
Basilisk: A Flexible, Scalable and Modular
Astrodynamics Simulation Framework

Patrick W. Kenneally,∗ Scott Piggott,† and Hanspeter Schaub‡

University of Colorado, Boulder, Boulder, Colorado 80309-0431

https://doi.org/10.2514/1.I010762

The Basilisk astrodynamics framework is a spacecraft simulation tool developed with an aim of strict modular

separation and decoupling ofmodeling concerns in regard to coupled spacecraft dynamics, environment interactions,

and flight software algorithms. Modules, tasks, and task groups are the three core components that enable Basilisk’s

modular architecture. These core components are described and their functionality demonstrated. The Basilisk

message-passing system is a critical communications layer that facilitates the routing of input and output data

betweenmodules. Furthermore, this paper outlines Basilisk’s data logging andMonteCarlo simulation functionality.

The implementation of Basilisk’s Python wrapped C++/C technology stack is described. Finally, a sample spacecraft

attitude control simulation demonstrates the modularity and flexibility of the framework.

I. Introduction

S PACECRAFT simulation software tools are an indispensable

part of modern spacecraft design processes. The continual

increase in complexity of spacecraft mission and maneuver design,

dynamical and kinematic design verification, and postlaunch telem-

etry analysis all heavily rely on software simulation tools. These

simulation tools provide engineers with the ability to increase the

quality of design and testing by reducing cost and duration of devel-

opment. For example, proposed changes to amission’s configuration,

parameter tuning, or in-flight anomalies may be explored via Monte

Carlo simulation [1,2]. Additionally, hardware-in-the-loop (HWIL)

testing allows for verification and validation of the spacecraft hard-

ware and software systems in a controlled laboratory environment.

Hardware-in-the-loop testing can expose technical faults and system

integration problems, saving considerable project financial and per-

sonnel resources before launch to space. While there are both com-

mercial and open source tools available that solve some of these

challenges, there has not been an open astrodynamics software tool to

address all.
Astrodynamics simulation tools can be broadly categorized into

three groups: commercial off the shelf (COTS), government off the

shelf (GOTS), and general open source. A number of tools had their

origin in the GOTS category, and subsequently moved to the open

source category. Popular tools to simulate either full missions, orbits,

attitude motion, or flight algorithms (or that perform hardware and

software in the loop) include the MATLAB/Simulink [3] combina-

tion to simulate algorithms and autocode to flight C code, Analytic

Graphics, Inc. (AGI) Systems Tool Kit (STK) [4] to model orbital

simulations and mission scenarios, a.i. FreeFlyer [5] to simulate

spacecraft dynamics, NASA General Mission Analysis Tool

(GMAT) [6] to perform orbital trajectory optimizations, NASATrick

[7] to simulate complex spacecraft physics, OreKit [8] to simulate

spacecraft using open source Java libraries, Jet Propulsion Labora-

tory’s (JPL’s) Dynamics Algorithms for Real-Time Simulation

(DARTS)/Dshell [9] software to simulate complex spacecraft behav-

iors and control solution using closed software, and NASA 42 [10] to

simulate spacecraft with open software.
Each tool is developed with a specific subset of space asset

simulation purposes in mind. For example, the OreKit, GMAT, and

STK tools were initially developed with a focus on high-fidelity orbit

dynamics, orbit estimation, orbit propagation, and trajectory design.

As a result, these tools include a range of different propagators,

complex multibody gravity models, drag, solar radiation pressure,

and orbit determination tools. For example, the Orekit tool includes

six optional methods to model atmospheric density ranging from

simple exponential models to empirical predictivemodels such as the

Marshall Solar Activity Future Estimation [11].
When assessing software packages in the context of their ability to

simulate full spacecraft dynamics, it is important to identify how the
dynamics are computed and the impact this has on the implementa-

tion’s software architecture. For example, tools such as OreKit and

STK have increased their ability to accommodate spacecraft attitude.

STK can be pairedwith the SOLIS plug-in: a commercial plug-in that

models spacecraft translational and attitude dynamics [12].While the

SOLIS plug-in enhances STK’s spacecraft dynamics, it does not

model disturbances that may alter the spacecraft’s center of mass

[13]. Similarly, OreKit models the spacecraft as a rigid body, and

the dynamics are primarily focused on defining perturbations as

uncoupled external forces and torques.
Two tools that do provide increased modularity, coupled dynam-

ics, and the ability to customize the spacecraft dynamics are JPL’s

DARTS environment and NASA’s “42” software package [10,14].

