition of ‖σ‖ = 1/2 is spec-
ified. It follows from Eq. (2) that ‖σS‖ = 2. Since 2 > 1/2, the MRP must
immediately be switched back again and the cycle continues indefinitely. The
most convenient switching condition is ‖σ‖ ≥ 1 since that corresponds to the
principal rotation angle of π. However, there may be certain circumstances where
other switching surfaces are favorable for a particular application. Therefore the
covariance transformations developed in the following section are kept to the
general case of any switching surface greater than one.

Note that it is possible to construct other minimal attitude coordinate sets
which are even more linear with respect to the principal rotation angle θ than
the MRPs. Reference 18 calls them the Higher Order Rodrigues Parameters



Nonsingular Attitude Filtering Using MRP 5

(HORPs). Parameters τ can be developed which are written as

τ = e tan
(

θ

2N

)
(4)

where N ≥ 1 is an integer value. These HORPs also contain multiple sets of
possible values which can be used to avoid singular attitude descriptions. The
MRP covariance mapping methods developed in this paper could be used for the
HORP descriptions as well, but are not developed in this work.

ATTITUDE ESTIMATION USING MODIFIED RODRIGUES PA-
RAMETERS

In order to use the MRP shadow set singularity avoidance technique for at-
titude estimation, a mapping must also be developed in order to transform the
MRP state estimate error covariance matrix into the shadow set MRP state esti-
mate error covariance matrix. In previous applications of the MRPs to attitude
estimation problems, the state covariance matrix has implicitly been kept fixed
during this switching to the shadow set.14 The following section describes the
application of the shadow MRP set for singularity avoidance in the Kalman filter,
including a first–order covariance transformation to accompany the MRP singu-
larity avoidance mapping.

Kalman Filter Formulation

In typical attitude estimation problems, a gyroscope is used to sense the inertial
angular velocity which is in turn used to integrate the kinematic equations of
motion (3). A common approximation to the gyroscope dynamics is Farrenkopf’s
model,19 which considers the measured angular velocity to be of the form

ω̃ = ω + β + ηω (5)

β̇ = ηβ (6)

where ω̃ is the sensed inertial angular velocity, ω is the true inertial angular
velocity, β is the measurement bias, and ηω and ηβ are unbiased and uncorrelated
random noise vectors. In this formulation, the state dynamics are expressed as

ẋ = f (x, t) + g (x,η, t) (7)

where x = [σ,β]T , η =
[
ηω,ηβ

]T , and

f (x, t) =
{

(1/4)B (σ) (ω̃ − β)
0

}
(8)

g (x,η, t) =
{
− (1/4)B (σ)ηω

ηβ

}
(9)

It is assumed that a star tracker or some other generic attitude sensor is avail-
able to provide corrections to the attitude estimates formed by direct numeri-
cal integration of the angular velocity measurements, which are subject to error
buildup due to integrating errors in the estimated bias and the random noise. The
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attitude sensing device is assumed to output an estimated MRP that relates the
orientation of the body to the inertial frame. The estimates are assumed to be
unbiased but with a superimposed random measurement noise. The output from
such a sensor can be expressed as σ̃ = σ + δσ where σ is the MRP represent-
ing the true orientation, σ̃ is the “measured” MRP, and δσ is an error MRP with
covariance matrix denoted by R. For instance, the measured MRP could be an
output from the algorithm described in Ref. 20, involving vector measurements.
If discrete–time measurements of the MRP are available, then they can be in-
corporated into the state estimates using the extended Kalman filter, with state
updates given by21

x̂k = x̄k +Kk (σ̃ −Hkx̄k) (10)

P̂ k = (I −KkHk) P̄ k (11)

where x̂k is the corrected state estimate after the measurement update at time
tk, P̂ k is the corrected state covariance matrix, x̄k is the state prediction based
on integration of the angular velocity measurements, P̄ k is the predicted state
covariance matrix,Hk = [ I 0 ], andKk is the Kalman gain matrix,

Kk = P̄ kH
T
k

(
HkP̄ kHk +Rk

)−1 (12)

The state predictions between MRP measurements can be determined by means
of numerical integration of Eq. (7), or alternatively by means of analytical propa-
gation using quaternion kinematics, as suggested in Ref. 12. The latter approach
saves on the computation required of numerical integration by making use of
the quaternion state transition matrix for propagating between the measurement
points.

