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This paper discusses the development of an adaptive discrete-time robust nonlinear filtering tech-

nique, and the application of this technique to the six degree of freedom elliptical orbit rendezvous

and docking problem. The proposed adaptive nonlinear filtering technique is based on a robust mod-

ification of the divided–difference filtering method based on Huber’s generalized maximum likelihood

estimation, blended with a robust covariance matching procedure based on a modified Myers–Tapley

method. In particular, the adaptive scheme can estimate the process noise and measurement noise

covariance matrices along with the state estimate and state estimate error covariance matrix, which

utilizes a robust approach to estimating these covariances that can resist the effects of outliers in

the stored buffer of residuals.

I. Introduction

The development of navigation filters that make use of these robust techniques is important due to the sensitivity of

the typical minimum �2 norm techniques, such as the Kalman filter, to deviations in the assumed underlying probability

distribution. In particular, those distributions with thicker tails than the Gaussian distribution can give rise to erratic

filter performance and inconsistency of results. A class of filtering techniques based on Huber’s generalized maximum

likelihood estimation theory have been previously developed which provide robustness with respect to these deviations

from the Gaussian case.1 Additionally, if the assumed parameters of the distribution differ greatly from the true

parameters, then the filter can exhibit large errors and possibly divergence in nonlinear problems.2 This behavior is

possible even if the true error distributions are Gaussian. To remedy these problems, adaptive filtering techniques

have been introduced in order to automatically tune the Kalman filter by estimating the measurement and process

noise covariances.3

The Huber–based formulations of the filtering problem also make some assumptions regarding the distribution,

namely the Huber approach considers a class of contaminated densities in the neighborhood of the Gaussian density.
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Essentially the method assumes that the statistics of the main Gaussian density are known, as well as the ratio or

percentage of the contamination (although the filter makes no assumption of the nature of the contaminating density

other than it be symmetric with finite variance). The technique can be improved upon by the introduction of a method

to adaptively estimate the noise statistics along with the state and state error covariance matrix.

One technique in common use for adaptively estimating the noise statistics is known as covariance matching.

The covariance matching technique is an approach in which the measurement noise and process noise covariances are

determined in such a way that the true residual covariance matches the theoretically predicted covariance. The true

residual covariance is approximated in real time using the sample covariance, over some finite buffer of stored residuals.

An explicit solution to the covariance matching problem is proposed by Myers and Tapley in Ref. 4, which uses the

sample mean and sample covariance of the stored residuals in order to estimate the measurement and process noise

covariance matrices. The drawback to this approach is that the presence of outliers and non-Gaussianity can create

problems of robustness with the use of sample mean and sample covariance. Therefore some additional steps must

be taken to identify the outliers before forming the covariance estimates. The particular outlier identification method

proposed in this paper is based on quantities known as projection statistics,5 which utilize the sample median and

median absolute deviation, and as a result are highly effective technique for outlier identification. These projection

statistics are employed in this paper as weights in a new, robust covariance matching procedure in order to reduce the

influence of the outliers.

The hybrid robust/adaptive nonlinear filtering methods introduced in this paper are applied to the problem of 6-

DOF rendezvous navigation in elliptical orbit. The equations of relative motion are formulated in spherical coordinates

centered on the target orbit. A simple control law based on feedback linearization is used to track a desired rendezvous

trajectory. The attitude dynamics are parameterized using Modified Rodrigues Parameters (MRPs),20 which are

advantageous for both control law development and estimation since they constitute a minimal 3-parameter attitude

description. A switching technique which exploits the stereographic projection properties of the MRP coordinate is

utilized to avoid singularities which inevitably arise in minimal attitude descriptions. This switching, described in

Ref. 6, includes the proper covariance transformations. An attitude control law based on backstepping is employed to

track the target vehicle.

A sensor suite consisting of a generic lidar or optical sensor, an Inertial Measurement Unit (IMU), a star tracker, and

a generic orbit sensor are utilized to provide measurement data to the navigation filters so that the chaser vehicle can
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estimate its relative state during the rendezvous maneuver. Several filters are implemented for comparison, including

the Extended Kalman Filter, First and Second–Order Divided Difference Filters (DD1 and DD2, respectively) and

Huber–based generalizations of these filters that include adaptive techniques for estimating the noise covariances.

Monte-Carlo simulations are presented which include both Gaussian and non-Gaussian errors, including mismatches

in the assumed noise covariances in the navigation filters in order to illustrate the benefits of the robust/adaptive

nonlinear filters. Additionally, computational burdens of the various filters are compared.

II. Robust Huber-Based Nonlinear Filtering

This section discusses the problem of estimating the state of the system of ordinary differential equations

ẋ = f (x, u, v, t) (1)

where x is the state vector, u are the deterministic inputs to the system, and v are random process noise inputs to

the system. The mean value of v is v̄ = 0 and its spectral density is Q. It is assumed that the state of the system can

be measured at discrete times in the form of a model given as

yk = h (xk) + wk (2)

where the subscript k refers to the value of the parameter at time tk, yk is the measurement at time tk, and wk is the

measurement noise at time tk. The mean value of wk is w̄k = 0 and its covariance is Rk.

A. Robust Extended Kalman Filtering

The Kalman filter is a well-known technique for estimating the state of systems of differential equations described in

the form provided in Eqs. (1–2). In this approach, the state and covariance predictions are given as

x̄k = x̂k−1 +
� tk

tk−1

f (x, u, v̄, t) dt (3)

P̄ k = P̂ k−1 +
� tk

tk−1

�
A(x̂(t), t)P̄ (t) + P̄ (t)A(x̂(t), t)T + B(x̂(t), t)Q(t)B(x̂(t), t)T

�
dt (4)

where x̄k is the predicted value of the state at time tk, based on the estimated value of the state at time tk−1, which

is x̂k−1. Similarly, P̄ k is the predicted state error covariance matrix at time tk and P̂ k−1 is the estimated state error

covariance matrix and time tk−1. Also, the matrices A and B are given by

A(t) =
∂f

∂x

����
x=x̄(t),v=v̄

(5)

B(t) =
∂f

∂v

����
x=x̄(t),v=v̄

(6)
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The discrete–time covariance propagation is written as P̄ k+1 = ΦkP̂ kΦT
k + Qk where Φk is the state transition

matrix and Qk is the process noise covariance matrix. Both of these quantities are determined jointly through the

relation7, 8

exp

��
−A BQB

T

0 A
T

�
δt

�
=

�
X11 X12

0 X22

�
=

�
X11 Φ−1

k Qk

0 ΦT
k

�
(7)

leading to the result Φk = X
T
22 and Qk = ΦkX12, where δt = tk+1 − tk. Note that these relationships and the use of

the state transition matrix are approximations that are true only when the state dynamics matrix is constant. These

approximations generally work well when the process is slowly varying and/or the sampling rate is sufficiently high for

a particular problem.

Equations for the state and covariance updates result in the iteratively reweighted Kalman algorithm given by9

x̂
(m+1)
k = x̄k + K

(m)
k [yk − h (x̄k)] (8)

P̂ k = (I−KkHk) P̄
1/2
k Ψ−1

x P̄
1/2
k (9)

where m is an iteration index and

K
(m)
k = P̄

1/2
k Ψ−1

x P̄
1/2
k H

T
k

�
HkP̄

1/2
k Ψ−1

x P̄
1/2
k H

T
k + R

1/2
k Ψ−1

y R
1/2
k

�−1
(10)

The quantities Ψx and Ψy are diagonal matrices computed from the Huber ψ function, given by ψ (ζi) = φ(ζi)/ζi,

where φ(ζi) = ρ
�(ζi) and

ρ (ζi) =






1
2ζ

2
i for |ζi| < γ

γ|ζi|−
1
2γ

2 for |ζi| ≥ γ

(11)

with residual vector

ζ =

�
R
−1/2
k 0
0 P̄

−1/2
k

�
·






yk − ȳk

x̂
(0)
k − x̄k





(12)

B. Robust Divided Difference Filtering

The Divided Difference Filtering equations rely upon a discrete representation of the system dynamics, in which the

differential equation in Eq. (1) is replaced with a difference equation of the form10

xk+1 = F (xk, vk, tk) (13)

and the measurement equation is given by

yk = G (xk, wk, tk) (14)
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where yk is the measurement at time tk, and wk is the measurement noise at time tk. The mean value of wk is w̄k = 0

and its covariance is the matrix Rk.