The DARTS tool uses spatial operator algebra for the development of

multibody dynamics to generate a spacecraft systemmass matrix in a

form that is efficiently solved recursively [15]. The simulation pack-

age 42 allows for spacecraft composed of multiple rigid or flexible

bodies using a tree topology to formulate the dynamics. Both of these

formulations allow developers to add arbitrary models to the simu-

lation without significant change to the code base.
It seems an unreasonable requirement to expect a tool, which

simulates the high complexity of a spacecraft system, to accommo-

date all possible mission configurations and spacecraft subtleties as

out-of-the-box modeling functionality. On this basis, it is reasoned

that the facility to extend a tool with modular additions via means of

scripting and custom code development is needed to allow engineers

to adapt the tool to the particular specifications and requirements of

their mission. All of the tools listed include some basic level of

scriptability, whereas others enable significantly more customiza-

tion. For example, AGI’s STKoffers their Connect andObjectModel

APIs, which facilitate the addition of custom simulation models

(except for coupled spacecraft dynamics). In contrast, JPL’s DARTS

tool allows a user to compile and add a custom model to any part of

the simulation framework. This may include a model of the flexible

Received 28 May 2019; revision received 14 February 2020; accepted for
publication 18 February 2020; published online 20 May 2020. Copyright ©
2020 by Patrick Kenneally. Published by the American Institute of Aeronau-
tics and Astronautics, Inc., with permission. All requests for copying and
permission to reprint should be submitted to CCC at www.copyright.com;
employ the eISSN 2327-3097 to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Graduate Research Assistant, Department of Aerospace Engineering
Sciences, 431 UCB, Colorado Center for Astrodynamics Research. Student
Member AIAA.

†ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric
and Space Physics.

‡Professor, Glenn L. Murphy Endowed Chair, Department of Aerospace
Engineering Sciences, 431 UCB, Colorado Center for Astrodynamics
Research. Fellow AIAA.

496

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 17, No. 9, September 2020

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://doi.org/10.2514/1.I010762
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I010762&domain=pdf&date_stamp=2020-05-22

dynamics of a large solar panel boom or the addition of a simulated
ground station.
While it is not surprising that none of the COTS tools use a version

of an open source license, it is interesting to note that COTS tools are
typically not cross-platform, in so far as they often support installa-
tion on just one or two of the primary operating systems: macOS,
Windows, and Linux. This limits the reach of the tool to research
organizations that are already using a particular operating system.
Finally, a large feature that is not available by default in most tools is

HWIL and software-in-the-loop (SWIL) functionality. Of the tools listed,
MATLAB/Simulink and the DARTS/Dshell tools support HWIL and
SWIL functionality without significant modification. Hardware-in-the-
loop and SWIL functionality allows engineers to use the same set of tools
and flight algorithms through multiple phases of the mission and in
multiple engineering teams across an organization.
Basilisk§ is a novel astrodynamics framework that simulates complex

spacecraft systems in the space environment. While many simulation
tools possess overlapping features with Basilisk, no others possess the
combined characteristics of Basilisk. Basilisk is a highly modular
Python-user-friendly open-source simulation framework that provides
accurate coupled vehicle position and attitude dynamics along with
optional structural flexing, imbalanced momentum exchange device,
and fuel slosh dynamics with at least a 365-time speedup (one mission
year inone compute timeday).Basiliskcanbeused to support engineer-
ing activities during the earlymissiondesignphases, detaileddesignand
validation phases, and postlaunch telemetry analysis and spacecraft
command sequence validation phases. Modeling fidelity in Basilisk is
configurable by a simulation engineer’s choice of model and algo-
rithms, as well as by the prescription of the time step at which each
model is integrated. The software has also been used in distributed
hardware-in-the-loop simulations.
This paper describes the Basilisk framework and the underlying

message-passing system that enables a very modular approach to open
spacecraft simulationdevelopment. InSec. II, theBasilisk framework’s
software stack is introduced. Section III gives a detailed account of the
aforementioned novel Basilisk system architecture, which allows for
the rapid development of a simulation for of a wide variety of complex
spacecraft systems. The key architectural components discussed are
the Basilisk message system that facilitates data passing between
models and the Basilisk spacecraft dynamics implementation. Sec-
tion IVoutlines the simulation execution flow of control and how the
fundamental components of modules, tasks, and task groups work
together to provide the user with flexible control over simulation
design, integration rates, and message passing. Sections V and VI
provide an overview of theBasiliskmultiprocessingMonte Carlo tools
and the ability to log, process, and analyze large (multi-gigabyte)
datasets. In the final section of this paper, an example Basilisk simu-
lation configuration will be presented to illustrate how Basilisk’s
modular design allows the end-user engineer to build a detailed sim-
ulation scenario from simple Basilisk building blocks.