A first–order covariance prediction can be found by linearizing the Eq. (7),
yielding

δẋ = F δx+Gη (13)

where

F =
∂f

∂x

∣∣∣∣
x=x̄

=
[

(1/2)
[
σ̄ω̄T − ω̄σ̄T − ω̄× + ω̄T σ̄I

]
−(1/4)B (σ̄)

0 0

]
(14)

G =
∂g

∂η

∣∣∣∣
x=x̄,η=0

=
[
− (1/4)B (σ̄) 0

0 I

]
(15)

where ω̄ = ω̃ − β̄, and δx = x− x̄.

The discrete–time covariance propagation between MRP measurements is

P̄ k+1 = ΦkP̄ kΦT
k + Q̃k (16)

where Φk is the state transition matrix and Q̃k is the process noise covariance ma-
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trix. Both of these quantities can be determined jointly through the relation21, 22

exp
([
−F GQGT

0 F T

]
δt

)
=
[
A11 A12

0 A22

]
=
[
A11 Φ−1

k Q̃k

0 ΦT
k

]
(17)

leading to the result Φk = AT
22 and Q̃k = ΦkA12, whereQδ (t− τ) = E

[
η (t)η (τ)T

]
and δt = tk+1−tk. Note that these relationships and the use of the state transition
matrix are approximations that are true only when the angular rates are constant.
These approximations generally work well when the angular velocity is slowly
varying and/or the gyroscope sampling rate is sufficiently high for a particular
problem.

During the course of state propagation or following the state update, the state
can be switched to the shadow state if certain conditions are met, namely if
‖σ‖ > σr where σr is a threshold value. The shadow set transformation is
given by xS = λ (x), where

λ (x) =
{
−
(
σTσ

)−1
σ

β

}
(18)

To examine the covariance transformation at the switching point, let the co-
variance matrix P̄ k be decomposed into sub-matrices with the structure

P̄ k =
[
P σσ P σβ

P T
σβ P ββ

]
(19)

where P σσ is the covariance matrix of the MRP state, P ββ is the covariance
matrix of the bias state, and P σβ is the cross-correlation matrix between the
MRP and the bias state. It follows that the covariance mapping to the shadow
MRP set in the neighborhood of the reference MRP condition is given by

P̄
S
k = ΛP̄ kΛT =

[
Λ11 0
0 I

] [
P σσ P σb

P T
σβ P ββ

] [
ΛT

11 0
0 I

]
=

[
Λ11P σσΛT

11 Λ11P σβ

P T
σbΛ

T
11 P ββ

]
(20)

where

Λ =
∂λ

∂x
=
[ (

2σ−4σσT − σ−2I
)

0
0 I

]
(21)

and Λ11 = 2σ−4σσT − σ−2I .
Note that this covariance mapping scales all MRP components. Assume that

σ = ‖σ‖ is small, and the associated covariance components are small as well
indicating good attitude knowledge. Then the corresponding shadow MRP set
is stretched toward infinity due to σ being near zero. The associated covariance
matrix for the shadow set is large as well, reflecting the large changes in coor-
dinate values in the neighborhood of the singularity. The rate bias covariance is
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held constant during the MRP mapping, which is expected since the bias estimate
itself is held constant in Eq. (18).