The following square-root decompositions of the predicted state error covariance, P̄ k, corrected state error covari-

ance, P̂ k, process noise covariance, Qk, and measurement noise covariance, Rk, are defined as

P̂ k = Ŝxk Ŝ
T

xk
, P̄ k = S̄xk S̄

T
xk

, Qk = SvkS
T
vk

, Rk = SwkS
T
wk

(15)

Also, the jth column of s̄xk is referred to as s̄xkj
; likewise for the other matrices.

Robust Huber–Based divided difference filters have been developed in Ref. 1, including both first and second-order

filters. The following sections summarize the second-order filter (DD2). The results on the first-order filter (DD1) are

conceptually similar to the DD2 and can be found in Ref. 1. Note that these filters are non-adaptive in nature.

The DD2 filter makes use of both first and second–order divided differences to approximate nonlinear transformation

of the state and covariance. The following matrices of first–order divided differences are defined as

S
�
xx̂ki,j

=
1
2c

�
F i

�
x̂ + cŝxj , v̄k, tk

�
− F i

�
x̂k − cŝxj , v̄k, tk

��
(16)

S
�
xvki,j

=
1
2c

�
F i

�
x̂k, v̄k + csvj , tk

�
− F i

�
x̂k, v̄k − csvj , tk

��
(17)

S
�
yx̄ki,j

=
1
2c

�
Gi

�
x̄k + cs̄xj , w̄k, tk

�
−Gi

�
x̄k − cs̄xj , w̄k, tk

��
(18)

S
�
ywki,j

=
1
2c

�
Gi

�
x̄k, w̄k + cswj , tk

�
−Gi

�
x̄k, w̄k − cswj , tk

��
(19)

where c the divided–difference perturbing parameter and (i, j) refers to the (row, column) indices of the divided–

difference matrices.

The matrices of second–order divided differences are defined as

S
��
xx̂ki,j

=
√

c2 − 1
2c2

�
F i

�
x̂k + cŝxj , v̄k, tk

�
+ F i

�
x̂k − cŝxj , v̄k, tk

�
− 2F i (x̂k, v̄k, tk)

�
(20)

S
��
xvki,j

=
√

c2 − 1
2c2

�
F i

�
x̂k, v̄k + cswj , tk

�
+ F i

�
x̂k, v̄k − cswj , tk

�
− 2F i (x̂k, v̄k, tk)

�
(21)

S
��
yx̄ki,j

=
√

c2 − 1
2c2

�
Gi

�
x̄ + cs̄xj , w̄k, tk

�
+ Gi

�
x̄− cs̄xj , w̄k, tk

�
− 2Gi (x̄k, w̄k, tk)

�
(22)

S
��
ywki,j

=
√

c2 − 1
2c2

�
Gi

�
x̄k, w̄k + cswj , tk

�
+ Gi

�
x̄kw̄k − cswj , tk

�
− 2Gi (x̄k, w̄k, tk)

�
(23)

The state, state root–covariance, measurement, and measurement covariance predictions are given by

x̄k+1 =
�

c
2 − nx − nv

c2

�
F (x̂k, v̄k, tk)

+
1

2c2

nx�

j=1

�
F

�
x̂k + cŝxkj

, v̄k, tk

�
+ F

�
x̂k − cŝxkj

, v̄k, tk

��
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+
1

2c2

nv�

j=1

�
F

�
x̂k, v̄k + csvkj

, tk

�
+ F

�
x̂k, v̄k − csvkj

, tk

��
(24)

S̄xk+1 = H

��
S
�
xx̂k

S
�
xvk

S
��
xx̂k

S
��
xvk

��
(25)

ȳk =
�

c
2 − nx − nw

c2

�
G (x̄k, w̄k, tk)

+
1

2c2

nx�

j=1

�
G

�
x̄k + cs̄xkj

, w̄k, tk

�
+ G

�
x̄k − cs̄xkj

, w̄k, tk

��

+
1

2c2

nw�

j=1

�
G

�
x̄k, w̄k + cswkj

, tk

�
+ G

�
x̄k, w̄k − cswkj

, tk

��
(26)

Syk = H

��
S
�
yx̄k

S
�
ywk

S
��
yx̄k

S
��
ywk

��
(27)

where nx is the size of the state dimension, nv is the size of the process noise dimension, and nw is the size of the

measurement noise dimension.

The state and root-covariance update equations are given by

S
(1)
yk

= H

��
S
�
yx̄k

Ψ−1/2
x S

�
ywk

Ψ−1/2
y S

��
yx̄k

Ψ−1/2
x S

��
ywk

Ψ−1/2
y

��
(28)

K
(1)
k = S̄xkΨ

−1
x S

�T
yx̄k

�
S

(1)
yk

S
(1)T

yk

�−1
(29)

x̂k = x̄k + K
(1)
k (yk − ȳk) (30)

Ŝxk = H

��
S̄xkΨ

−1/2
x −K

(1)
k S

�
yxk

Ψ−1/2
x K

(1)
k S

�
ywk

Ψ−1/2
y K

(1)
k S

��
yxk

Ψ−1/2
x K

(1)
k S

��
ywk

Ψ−1/2
y

��
(31)

where Ψx and Ψy are diagonal matrices computed from the Huber ψ function, with residuals that take the form

ζ =

�
S
−1
wk

0
0 S̄

−1
xk

�
·






yk − ȳk

x̂
(0)
k − x̄k





(32)

where the superscript (0) refers to the initial state estimate.

III. Adaptive Tuning for Unknown Noise Statistics

A. Myers–Tapley Method

An intuitive approach to adaptive state estimation is proposed by Myers and Tapley.4 In this approach, the mea-

surement residual sequence is mined to produce estimates of the measurement noise statistics, and state prediction

residuals are mined to compute estimates of the process noise statistics. The estimators make use of a buffer of N

stored measurement noise and process noise residuals to compute the noise statistics. In batch form, the estimator for

the measurement noise covariance can be derived by first defining the empirical covariance matrix

Cζ =
1

N − 1

N�

j=1

�
ζj − ζ̄

� �
ζj − ζ̄

�T (33)
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where ζj is the jth stored measurement residual, and ζ̄ is the sample mean of the residuals, ζ̄ = (1/N)
�N

j=1 ζj . The

expected value of Cζ is4

E [Cζ ] = R +
1
N

N�

j=1

HjP̄ jH
T
j (34)

By substituting Eq. (33) into Eq. (34), an estimate for the measurement noise covariance matrix is

R̂ =
1

N − 1

N�

j=1

��
ζj − ζ̄

� �
ζj − ζ̄

�T
−

�
N − 1

N

�
HjP̄ jH

T
j

�
(35)

In order to form estimates for the process noise statistics, the process noise sample is defined as λj = x̂j − x̄j .