II. Software Stack and Build

The core Basilisk architectural components and physics simula-
tion modules are written in C++11 to allow for object-oriented
development and fast execution speed. However, Basilisk modules
can also be developed using Python for easy and rapid prototyping
and C to allow flight software modules to be easily ported directly to
flight targets. There exists a range of space environmentmodels, such
as the various planetary global reference atmospheric models, which
are written in FORTRAN. Simulation developers can implement a
simple C-code wrapper to translate the execution control and data
flow to and from a module, thereby transparently integrating their
FORTRAN code base as a Basilisk module.
Whereas Basilisk modules are developed in a number of program-

ming languages, Basilisk users interact with and script simulation
scenarios using the Python (2.6∕7 and 3.X) programming language.
Pythonbindings are available for allmodules and supporting simulation

utilities, as indicated in Fig. 1. There are many approaches that can be

used to produce Python bindings of the C/C++ library code. Bindings

can be created either manually or autogenerated as a stage in the

software build process. Handwritten bindings can be constructed using

the Python C API, the Python ctypes module, or the C foreign

function interface for Python.While these methods are viable solutions

for exposing small portions of C/C++ code at the Python layer, it is

judged that the handwritten approach requires toomuch initial develop-

ment time and ongoing maintenance effort when exposing entire com-

ponent interfaces. As a result, the Python bindings are autogenerated

and the following broad criteria were used to conduct a trade to assess

and select candidate tools. The tool should 1) be compatible with

Windows, Linux, andMacOS operating systems; 2) be able to generate

bindings for both C and C++ code; 3) minimize the lines of supporting

code needed to produce and facilitate binding generation; and 4) target

multiple languages (at a minimum, all current Python versions).

Technologies that facilitate generating bindings include Software

Interface Generator (SWIG),¶ Cython,** and Boost Python.†† Addi-

tional technologies exist but have been omitted from this list because

they fail to support the first criteria.

The Cython language is a superset of the Python language that

supports calling C functions and declaring C data types. The primary

assumption when adopting a Cython approach is that the application

is primarily written in Python and the Cython language is used in

places to either increase performance or wrap and interleave portions

of C/C++ code. When using SWIG or Boost Python, the primary

assumption is that the application or library being developed is

primarily C/C++ code. From the outset, it was decided that a key

requirement of Basilisk’s was computational speed and that achiev-

ing such speed would require the majority of the framework’s com-

ponents be written in C/C++. As a result, a Python interface was

needed primarily to provide ease of configuration and scripting of the

simulation. Ultimately, Python was not to be part of the code that

controlled the run loop and models; and for this reason, Cython was

excluded.

Whereas SWIG is a code generator, the Boost Python library is an

interface library. A code generator will map the C/C++ interfaces and

automatically generate the Python wrappers. An interface library

requires the developer to explicitly declare the mapping between C++

and Python by writing additional code. To reduce the burden of writing

this additional mapping code, one may employ a separate Python

bindings generator tool such as Py++‡‡ in tandem with Boost Python.

Historically, Boost Python has provided more complete coverage of

mapping language features from the C++ Standard Library. However,

contrary to Boost Python, the SWIG project possesses an active devel-

oper community that has remedied such shortcomings. Finally, given

that SWIG provides the option to generate wrappers for other target

languages, there is the possibility that the Basilisk framework can also

be provided in other target languages such as Java.

Python bindings for each core component and module are auto-

generated by SWIG at compile time. Aminimalmodule is defined by

a header file (.h), a source file (.c/cpp), and a SWIG interface file (.i).

The SWIG interface file contains compiler directives, which at

compile time are parsed and map the class interface (.h) to a class

interface defined in the target language (Python). At compile time,

three build products are produced for each module’s compilation.

These three build products are a module library (.so or .dll), a Python

interface to the underlying library (.py), and a Python-to-source

language translation file (.cxx). The Python interface mirrors the

underlying C++ class’ variables and functions. The Python bindings

allow users to employ the module’s functionality within the Python

environment through the typical package import mechanism, as

demonstrated in Listing 1.

§Data available online at https://hanspeterschaub.info/bskMain.html
[retrieved 2020].

¶Data available online at http://www.swig.org [retrieved 2020].
**Data available online at https://cython.org [retrieved 2020].
††Data available online at https://www.boost.org/doc/libs/1_70_0/libs/

python/doc/html/index.html [retrieved 2020].
‡‡Data available online at https://pyplusplus.readthedocs.io [retrieved

2020].