Divided Difference Filter Formulation

The Divided Difference Filter is one of several new estimation techniques that
are collectively known as Sigma–Point Kalman Filters (SPKF). The divided dif-
ference filter arises from an alternate approach to the nonlinear state estimation
and filtering problems than the EKF. Whereas the EKF is based on first–order
Taylor series approximations, the divided difference filter relies on multidimen-
sional interpolation formulas to approximate the nonlinear transformations. As
a result of this approach, the filter does not require knowledge or existence of
the partial derivatives of the system dynamics and measurement equations. In
addition, it is straightforward to develop second–order filters by making use of
higher–order interpolation formulas. SPKF–class filters have been applied to at-
titude estimation problems in Refs. 11, 14 and 23.

The First–Order (DD1) and Second–Order (DD2) Divided Difference Filters15, 16

are reviewed in this section. The filter equations rely upon a discrete representa-
tion of the system dynamics, given by

xk+1 = φ (xk,ηk, tk) (22)
σk = h (xk, δσk, tk) (23)

where σk is the predicted MRP measurement.
The following square-root decompositions of the covariance matrices are de-

fined as

P̂ k = ŜxkŜ
T
xk

(24)

P̄ k = S̄xkS̄
T
xk

(25)

Qk = SηkS
T
ηk

(26)

Rk = SδσkS
T
δσk

(27)

Also, the jth column of s̄xk is referred to as s̄xkj ; likewise for the other matrices.
First–Order Divided Difference Filter The DD1 filter makes use of first–order

divided differences to approximate the system and measurement dynamics rather
than the first–order Taylor series expansions used in the EKF. The following ma-
trices of first–order divided differences are defined as

S′xx̂ki,j
=

1
2c
[
φi
(
x̂+ cŝxj , η̄k, tk

)
− φi

(
x̂k − cŝxj , η̄k, tk

)]
(28)

S′xηki,j
=

1
2c
[
φi
(
x̂k, η̄k + csηj , tk

)
− φi

(
x̂k, η̄k − csηj , tk

)]
(29)

S′σx̄ki,j
=

1
2c
[
hi
(
x̄k + cs̄xj , δσ̄k, tk

)
− hi

(
x̄k − cs̄xj , δσ̄k, tk

)]
(30)

S′σδσki,j
=

1
2c
[
hi
(
x̄k, δσ̄k + csδσj , tk

)
− hi

(
x̄k, δσ̄k − csδσj , tk

)]
(31)

where c is the divided–difference perturbing parameter.
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The state, state root–covariance, measurement, and measurement root-covariance
predictions are given by

x̄k+1 = φ (x̂k, η̄k, tk) (32)

S̄xk+1
= H

([
S′xx̂k S′xηk

])
(33)

σ̄k = h (x̄k, δσ̄k, tk) (34)

Sσk = H
([
S′σx̄k S′σδσk

])
(35)

whereH(·) represents a Householder transformation of the argument matrix.15, 16

The state and root-covariance measurement update equations are given by

x̂k = x̄k +Kk (σ̃k − σ̄k) (36)

Ŝxk = H
([
S̄xk −KkS

′
σxk

KkS
′
σδσk

])
(37)

whereKk = S̄xkS
′T
σx̄k

(
SσkS

T
σk

)−1
is the Kalman gain matrix.

Second–Order Divided Difference Filter The DD2 filter makes use of second–
order divided differences to approximate nonlinear transformation of the state
and covariance. The matrices of second–order divided differences are defined as

S′′xx̂ki,j
=
√
c2 − 1
2c2

[
φi
(
x̂k + cŝxj , η̄k, tk

)
+ φi

(
x̂k − cŝxj , η̄k, tk

)
−2φi (x̂k, η̄k, tk)] (38)

S′′xηki,j
=
√
c2 − 1
2c2

[
φi
(
x̂k, η̄k + csηj , tk

)
+ φi

(
x̂k, η̄k − csηj , tk

)
−2φi (x̂k, η̄k, tk)] (39)