Then, the empirical covariance matrix for λ is

Cλ =
1

N − 1

N�

j=1

�
λj − λ̄

� �
λj − λ̄

�T (36)

where λ̄ = (1/N)
�N

j=1 λj . The expected value of Cλ is12 E [Cλ] = KkHkP̄ k = P̄
�
k + Q − P̂ k, where P̄

�
k is the

propagated covariance without the process noise component, given by P̄
�
k = Φk−1P̂ k−1ΦT

k−1 where Φk−1 is the state

transition matrix. It follows that an estimator for the process noise covariance matrix is4

Q̂ =
1

N − 1

N�

j=1

��
λj − λ̄

� �
λj − λ̄

�T
−

�
N − 1

N

� �
P̄

�
j − P̂ j

��
(37)

An adaptive filter can function by using some initial guess of the measurement noise and process noise matrices,

storing the residuals for the first N frames, and then updating the covariance estimates based on Eqs.(35) and (37)

at each subsequent frame. It is important to note that the Myers–Tapley method for adaptively estimating the

measurement noise and process noise covariance matrices make use of the sample mean and covariance of the stored

residuals, which are non–robust estimators. This lack of robustness implies that the performance Myers–Tapley

adaptive method can degrade in the presence of non–Gaussianity. Therefore it is of interest to develop a modification

of the Myers–Tapley approach that is robust with respect to non–Gaussian distributions, which is the subject of the

following section.

B. Modified Myers–Tapley Method

1. Outlier Identification

In this section, two outlier identification methods are discussed. The first method is a classical technique that is

based on the weighted Euclidean norm of the separation between a possible outlier and the sample mean, known as

Mahalanobis Distances. The weighting in this method is based on the sample covariance matrix. The second method,

known as Projection Statistics, is a robust approach in which the sample mean and covariance are replaced by the
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sample median and the median absolute deviation, respectively. The latter method is said to be robust because it is

insensitive to clusters of outliers, unlike the classical method.

Given a cloud of m points in n dimensions represented by the vectors hi for i = 1, · · · ,m, the Mahalanobis distances

are defined as

Mi =
��

hi − h̄
�T

C
−1 �

hi − h̄
�

(38)

where h̄ is the sample mean and C is the sample covariance matrix, given by the equations

h̄ =
1
m

m�

i=1

hi (39)

C =
1

m− 1

m�

i=1

�
hi − h̄

� �
hi − h̄

�T (40)

respectively.

The Mahalanobis distances can also be expressed as the solution to a maximization problem of the form5

Mi = max
�v�=1





���h
T
i v −

1
m

�m
j=1 h

T
j v

���
�

1
m−1

�m
k=1

�
h

T
k v −

1
m

�m
j=1 h

T
j v

�2



 (41)

The Mahalanobis Distances represent the surface of an n-dimensional ellipsoid centered at the sample mean. The

square of the Mahalanobis distances follow a χ
2 distribution with n degrees of freedom, assuming that the input data

are Gaussian. Therefore, an outlier identification method is to consider all points satisfying

Mi >

�
χ2

n,α (42)

to be outliers, where α is the probability that a value falls inside the ellipse (for example, α = 0.95).

While the Mahalanobis distances are simple to conceptualize and easy to compute, the method suffers from sensi-

tivity to clusters of outliers. This sensitivity is due to the masking effect, in which it is possible to find groups of points

with nonzero errors that can sum to produce very small residuals. The masking effect in the Mahalanobis distances is

related to the sensitivity of the sample mean and covariance, which are not robust estimators. In the case of clustered

outliers the sample mean can be pulled toward their direction and away from the main cluster of data, which serves

also to increase the size of the sample covariance. In effect, these sensitivities serve to hide or mask the cluster of

outliers since their associated Mahalanobis distances will not be larger than the main group of data. See Refs. 13 and

14 for further information on the masking effect and sensitivity of the Mahalanobis distances.
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A robust approach to the problem of outlier identification is to replace the sample mean and covariance in the

equation for the Mahalanobis distances, Eq. 41, with the sample median and the median absolute deviation from

the median.5 These estimators of location and scale are known to be robust with respect to outliers and therefore

it is expected that the computation of a Mahalanobis–like quantity based on these parameters will also be robust

with respect to outliers. These quantities are known as Projection Statistics, and are defined as the solution to the

maximization problem

Pi = max
�v�=1





���h
T
i v −median

�
h

T
j v

����

c ·median
����h

T
k v −median

�
h

T
j v

����
�



 (43)

where c = 1.4826 in the denominator is a correction factor to ensure unbiasedness.15 The maximization problem can

be approximated by considering only the directions that correspond to the unit vectors of the individual data points

relative to the median of the point cloud. An algorithm for computing the approximate projection statistics is given

in Ref. 16.

2. Robust Covariance Estimation

The Myers–Tapley adaptive tuning method can be modified in order to account for non–Gaussianity by means of

using the robust covariance estimates based on the projection statistics of the stored residuals. In particular, the

measurement and process noise covariance estimates can be written as

R̂
�

=

�
N�

i=1

wζi − 1

�−1

·

�
N�

i=1

�
wζiζi − ζ̄r

� �
wζiζi − ζ̄r

�T

�
−

median
j ∈ N

��
HjP̄

1/2
j

�
Ψ−1

x

�
HjP̄

1/2
j

�T
�

(44)

Q̂ =

�
N�

i=1

wλi − 1

�−1

·

�
N�

i=1

�
wλiλi − λ̄r

� �
wλiλi − λ̄r

�T

�
−

median
j ∈ N

�
P̄

�
k − P̂ j

�
(45)

where wζi and wλi are the weights based on the projection statistics of the measurement and process noise residuals,

respectively, and

ζ̄r =
��N

i=1 wζi

�−1
·

��N
i=1 wζiζi

�
, λ̄r =

��N
i=1 wλi

�−1
·

��N
i=1 wλiλi

�
(46)

where wi are weights computed from the statistics by means of wi = min
�

1,
�
χ

2
n,α/P2

i

� �
, for some specified

probability α.

The matrix R̂
�

is related to the measurement noise covariance estimate as

R̂
�

= R̂
1/2

Ψ̄y
−1

�
R̂

1/2
�T

(47)

where Ψ̄y
−1 is the median value of the Ψy matrix across the buffer of stored observations and residuals. The estimate of
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the measurement noise covariance matrix can be determined from a square root decomposition of Eq. (44). Specifically,

R̂ =
�
R̂

�
�1/2

Ψ̄y

�
R̂

�
�1/2

T (48)

Note that in the DD1 and DD2 filter formulation, the quantity
�
HjP̄

1/2
j

�
Ψ−1

x

�
HjP̄

1/2
j

�T
is replaced by

S
�
yx̄k

Ψ−1
x S

�
yx̄k

T (DD1) and H

��
S
�
yx̄k

Ψ−1/2
x S

��
yx̄k

Ψ−1/2
x

��
(DD2) for the measurement noise covariance esti-

mation. Similarly, the quantity P̄
�
k = Φk−1P̂ k−1ΦT

k−1 is replaced by S
�
xx̂k

S
�
xx̂k

T (DD1) and H

��
S
�
xx̂k

S
��
xx̂k

��

(DD2) for the process noise covariance estimation.

As noted in Ref. 4, numerical issues can arise, particularly with small buffer sizes, in which the noise covariance

estimates can become negative definite. Here, the same approach suggested in Ref. 4 can be utilized to guarantee

that numerical issues like these do not occur in practice. Namely, the diagonal elements of R̂ and Q̂ are reset to their

absolute values.

3. Estimation of the Contamination Parameter

The modified Myers–Tapley approach discussed in the previous section can also offer a crude scheme for estimating

the contamination parameter � by using the weighting parameters relating to the stored residual data. In particular,

a crude estimate of the contamination parameter is

�̂k = 1−
1
N

N�

i=1

wζi (49)

At each frame where the measurement and process noise covariances are computed, the contamination parameter

can be estimated directly from the weighting parameters. Then, the optimal tuning parameter can be calculated from

the guidelines provided in Ref. 9, which is then used within the Huber filter at each measurement update. Note,

however, that it should be expected that the estimated contamination parameter will in general be biased as in cases

of large contamination there will be some portion of errors drawn from the contaminating distribution that appear

to be drawn from the nominal distribution, in other words false–negatives or the so-called Type II errors in detection

theory. Likewise in cases of small contamination there will be some nonzero quantity of data that appear as outliers

when they are in fact perfectly valid, in other words the Type I error in detection theory.

The bias of the contamination parameter is not necessarily problematic, so long as upper and lower bounds are set

on the value of the tuning parameter γ used in the Huber measurement update. Clearly, the Huber technique is by

nature a sub-optimal filter, since the purpose is to find a filter that is consistent across a range of distributions but not
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necessarily optimal at any one in particular. Therefore one could expect the performance of the technique to improve

by having good estimates of the contamination parameter, but so long as the tuning parameter is bounded by some

reasonable value then the robustness properties of the estimator will not be compromised by such a bias.

4. Fading Memory Filter

In the course of computing the estimates of the measurement and process noise covariance matrices, as well as the

contamination parameter estimates, it is useful to introduction a “forgetting” factor, kf , in order to smooth the

estimate histories. The filter can be implemented as12

R̃k = kfR̃k−1 + (1− kf ) R̂k (50)

Q̃k = kfQ̃k−1 + (1− kf ) Q̂k (51)

�̃k = kf �̃k−1 + (1− kf ) �̂k (52)

In this approach, the estimates based on the current set of stored residuals is averaged with the previous estimate,

with kf as a weighting parameter, where small values lead to rapid response of the estimates and larger values provide

a smoother response. In general the recommended value of kf depends on the particular application and can be treated

as a tuning parameter.

IV. Application to Elliptical Orbit Rendezvous Navigation

A. Rendezvous Dynamics

The development of the 6–DOF rendezvous equations of motion requires the definition of several coordinate systems.

First, a planet–centered inertial frame, I, is introduced. This frame is aligned with the target spacecraft orbit (assuming

no perturbations) such that the x-axis is oriented towards the periapsis, the z-axis is oriented along the positive orbit

normal, and the y-axis completes a right-handed system. The local, or L, frame has its origin located at the position

of the target spacecraft and is defined such that the z-axis is oriented toward the center of the planet, the y-axis is

oriented along the negative orbit normal, and the x-axis is in the transverse direction, completing the right-handed

system. The I and L frames are illustrated in Fig. 1.

The chaser body frame is denoted by B with right-handed axes. It is assumed that the various sensors carried

onboard the chaser spacecraft produce outputs referenced to this body frame. These sensors are introduced in later

subsections, following the development of the equations of motion.
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Figure 1. Illustration of I and L Coordinate Frames

1. Rotational Dynamics

The rotational kinematics are represented using the Modified Rodrigues Parameters (MRPs), which are defined in

terms of the quaternions (q1, q2, q3, q4) as17–20

σ =
q

1 + q4
= e tan

�
θ

4

�
(53)

where q = (q1, q2, q3) is the vector part of the quaternion, q4 is the scalar part of the quaternion, e is the principal

rotation axis, and θ is the principal rotation angle. The MRPs have several useful properties for describing attitude

kinematics for navigation and control problems. In particular, a simple singularity avoidance technique can be utilized

to provide globally nonsingular attitude descriptions. This property is described in detail in Ref. 6, along with the

covariance transformations that must accompany the singularity avoidance technique.

MRPs satisfy the kinematic differential equation20

σ̇ =
1
4
B (σ)ω =

1
4

��
1− σ

T
σ

�
I + 2σ

× + 2σσ
T
�
ω (54)

where ω is the angular velocity.

The dynamic equations describing the change in angular momentum are the well–known Euler equations,

ω̇ = −I−1
ω
×Iω + I−1

τ (55)

where ω is the inertial angular velocity of the body, I is the inertia tensor of the vehicle, and τ is the net control

and/or disturbance torque. The relative angular velocity between the chaser and the L frame is δω = ω −Ω where
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Ω is the angular velocity of the L frame (with all quantities represented in the spacecraft B frame). By solving for ω

and substituting into Eq. (55), the dynamic equation for the relative angular velocity becomes

δω̇ = −I−1
δω

×Iδω − I−1
δω

×IΩ− I−1Ω×Iδω − I−1Ω×IΩ + Ω̇ + I−1
τ (56)

The angular velocity Ω is given by Ω = T (σ)
�

0 −ω0 0
�T

, where σ is the MRP representing the transfor-

mation from the L frame to the B frame, T (σ) is the transformation matrix, and ω0 is the angular velocity of the

reference orbit.

2. Translational Dynamics

The translation equations of motion for a spacecraft relative to an elliptical Keplerian reference orbit are well known

and can be written as20

ẍ− 2ω0ż − ω̇0z − ω
2
0x +

µx

�
x2 + y2 + (r0 − z)2

�3/2
= ux + vx (57)

ÿ +
µy

�
x2 + y2 + (r0 − z)2

�3/2
= uy + vy (58)

z̈ + 2ω0ẋ + ω̇0x− ω
2
0z +

µ

r
2
0

−
µ (r0 − z)

�
x2 + y2 + (r0 − z)2

�3/2
= uz + vz (59)

r̈0 − r0ω
2
0 +

µ

r
2
0

= 0 (60)

ω̇0 +
2ṙ0ω0

r0
= 0 (61)

Here, x is the in-track position component, z is the position component along the negative radial direction, and

y is the position along the negative orbit normal direction. The variables r0 and ω0 correspond to the radius and

angular velocity of the reference orbit, and µ is the gravitational parameter of the planet. It is convenient to introduce

a transformation of variables such that the equations of motion are in spherical coordinates centered at the reference

point.11 Such a transformation can be found by setting

x = ρ cos φ cos θ (62)

y = ρ sin φ (63)

z = −ρ cos φ sin θ (64)

where ρ is the range between the target spacecraft and the maneuvering spacecraft, θ is an azimuth angle in the

reference orbit plane measured from the x-axis, positive toward the −z direction, and φ is an out of plane angle
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measured from the x− z plane positive toward the y-axis. After the substitution of this transformation the equations

of motion become

ρ̈ =
�
ω0 − θ̇

�2
ρ cos2 φ + ρφ̇

2 +
µ

r
2
0

sin θ cos φ−
µ (ρ + r0 cos φ sin θ)

(r2
0 + 2r0ρ cos φ sin θ + ρ2)3/2

+ uρ + vρ (65)

θ̈ = ω̇0 + 2
�
ω0 − θ̇

�
ρ̇

ρ
− 2

�
ω0 − θ̇

�
φ̇ tan φ +

µ cos θ sec φ

r
2
0ρ

−
µr0 cos θ sec φ

ρ (r2
0 + 2r0ρ cos φ sin θ + ρ2)3/2

+ uθ + vθ (66)

φ̈ = −
1
2

�
ω0 − θ̇

�2
sin 2φ−

2φ̇ρ̇

ρ
−

µ sin θ sin φ

r
2
0ρ

+
µr0 sin θ sin φ

ρ (r2
0 + 2r0ρ cos φ sin θ + ρ2)3/2

+ uφ + vφ (67)

where the control inputs are

uρ = ux cos θ cos φ + uy sin φ− uz sin θ cos φ (68)

uθ = −ux

�
2r0ρ sin2

θ +
�
r
2
0 + ρ

2
�
sin θ sec φ

ρ (r2
0 + 2r0ρ cos φ sin θ + ρ2)

�
− uz

�
2r0ρ cos θ sin θ +

�
r
2
0 + ρ

2
�
cos θ sec φ

ρ (r2
0 + 2r0ρ cos φ sin θ + ρ2)

�
(69)

uφ = −ux
cos θ sin φ

ρ
+ uy

cos φ

ρ
+ uz

sin θ sin φ

ρ
(70)

with similar relations for the process noise inputs.