S′′σx̄ki,j
=
√
c2 − 1
2c2

[
hi
(
x̄+ cs̄xj , δσ̄k, tk

)
+ hi

(
x̄− cs̄xj , δσ̄k, tk

)
−2hi (x̄k, δσ̄k, tk)] (40)

S′′σδσki,j
=
√
c2 − 1
2c2

[
hi
(
x̄k, δσ̄k + csσj , tk

)
+ hi

(
x̄k, δσ̄k − csσj , tk

)
−2hi (x̄k, δσ̄k, tk)] (41)

The state, state root–covariance, measurement, and measurement covariance
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predictions are given by

x̄k+1 =
(
c2 − nx − nη

c2

)
φ (x̂k, η̄k, tk)

+
1

2c2

nx∑
j=1

[
φ
(
x̂k + cŝxkj , η̄k, tk

)
+ φ

(
x̂k − cŝxkj , η̄k, tk

)]

+
1

2c2

nη∑
j=1

[
φ
(
x̂k, η̄k + csηkj , tk

)
+ φ

(
x̂k, η̄k − csηkj , tk

)]
(42)

S̄xk+1
= H

([
S′xx̂k S′xηk S′′xx̂k S′′xηk

])
(43)

σ̄k =
(
c2 − nx − nσ

c2

)
h (x̄k, δσ̄k, tk)

+
1

2c2

nx∑
j=1

[
h
(
x̄k + cs̄xkj , δσ̄k, tk

)
+ h

(
x̄k − cs̄xkj , δσ̄k, tk

)]
+

1
2c2

nσ∑
j=1

[
h
(
x̄k, δσ̄k + csσkj , tk

)
+ h

(
x̄k, δσ̄k − csσkj , tk

)]
(44)

Sσk = H
([
S′σx̄k S′σδσk S′′σx̄k S′′σδσk

])
(45)

where nx is the size of the state dimension, nη is the size of the process noise
dimension, and nσ is the size of the measurement noise dimension.

Lastly, the state and root-covariance update equations are given by

x̂k = x̄k +Kk (σ̃k − σ̄k) (46)

Ŝxk = H
([
S̄xk −KkS

′
σxk

KkS
′
σδσk

KkS
′′
σxk

KkS
′′
σδσk

])
(47)

whereKk = S̄xkS
′T
σx̄k

(
SσkS

T
σk

)−1
is the Kalman gain matrix.

Note that in the MRP pseudo–measurement model, h (x̄k, δσ̄k, tk) is a linear
function of the state and measurement noise. Therefore, S′′σx̄ki,j = S′′σδσki,j

= 0
and σ̄k = h (x̄k, δσ̄k, tk), which implies that the DD2 measurement update is
identical to that of the DD1 filter. Due to the weakly nonlinear behavior of the
MRP state dynamics, the second–order terms in the state and covariance predic-
tions remain non–zero. For this reason it is expected that the DD2 filter provides
better performance than the DD1 filter. The DD2 filter can also improve per-
formance in the presence of large gyroscope bias uncertainties, which introduce
propagation errors into the state predictions that are not adequately captured in
first–order filters such as the EKF.

Covariance Transformation Following the development in Ref. 15 and 16, a
first–order divided difference transformation of the state covariance matrix to the
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shadow state covariance matrix suitable for the DD1 filter is given by

P̂
S1
k =

1
4c2

n∑
j=1

[
λ
(
x̂k + cŝxj

)
− λ

(
x̂k − cŝxj

)] [
λ
(
x̂k + cŝxj

)
− λ

(
x̂k − cŝxj

)]T
(48)

Similarly the second–order transformation suitable for the DD2 filter is

P̂
S2
k = P̂

S1
k +

c2 − 1
4c4

n∑
j=1

[
λ
(
x̂k + cŝxj

)
+ λ

(
x̂k − cŝxj

)
− 2λ (x̂k)

]
·
[
λ
(
x̂k + cŝxj

)
+ λ

(
x̂k − cŝxj

)
− 2λ (x̂k)

]T (49)

Following these covariance transformations at the switching point, the square–
root decompositions of the state covariance can be calculated from Eqs. (24) and
(25), which are in turn used to continue the state propagations forward in time
according to Eqs. (28), (30), (38), (40), (42) and (44) until the next measurement
update.