The translation equations of motion can be written in the form

η̈ = f (η, η̇, t) + u + v (71)

where η =
�

ρ θ φ

�T
, u =

�
uρ uθ uφ

�T
and v =

�
vρ vθ vφ

�T
.

B. Rendezvous Guidance and Control

This section develops 6-DOF guidance and control schemes for rendezvous in elliptical orbit. These guidance and

control schemes are fairly simple in nature, but they are adequate for the purposes of illustrating the navigation filter

performance during rendezvous maneuvers.

1. Translational Guidance and Control

Given a commanded translational reference trajectory, ηc, a translation error state can be defined as δη = η − ηc.

This error state obeys the differential equations

δη̈ = η̈ − η̈c = f (η, η̇, t) + u + v − η̈c (72)

This system can be controlled by using a feedback linearization of the form

u = η̈c − f (η, η̇, t)−Kηδη −K η̇δη̇ (73)
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By substituting Eq. (73) into Eq. (72), the closed–loop system becomes

δη̈ + Kηδη + K η̇δη̇ = v (74)

This closed–loop system is asymptotically stable in the absence of disturbance inputs for any gain matrices Kη > 0

and K η̇ > 0. Note that non–zero disturbance accelerations result from both model error and feedback error due

to erroneous state estimates from the navigation outputs. This mixture of deterministic and stochastic disturbances

suggests a gain design using a suboptimal H∞ approach, which is described in Ref. 11.

It is assumed here that a suitable reference trajectory ηc is available to provide the guidance commands. In general

this trajectory can be specified using a multitude of approaches depending on the specific nature of the rendezvous

and docking sequence and path constraints for a particular spacecraft application.

2. Attitude Guidance and Control

Attitude guidance commands are generated by solving for the MRP σc that provides zero azimuth and elevation angles

so that the radar boresight is aligned with the target vehicle. The following system of nonlinear algebraic equations is

solved at each guidance cycle

αc (σc) = 0 (75)

εc (σc) = 0 (76)

ϕc (σc) = 0 (77)

The quantity ϕc specifies the relative roll angle and is defined by

ϕc = yL · zB =
�

0 1 0
�
· T (σ)T

·

�
0 0 1

�T
=

8σ2σ3 + 4σ1

�
1− σ

T
σ

�

(1 + σT σ)2
(78)

A zero-order hold is applied to the MRP attitude commands in order to generate a MRP rate command. The

rate command is computed using a backward difference derivative between the current MRP command and the lagged

MRP command. The commanded MRP and MRP rate are the inputs to the attitude control law.

Given the commanded MRP and MRP rate, σc and σ̇c, respectively, an attitude control law to track these

commands can be constructed using the multi–input backstepping method.25 Here, the control design is split into a

sequence of two sub-problems. First, the angular velocity is assumed to be a control, which is chosen to stabilize the

attitude kinematics. Next, torque commands are generated in order to track the desired angular velocity. In order to
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construct this controller, an error MRP is defined as δσ = σ � σc, where � indicates the MRP subtraction rule.20

The error MRP obeys the kinematic differential equation

δσ̇ =
1
4
B (δσ) δω (79)

Assuming the relative angular rate δω = ν (δσ) can be chosen arbitrarily, a Lyapunov function can be con-

structed in order to stabilize the relative MRP kinematics. To this end, a candidate Lyapunov function is V (δσ) =

2kv ln
�
1 + δσ

T
δσ

�
where kv > 0 is a gain.

Making use of an identity in Ref. 20, the candidate Lyapunov function rate is

V̇ =
4kv

1 + δσT δσ
δσ

T
δσ̇ =

kv

1 + δσT δσ
δσ

T
B (δσ)ν (δσ) = kvδσ

T
ν (δσ) (80)

By choosing the function ν (δσ) = −Kσδσ, where Kσ > 0, the Lyapunov function rate becomes

V̇ = −kvδσ
T
Kσδσ < 0 (81)

According to Theorem 4.2 in Ref. 25, the relative kinematics are asymptotically stable with this choice of function

ν (δσ) since the function V (δσ) is positive definite with negative definite rate.

Next, control torques must be provided that cause the spacecraft angular velocity to track the desired angular

velocity δω = ν (δσ) = −Kσδσ. An augmented Lyapunov function can be introduced as

Va (δσ, δω) = V (δσ) +
1
2

[δω − ν (δσ)]T [δω − ν (δσ)] (82)

The Lyapunov function rate is

V̇a (δσ, δω) =
∂V

∂δσ
δσ̇ + [δω − ν (δσ)]T

�
δω̇ −

∂ν

∂δσ
δσ̇

�

=
1
4

∂V

∂δσ
B (δσ)ν (δσ) +

1
4

∂V

∂δσ
B (δσ) [δω − ν (δσ)]

+ [δω − ν (δσ)]T
�
−I−1

δω
×Iδω − I−1

δω
×IΩ− I−1Ω×Iδω

−I−1Ω×IΩ + Ω̇ + I−1
τ −

1
4

∂ν

∂δσ
B (δσ) δω

�
(83)

By choosing the control input

τ = δω
×Iδω + δω

×IΩ + Ω×Iδω + Ω×IΩ− IΩ̇

+
1
4

I ∂ν

∂δσ
B (δσ) δω −

1
4

I
�

∂V

∂δσ
B (δσ)

�T

− IKω [δω − ν (δσ)] (84)
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where Kω > 0, the Lyapunov function rate becomes

V̇a = −δσ
T
Kσδσ − [δω − ν (δσ)]T Kω [δω − ν (δσ)] < 0 (85)

Since the function Vs is positive definite and radially unbounded with a negative definite rate, it follows from

Lyapunov’s direct method (Theorem 4.2 in Ref. 25) that the origin of the closed–loop system is globally asymptotically

stable.

By substituting the appropriate expressions for V (δσ) and ν (δσ), the control torque τ is

τ = δω
×Iδω + δω

×IΩ + Ω×Iδω + Ω×IΩ− IΩ̇− 1
4

IKσB (δσ) δω −
kv

2
Iδσ − IKω [δω + Kσδσ] (86)

Substituting this control law into Eq. (56) and linearizing about (δσ, δω) = (0,0) yields

δσ̇ =
1
4
δω (87)

δω̇ = −

�
kv

2
I + KωKσ

�
δσ −

�
Kω +

1
4
Kσ

�
δω (88)

Following a similar logic as that discussed in the translational controller section, the gains can be chosen according

to a suboptimal H∞ controller development.11

C. Rendezvous Sensors

Vehicles performing autonomous rendezvous maneuvers must make use of a wide variety of navigation sensors to

estimate the trajectory and perhaps other relevant parameters in order to successfully complete the mission. This

section discusses the modeling of sensor systems whose data can be processed to estimate the relative position, velocity,

and orientation of the chaser vehicle.

1. Inertial Measurement Unit

An inertial measurement unit (IMU) is a device which measures applied accelerations and angular rates by using a

system of accelerometers and gyroscopes. The gyroscope system can be represented mathematically by using Far-

renkopf’s model. In this model, the sensed angular velocity if expressed as the true angular velocity with an additive

bias and white noise. The bias term is itself a slowly varying parameter driven by white noise. The model can be

expressed as21

ω̃ = ω + β + ηω (89)

β̇ = ηβ (90)

17 of 31

American Institute of Aeronautics and Astronautics



where ω̃ is the sensed inertial angular velocity, ω is the true inertial angular velocity, β is the measurement bias, and ηω

and ηβ are unbiased and uncorrelated random vectors with variances given by σ
2
ω and σ

2
β , respectively. Discrete–time

simulated gyroscope measurements can be generated according to this model by use of the equations22

ω̃k+1 = ωk +
1
2

�
βk+1 + βk

�
+

�
σ

2
ω

∆t
+

1
12

σ
2
β∆t

�1/2

nω (91)

βk+1 = βk + σβ (∆t)1/2
nβ (92)

where k refers to the time increment, ∆t = tk+1−tk is the sampling interval, and nω and nβ are unbiased, uncorrelated,

unit–variance random vectors.

An accelerometer system measures the accelerations applied to the spacecraft. A model for acceleration measure-

ments including scale factor and noise errors is

ãm = (I + S) am + ηa (93)

where am is the true acceleration at the IMU location, ãm is the sensed acceleration, ηa is the measurement noise,

and S is a diagonal matrix of constant scale factor errors. The accelerations at the vehicle center of mass can be

calculated from a = am −
�
ω̇
× + ω

×
ω
×�

rm where a is the center of mass acceleration and rm is the position of the

IMU with respect to the vehicle center of mass.

2. Star Tracker Sensors

It is assumed that a star tracker or some other attitude sensor is available to provide corrections to the attitude

estimates formed by direct numerical integration of the angular velocity measurements. The star tracker is assumed to

output an estimated MRP that relates the orientation of the body to the inertial frame. The estimates are assumed to

be unbiased but with a superimposed random measurement noise. The output from such a sensor can be expressed as

σ̃I = σI + δσ where σI is the MRP representing the true orientation of the vehicle with respect to inertial space, σ̃I

is the “measured” MRP, and δσ is an error MRP with covariance matrix denoted by R. For instance, the measured

MRP could be an output from the algorithm described in Ref. 26, involving vector measurements. The inertial attitude

MRP, σI , can be written as a function of the relative attitude, σ, and the inertial orbital position angle θ0.
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3. Laser/Radar Navigation Sensors

A radar or laser sensing system provides range, azimuth, elevation measurements between the sensor and the target.

These measurements can be modeled as

�






cos α cos ε

sin α cos ε

sin ε





= T (σ) r − δrs (94)

where � is the range, α is the azimuth angle, and ε is the elevation angle. Here, r = [x, y, z]T is the cartesian relative

position in the local frame and δrs is the sensor position in the body frame. It is also assumed that the relative

attitude between the target and chaser can also be determined in addition to range and bearing by the laser sensing

system. This relative attitude is modeled in the same manner as the inertial attitude sensor given in Sec. 2, namely

that σ̃ = σ + δσ where σ̃ is the “measured” relative MRP, σ is the true relative attitude MRP and δσ is an error

MRP.

4. Orbit Sensor

A wide variety of sensors can be used to estimate the orbit of the spacecraft. For example, Global Position System

(GPS) orbit determination sensors can be used to Earth orbiting and some lunar orbit cases.23 In other cases, such as

lunar orbit, autonomous orbit determination can be accomplished using optical sensors and landmark tracking.24 For

the purposes of this paper, it is assumed that some general orbit determination sensor is available for use in the state

estimator. This sensor is assumed to provide position data in the form of radius r0 and orbit angle θ0 measurements.

D. Numerical Simulations

1. Overview and Simulation Setup

This section described the application of the robust/adaptive filtering algorithms to the problem of 6-DOF rendezvous

navigation and control in elliptical orbit. Here, the navigation filters are used inside the control loop as state observers.

The specific example discussed in this section involves terminal rendezvous maneuver in a 15km by 75km altitude

lunar orbit. This orbit is typical of intermediate phasing orbit during ascent from the lunar surface. Hypothetically, the

lunar ascent vehicle could have failed, leaving it stranded in such an orbit. Therefore, a CEV/Orion-like vehicle must

maneuver from a circular parking orbit, typically 100km altitude, to rendezvous with the lunar ascent vehicle. This

problem assumes that the midcourse maneuvering and phasing has already been accomplished such that the initial

conditions of the maneuvering vehicle are 1km behind the target vehicle in the in-track direction. The rendezvous
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Figure 2. Guidance Commands

trajectory begins with a constant closure rate from 1km to 100m over a duration of half an orbital period (in this

problem, one orbital period is approximately 113 minutes). At this point, the vehicle is commanded to execute a

circumnavigation of the target vehicle at a constant range of 100m over one orbital period. Finally, the vehicle

executes a glideslope maneuver using a Space Shuttle–based exponentially decaying range rate guidance scheme27

with decay rate of 0.2% over a time span of half an orbital period. These guidance commands are shown in Fig. 2.

Attitude commands are generated such that the vehicle remains pointed at the target throughout the maneuver. The

guidance commands are generated at a rate of 4 Hz. The control laws and navigation filter update rates are at 4 Hz.

The inertial navigation sensors operate at 20 Hz. Control force and torque limits were set to 1779.2 N and 5337.6 Nm,

respectively.

The nominal vehicle mass properties correspond to a total mass of 1.1 · 105 kg with inertia tensor given by

I = 104
·




2.9441 0.0368 0.3680
0.0368 3.6801 0.0074
0.3680 0.0074 3.6801



 kg ·m2 (95)

Monte-Carlo simulations are conducted for this problem for several different navigation filters. In particular, the

extended Kalman filter and first and second order divided difference filters, including Huber implementations, Myers–

Tapley adaptive implementations, and combined Huber–Myers–Tapley adaptive filtering methods. Results are shown

in the following subsections for both Gaussian and non-Gaussian cases.

2. Gaussian Simulation

Rendezvous simulation conducted with pure Gaussian errors are described in this section. The initial conditions of

the maneuvering vehicle are at the time of perilune passage of the target vehicle and are provided in Table 1(a).

Table 1(a) shows the true value of the initial conditions, the estimate of the initial conditions for filter initialization,
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and the components of the initial variance matrix for filter initialization. The initial state errors are uncorrelated in this

simulation. The vehicle mass properties are dispersed by multiplying the total mass by a Gaussian random variable

with standard deviation of 0.5% and a inertia tensor uncertainty by the mass multiplier coupled with a uncorrelated

random axis uncertainty with 0.5 deg standard deviation in yaw-pitch-roll Euler angles.

The navigation sensor uncertainties are summarized in Table 1(b), which shows the measurement standard devia-

tions for the gyro parameters (ηω and ηβ), the accelerometer errors (ηa and S), the rendezvous lidar sensor errors (�,

α, ε, and δσ), the star tracker errors (δσI) and the orbit sensor errors (r0 and θ0). For this simulation, the errors are

cast as uncorrelated Gaussian random numbers with standard deviations given in Table 1(b). The filter measurement

noise and process noise matrices are set according to the sensor errors in Table 1(b) without error in the assumed

values. In this simulation, the accelerometer scale factor errors are not modeled in the filter formulation as state

variables in order to provide a mismatch between the true measurements and the modeled measurements in the filter.

Table 1. Initial Conditions and Sensor Specifications

(a) Initial Conditions

Initial State Mean Standard Deviation
ρ(0), km 1.0 0.005
θ(0), deg 180.0 0.25
φ(0), deg 0.0 0.25

ρ̇(0), m/sec -0.266 0.05
θ̇(0), deg/sec 0.0 0.003
φ̇(0), deg/sec 0.0 0.003

σ1, rad 0.0 0.0175
σ2, rad 0.0 0.0175
σ3, rad 0.0 0.0175

β1, deg/hr 0.0 1.0
β2, deg/hr 0.0 1.0
β3, deg/hr 0.0 1.0

r0, km 1753.1 0.01
θ0, deg 0.0 0.001
ṙ0, m/s 0.0 1.0 · 10−5

θ̇0, deg/s 9.619 · 10−5 1.0 · 10−5

(b) Sensor Specifications

Measurement Standard Deviation
ηω, deg/s 1.8 · 10−5

I

ηβ , deg/s2 1.8 · 10−8
I

ηa, m/s2 0.1 I

S, ppm 500
�, m 0.1

α, deg 0.05
ε, deg 0.05

δσ, deg 0.05 I

δσI , deg 0.05 I

r0, m 0.1
θ0, deg 3.3 · 10−5

Results are shown from the first and second order divided difference filters (DD1 and DD2), including Huber

implementations (H-DD1 and H-DD2), Myers–Tapley adaptive implementations (A-DD1 and A-DD2), and combined

Huber–Myers–Tapley adaptive filtering methods (AH-DD1 and AH-DD2). The adaptive filters use a buffer size of 500

samples in the procedures to estimate the measurement and process noise covariances. Results from the Extended
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Kalman Filter approaches are essentially identical to the first–order divided difference filtering approaches, both being

first-order filters, and therefore are omitted from the RMS error plots in an effort to keep the results clear.