Robustness Considerations

Note that the EKF, DD1, and DD2 filters developed in the preceding sections
can be extremely sensitive to underlying noise distribution. Techniques based
on Huber’s generalized maximum likelihood method have been generalized to
Kalman filtering and divided–difference filtering24 in order to reduce the sensi-
tivity of the filter to deviations in the assumed distributions, at a slight increase in
computational burden. The same techniques can be applied here to MRP–based
attitude filtering by modifying the state update equations in the EKF and DDF
according to Ref. 24. Further robustness discussion is beyond the scope of this
paper.

EXAMPLE PROBLEM
This section describes an example problem that illustrates the MRP–based esti-

mation techniques using the shadow set transformation for singularity avoidance.
In this problem, consider a spacecraft rotating with an angular velocity of 1 deg/s
about the body z-axis over a period of 1000 s. The simulation parameters are
shown in Table 1. The true principal rotation angle and true MRP time history
are shown in Fig. 3. Note that there are several shadow set transformations ap-
parent in Fig. 3(b) in order to keep the MRP value within the unit sphere, and that
the σ1 and σ2 time histories are both identically zero in this problem.

The results of a 2000 case Monte-Carlo simulation are shown in Fig. 4. Fig-
ure 4(a) shows the root mean square (RMS) total attitude angle error and Fig. 4(b)
shows RMS of the norm of the gyroscope bias estimate error. The Monte-Carlo
simulations involve five filtering techniques: a standard Quaternion Multiplica-
tive Extended Kalman Filter (QM-EKF),1 a Quaternion Constrained Extended
Kalman Filter (QC-EKF),4 an extended Kalman filter based on the MRP for-
mulation discussed in this paper (MRP-EKF), and first and second–order divided
difference filters using the MRP formulation (MRP-DD1 and MRP-DD2, respec-
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Figure 3. True Principal Rotation Angle and MRPs

tively). In these plots, the RMS errors of the filters are shown in the solid curves
while the predicted RMS error based on the filter covariance matrix are shown in
the dashed curves. In this case, the QM–EKF and the MRP–EKF exhibit nearly
the same overall performance. This result is not a surprise because both filters
involve similar first–order approximations of the state dynamics and measure-
ment noise. However, it can be seen in the detailed plot over the first 50 s of the
simulation, Fig. 4(c) and (d), that the MRP–EKF converges faster than the QM–
EKF to the steady state error level. This enhanced convergence rate is due to the
fact that the MRP formulation does not require a linearization in order to enforce
the quaternion norm constraint. Similarly, the QC–EKF converges to the steady
state error faster then the QM–EKF over all, though its initial convergence rate is
slower. The MRP–DD1 filter does not meet the same level of performance as that
of the MRP–EKF case. This result is not particularly bothersome since the DD1
filter performance is usually worse than that of the EKF as seen in Refs. 15, 16
and 24. The MRP–DD2 filter exhibits the best performance overall, which is to
be expected since it is a second–order filter and as a result can better capture the
system nonlinearities. The uncertainty predictions based on the covariance ma-
trix do not match the actual RMS for any of the filter results. The uncertainties
can be tuned to better match the actual performance either offline or by using an
adaptive approach to estimate the process noise covariance.25