Figure 3 shows the position RMS error results. The upper row shows the actual RMS error plots for the position

variables ρ, θ, and φ while the lower row shows the predicted RMS errors based on the filter covariance matrix.

Although the differences between the performance various filters in this case is small, it is possible to discern a

slightly better performance in the Gaussian-based filters such as the DD1 and DD2. Note in this simulation that the

measurement and process noise cases were initialized without error. Therefore, the adaptive filters do not perform as

well as the non-adaptive filters since their measurement and process noise covariances are not exact estimates due to

the finite sample sizes used in the buffering technique.

The predicted RMS error results show the trend that the adaptive Gaussian filters (A-DD1 and A-DD2) exhibit

the smallest error prediction. This trend is due to the adaptive tuning of the filter in real time, which has the effect of

reducing the state error covariance matrix. This reduction is erroneous, since the actual RMS error results are higher

due to the introduction of error into the measurement and process noise covariances. The Huber–based filters (H-DD1

and H-DD2) correctly predict that the RMS error should be higher than the other filters. The adaptive Huber filters

(AH-DD1 and AH-DD2) have a slightly lower RMS error prediction than the non-adaptive Huber filters due to the

adaptive tuning.
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Figure 3. Gaussian Simulation Results: Position
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Figure 4. Gaussian Simulation Results: Covariance and Contamination

Figure 4 shows a comparison of results for the adaptive filters investigated in this study. Figure 4(a) shows the

RMS estimation error of the (1,1) component of the measurement noise covariance matrix, which corresponds to the

range measurement from the lidar sensor. Here, the A-DD2 exhibits the best performance, which is expected since the

errors are purely Gaussian and since the DD2 filter has the benefits of capturing second–order terms in the state error

covariance estimates. The Huber–based estimates exhibit higher errors due to the reduced statistical efficiency of the

projection statistics algorithm for purely Gaussian errors. Figure 4(b) shows the (1,1) component of the process noise

covariance estimate. In this case differences between the various adaptive filters is not as obvious, thought the A-DD2

filter shows slightly better performance than the others. Figure 4(c) shows the results of estimating the contamination

parameter in the Huber–based adaptive filters. Here, both filters AH-DD1 and AH-DD2 are able to reduce the error

in the assumed contamination parameter.

Finally, the closed-loop system performance results are shown in Fig. 5. These plots show the true position and

attitude RMS error results in the upper and lower rows, respectively. The relative performance of the system is not

significantly different between the various filters, although Gaussian filters DD1 and DD2 show slight improvement.

This result is expected since the errors are purely Gaussian and the filters have perfect knowledge of the measurement

and process noise covariance matrices.

To summarize the results of the Gaussian simulation, the overall trends follow the expectation that the Gaussian

DD1 and DD2 filters should have the best overall performance since the errors in the simulation are purely Gaussian

and these filters have perfect knowledge of the measurement and process noise covariance matrices. However, the

differences between the various filters is fairly small, implying that for the benign Gaussian case the navigation filters

are essentially identical in overall performance.
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Figure 5. Gaussian Simulation Results: Closed–Loop System Performance

25 of 31

American Institute of Aeronautics and Astronautics



3. Non–Gaussian Simulation

In the Non-Gaussian case, the noise samples are drawn from a Gaussian mixture model with 15% contamination from

the higher variance distribution. In an effort to stress the filters, the standard deviations of the primary Gaussian

density of the mixture model were set to ten times the values provided in Table 1(a), with the contaminating densities

an additional five times higher. Additionally, the true standard deviations are scaled according to a uniform distribution

to be up to twice as high as the assumed standard deviations in the navigation filter, and uniform random correlation

coefficients were assigned to the true errors on each run. The mean initial conditions of this simulation is the same as

that given in Table 1(b), but the true random initial errors are generated according to a randomly correlated covariance

matrix with standard deviations set to ten times the value in Table 1(b).

The RMS errors of the position variables are shown in Fig. 6. In this non-Gaussian problem, the differences

between the various filters becomes much more apparent. In particular the non-robust filters suffer greatly from the

contamination present in this simulation. In the range variable ρ, the DD1 filters shows the worst overall performance,

closely followed by the DD2 filter. Interestingly, the A-DD1 filters exhibits large errors over the first 0.5 hrs of the

simulation before finally settling to the steady state error. The A-DD2 filter benefits from the inclusion of second-

order terms in the system and measurement dynamics and as a result, does not exhibit the large initial errors. The

A-DD2 shows similar performance to the the Huber-based filters, H-DD1 and H-DD2, which are nearly identical in

this problem, with the differences between these two filters being comparable to the differences between the Gaussian

DD1 and DD2 filters, though the RMS errors are smaller by roughly 25%. The best performing filters are the AH-

DD1 and AH-DD2 filters, which are essentially identical in this variable. The predicted RMS errors show that the

Gaussian filters DD1 and DD2 produce highly optimistic error estimates, having the smallest error predictions yet the

largest actual RMS error. The non-adaptive Huber estimates, H-DD1 and H-DD2, correctly show slightly larger error

estimates. The adaptive filter A-DD1 has large initial error estimates, which correctly reflect the large actual errors

although the magnitudes are quite different, with the predicted error being much smaller in magnitude. The A-DD2,

AH-DD1, and AH-DD2 filters produce the most accurate error predictions in this particular variable. These same

trends can be observed in the other position variables θ and φ, as shown in Fig. 6.
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Figure 6. Non-Gaussian Simulation Results: Position
27 of 31

American Institute of Aeronautics and Astronautics



0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Time [h]

R k(1
,1

) R
M

S 
Er

ro
r [

m
2 ]

 

 

A−DD1
A−DD2
AH−DD1
AH−DD2

(a) R11 RMS Error

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time [h]

Q
k(1

,1
) R

M
S 

Er
ro

r [
cm

2 /s
ec

]

(b) Q11 RMS Error

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

Time [h]

C
on

ta
m

in
at

io
n 

Pa
ra

m
et

er
 R

M
S 

Er
ro

r
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Figure 7. Non-Gaussian Simulation Results: Covariance and Contamination

Results of the covariance and contamination estimation for the adaptive filters are shown in Fig. (7). The RMS

errors in these plots indicate that the A-DD1 filter has relatively inaccurate covariance estimates over the first 0.5 hrs

of simulation time for range measurement error and the range process noise. Once converged to its steady state error

level the magnitudes remain higher than the A-DD2 filter, which is expected since the A-DD2 filter has the benefit

of second-order terms in the process and measurement transformations. The AH-DD1 and AH-DD2 filters are nearly

identical in performance with the AH-DD2 filter performing slightly better.

The closed-loop system performance results are shown in Fig. (8). Here it can be seen that the DD1, DD2, A-DD1,

and H-DD1 filter results have poor performance and essentially diverge in the presence of the non-Gaussian noise. The

A-DD2 filter also gives erratic performance, which is more apparent in the attitude response. The H-DD2, AH-DD1,

and AH-DD2 filters exhibit the best performance and are able to successfully execute the rendezvous maneuver even

in the presence of a high degree of non-Gaussian noise with uncertain statistics. This result is interesting since the

H-DD2 filter is non-adaptive, it is still better able to cope with the errors than the other filters investigated in this

study.
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Figure 8. Non-Gaussian Simulation Results: Closed–Loop System Performance
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4. Computational Comparisons

The relative computational costs of the various filters is provided in Table 2. Here, the median computational time

is computed for each filter and then normalized by the EKF median computational time to provide a relative cost

comparison. The results show that DD1 and DD2 filters cost roughly twice that of the EKF. The DD2 filter costs

only slightly more than the DD1 filter. The Huber-based filters each cost roughly 7% more than the standard Kalman

implementations. In the adaptive case, the adaptive Huber filters cost roughly 80% more than the standard Myers-

Tapley adaptive implementations.

Table 2. Computational Time Comparisons

Filter EKF DD1 DD2
Kalman 1.000 1.938 2.124

Huber-Kalman 1.066 2.086 2.272
Adaptive-Kalman 1.526 2.302 2.526

Adaptive-Huber-Kalman 2.961 4.330 4.659

V. Conclusions

This paper discusses the development of an adaptive discrete-time robust filtering technique based on a recursive

form of Huber’s mixed minimum �1/�2 norm approach, combined with a new robust form of the adaptive Myers-

Tapley covariance matching technique. This new adaptation technique adopts a robust approach to estimating these

covariances that can resist the effects of outliers, based on the use of projection statistics, which have been previously

developed for robust outlier identification as generalizations of the classical Mahalanobis distance measures but have

not been applied to the adaptive state estimation problem in such a manner before.

The hybrid robust/adaptive filtering approaches are applied to the 6 degree of freedom elliptical orbit rendezvous

navigation problem. Numerical simulations are conducted with both Gaussian and non–Gaussian error distributions

in order to asses the performance of the filtering techniques. The results indicate that the robust filters provide the

same closed-loop performance as their non-robust counterparts for purely Gaussian noise simulations. However for

the non-Gaussian problem, the hybrid robust/adaptive filters are superior to the non-robust filters by a considerable

margin. Furthermore, the robust/adaptive filters can estimate the noise covariances and the contamination ratio in the

non-Gaussian case. Therefore, the adaptive Huber filtering techniques introduced in this paper have better consistency

30 of 31

American Institute of Aeronautics and Astronautics



and are self–tuning.

References

1Karlgaard, C. D. and Schaub, H., “Huber–Based Divided Difference Filtering,” Journal of Guidance, Control, and Dynamics, Vol. 30,
No. 3, 2007, pp. 885–891.

2Fitzgerald, R. J., “Divergence of the Kalman Filter,” IEEE Transactions on Automatic Control, Vol. 16, No. 6, 1971, pp. 736–747.
3Mehra, R. K., “Approaches to Adaptive Filtering,” IEEE Transactions on Automatic Control, Vol. 17, No. 5, 1972, pp. 693–698.
4Myers, K. A. and Tapley, B. D., “Adaptive Sequential Estimation with Unknown Noise Statistics,” IEEE Transactions on Automatic

Control, Vol. 21, No. 4, 1976, pp. 520–523.
5Gasko, M. and Donoho, D. L., “Influential Observations in Data Analysis,” Proceedings of the Business and Economic Statistics

Section, American Statistical Association, 1982, pp. 104-110.
6Karlgaard, C. D. and Schaub, H., “Nonsingular Attitude Filtering Using Modified Rodrigues Parameters,” AAS Paper 09–130,

AAS/AIAA Space Flight Mechanics Meeting, February 2009.
7Van Loan, C. F., “Computing Integrals Involving the Matrix Exponential,” IEEE Transacctions on Automatic Control, Vol. 23,

No. 3, 1978, pp. 395–404.
8Crassidis, J. L. and Junkins, J. L., Optimal Estimation of Dynamic Systems, Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 274.
9Karlgaard, C. D. and Schaub, H., “Comparison of Several Nonlinear Filters for a Benchmark Tracking Problem,” AIAA Paper

2006–6243, AIAA Guidance, Navigation, and Control Conference, Keystone, CO, August 2006.
10Nørgaard, M., Poulsen, N. K. and Ravn, O., “New Developments in State Estimation for Nonlinear Systems,” Automatica, Vol. 36,

No. 11, 2000, pp. 1627–1638.
11Karlgaard, C. D., “Robust Adaptive Estimation for Autonomous Rendezvous in Elliptical Orbit,” Ph.D. Dissertation, Department

of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, June 2010.
12Maybeck, P. S., Jensen, R. L., Harnly, D. A., “An Adaptive Extended Kalman Filter for Target Image Tracking,” IEEE Transactions

on Aerospace and Electronic Systems, Vol. 17, No. 2, 1981, pp. 173–180.
13Rousseeuw, P. J. and van Zomeren, B. C., “Unmasking Multivariate Outliers and Leverage Points,” Journal of the American

Statistical Association, Vol. 85, No. 411, 1990, pp. 633–639.
14Rousseeuw, P. J. and van Zomeren, B. C., “Robust Distances: Simulations and Cutoff Values,” In Stahel, W. and Weisberg, S. (Eds.),

Directions in Robust Statistics and Diagnostics, Part II, Vol. 34, The IMA Volumes in Mathematics and its Applications, Springer-Verlag,
New York, 1991, pp. 195–203.

15Rousseeuw, P. J. and Leroy, A. M., Robust Regression and Outlier Detection, John Wiley and Sons, New York, NY, 1987, pp. 158–174.
16Des Rosiers, A. P., Schoenig, G. N., and Mili, L., “Robust Space–Time Adaptive Processing Using Projection Statistics,” International

Conference on Radar Systems, Toulouse, France, October 2004.
17Weiner, T. F., “Theoretical Analysis of Gimballess Inertial Reference Equipment Using Delta-Modulated Instruments,” Sc.D. Thesis,

Massachusetts Institute of Technology, March 1962.
18Shuster, M. D., “A Survey of Attitude Representations,” Journal of the Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 439–517.
19Schaub, H. and Junkins, J. L., “Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues

Parameters,” Journal of the Astronautical Sciences, Vol. 44, No. 1, 1996, pp. 1–19.
20Schaub, H. and Junkins, J. L., Analytical Mechanics of Space Systems, American Institute of Aeronautics and Astronautics, AIAA

Education Series, Reston, VA, 2003, pp. 107–111, 598.
21Farrenkopf, R. L., “Analytic Steady–State Accuracy Solutions for Two Common Spacecraft Attitude Estimators,” Journal of Guid-

ance and Control, Vol. 1, No. 4, 1978, pp. 282–284.
22Crassidis, J. L., “Sigma–Point Kalman Filtering for Integrated GPS and Inertial Navigation,” American Insitute of Aeronautics and

Astronautics, AIAA Paper 2005-6087, August 2005.
23Stadter, P. A., Duven, D. J., Kantsiper, B. L., Sharer, P. J., Finnegan, E. J., and Weaver, G. L., “A Weak-signal GPS Architecture

for Lunar Navigation and Communication Systems,” IEEE Aerospace Conference, March 2008.
24Hur-Diaz, S., Bamford, B., and Gaylor, D., “Autonomous Lunar Orbit Navigation Using Optical Sensors,” American Astronautical

Society, AAS Paper 07-312, August 2007.
25Khalil, H. K., Nonlinear Systems, Third Edition, Prentice–Hall, Upper Saddle River, NJ, 2002, p. 124.
26Bruccoleri, C. and Mortari, D., “MRAD: Modified Rodrigues Vector Attitude Determination,” Journal of the Astronautical Sciences,

Vol. 54, No. 3–4, 2006, pp. 383–390.
27Brody, A. R., “Evaluation of the ‘0.1% Rule’ for Docking Maneuvers,” Journal of Spacecraft and Rockets, Vol. 27, No. 1, 1990,

pp. 7–8.

31 of 31

American Institute of Aeronautics and Astronautics