As discussed in earlier sections, the MRP switching condition can occur for
any value of σr ≥ 1. Figure 5 shows the estimator performance for values of
σr ranging from 1 to 1000. The results are shown only for the EKF formulation
of the MRP attitude filter. Clearly the estimator performance degrades as the
switching surface grows in magnitude, and it can be inferred from the results that
the limiting case σr → ∞ leads to infinite estimation error since the MRP is
reaching the neighborhood of the singularity. Similar trends occur for the DD1
and DD2 formulations. Based on these results there does not seem to be any
benefit for using a MRP switching surface greater than the unit sphere but for
some particular applications it may be preferable to do so. Having a general MRP
covariance switching solution, however, also use to switch at any time where
‖σ‖ > 1. It is not required to intercept the ‖σ‖ = 1 surface precisely, making
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Table 1. Simulation Parameters

Variable Value

Gyroscope Sample Rate 10 Hz
MRP Sample Rate 1 Hz
σ2
ω 10−13 rad2/s
σ2
β 10−15 rad2/s3

σ2
s 7.16·10−5 rad2

P̂ σσ0 diag
([

0.0122 0.0122 0.0122
])

rad2

P̂ ββ0 diag
([

2.35 2.35 2.35
])
· 10−9 rad2/s2

P̂ σβ0 0 rad2/s
σ0

[
0 0 0

]T rad
β0

[
0 0 0

]T rad/s

Table 2. Computational Cost

Filter Mean Computation Time Standard Deviation

QM–EKF 1.000 0.015
QC–EKF 1.089 0.029
MRP–EKF 0.977 0.024
MRP–DD1 10.795 0.316
MRP–DD2 11.062 0.274

the numerical implementation far easier.
Previous applications of the MRP singularity avoidance based on the shadow

set transformation have neglected the covariance mapping associated with the
transformation. Figure 6 shows a comparison of the MRP–based EKF with and
without the covariance transformation to illustrate the issues associated with ne-
glecting the transformation. At the first switching point a sharp bend can clearly
be seen in the case without the covariance transformation after which the estima-
tor performance is degraded relative to the case that includes the proper covari-
ance transformation. This bend is due to the fact that elements of the covariance
matrix must change sign during the shadow mapping since the MRP state repre-
sentation changes sign during the mapping. Therefore the estimates that neglect
the covariance transformation develop systematic error and are no longer opti-
mal. The results are shown only for the EKF–based filter, similar behavior is
found for the DD1 and DD2 filters.

Table 2 shows a comparison of the computational costs of each filter applied
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Figure 4. Comparison of MRP-based filters and Quaternion–based filter

to this problem. The mean computation time is calculated for each Monte-Carlo
set and then divided by the QM–EKF time to provide a relative cost comparison
ratio. Also the standard deviation of the computation times are provided to show
the confidence intervals. The MRP–based EKF formulation described in this
paper requires slightly less computation on average than the quaternion–based
EKF. These cost savings are consistent with the results of Ref. 26, which found
a reduced computation using the Rodrigues parameters for attitude estimation
compared with the quaternion filter. The DD1 and DD2 filters require roughly
the same computational cost which is consistent with Ref. 24. In this case the
divided difference filters are each about an order of magnitude more expensive
than the EKF.

Conclusions
This paper discusses singularity avoidance for attitude estimation based on

the stereographic projection properties of the Modified Rodrigues Parameters
(MRP). In this formulation, a globally nonsingular attitude representation is avail-
able using a simple switching procedure to the shadow MRP set to avoid sin-
gularities. The switching procedure includes a transformation to map the state
covariance between the two representations, including gyroscope bias estimates.
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Figure 5. Comparison of MRP-based filter with varying σr
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Figure 6. Comparison of MRP-based filter with and without the covariance
transformation

Covariance transformations are provided for the extended Kalman filter, as well
as the first and second–order divided difference filters. An example problem il-
lustrates the effectiveness of the singularity avoidance procedure, enabling glob-
ally non–singular attitude estimation with a minimal attitude representation. The
MRP extended Kalman filter with proper state and covariance switching yields a
faster initial convergence than the classic multiplicative or the newer constrained
quaternion filter, with the computational loads being slightly reduced as well.
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