KENNEALLY, PIGGOTT, AND SCHAUB 497

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://hanspeterschaub.info/bskMain.html
https://hanspeterschaub.info/bskMain.html
https://hanspeterschaub.info/bskMain.html
http://www.swig.org
http://www.swig.org
http://www.swig.org
https://cython.org
https://cython.org
https://www.boost.org/doc/libs/1_70_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_70_0/libs/python/doc/html/index.html
https://pyplusplus.readthedocs.io
https://pyplusplus.readthedocs.io
https://pyplusplus.readthedocs.io

Listing 1: Selective Python imports of Basilisk modules:

The Basilisk architecture demonstrates a particular form of decou-
pling software components known as the dependency inversion
principle [16]. In the context of generating target language binding
for each module in the build process, conventional object-oriented
design would have higher-level components of Basilisk directly link
against the lower-level module libraries. Rather, this dependency is
inverted by introducing a number of interfaces (described in the
following section) to which modules and core Basilisk components
adhere. As such, generating a separate SWIG-wrapped library object
(.so or .dll) for each module results in neither compile time depend-
encies between one module and another nor a module and Basilisk
core components. This low coupling relieves the user of needing any
software compilation knowledge and provides the ability to rapidly
develop and reconfigure a simulation scenario solely at the Python
language level of the technology stack. This critical feature allows a
spacecraft simulation to be modified later by selectively replacing
modules without impacting other simulation modules or requiring
them to be revalidated.

III. Modularity in Basilisk

The types of missions that Basilisk can be used to simulate span a
spectrum from Earth-orbiting CubeSats to interplanetary probes and
spacecraft constellations. The hallmark of the Basilisk framework is
its emphasis of the low coupling and high cohesion software design
principles [17]. Coupling in this context is measured as the number
and complexity of contact points that one module of code must have
with another module of code. Cohesion is defined as the complexity
within a module of code and is often determined by the clarity of
responsibility of that module. In pursuit of the low coupling and high
cohesion design ideal, Basilisk implements only two core system
components: the Basilisk message system and Basilisk simulation
controller. Basilisk’s low coupled design is achieved by three key

design choices. The first is the complete decoupling ofmodel and run
loop dependence. The second design choice is to use a messaging
system approach to manage module input and output data and
intermodule data requirements. The message-passing paradigm sup-
ports a component-based development (CBD) approach [18]. The
CBD approach shifts a simulation engineer’s focus from low-level
code development to scripting and composition of already compiled
units of code. The third design choice is a novelmethod formanaging
the mathematically, fully coupled nature of a spacecraft rigid-body
dynamics in a computationally efficient manner [19].

A. Components

Spacecraft onboard computers typically employ real-time operat-
ing systems that execute algorithms at both a fixed rate and within a
fixed allocation of time. Similarly, a dynamic simulation employs
either a fixed or variable time-step integration of the equations of
motion (EOMs). Both of these time rate-driven processes motivate
the conceptualization of the core Basilisk components introduced in
this section. The result is a unique flexibility and configurability of a
Basilisk simulation scenario.
A Basilisk simulation is built up from modules, tasks, and task

groups. These fundamental abstractions are depicted in their con-
ceptual relationship to each other in Fig. 2. A Basilisk module is
standalone code that typically implements a specific model (e.g., an
actuator, sensor, and dynamics model) or self-contained logic (e.g.,
translating a control torque to a reaction wheel (RW) command
voltage). The Basilisk design encourages module developers to
exemplify the high-cohesion design principle by providing the highly
flexible connection of input and output data flows throughmessages.
A module receives input data as message instances by subscribing to
desired message types available from the messaging system. Sim-
ilarly, a module publishes output data as message instances to the
messaging system.

Fig. 1 An example layout of a complete Basilisk simulation where each element of the system has SWIG-generated Python interfaces available in the
Python environment.

498 KENNEALLY, PIGGOTT, AND SCHAUB

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

Tasks are groupings of modules. Each task has an individually set
integration rate. The task integration rate directs the update rate of all
modules assigned to that task. As a result, a simulation may group
modules with different integration rates according to desired time-step
fidelity. Furthermore, the configured update/integration rate of each
task can be adjusted during a simulation to capture increased resolution
for a particular phase of the simulation. For example, a user may
increase the integration rate for the task containing a set of spacecraft
dynamics modules, such as flexing solar panels and thrusters, in order
to capture the high-frequency flexing dynamics and thruster firings
during Mars orbit insertion. Otherwise, the integration time step may
be kept to a longer duration during the less dynamically active mission
phases such as interplanetary cruise.
The execution of a task, and therefore themodules within that task,

is controlled by either enabling or disabling the task. A task’s enabled
status can be toggled, any time during a simulation, from within a
Python layer simulation script. Toggling a task’s enabled status is
particularly useful for enabling or disabling flight software (FSW)
specific modules contained within a task related to the simulated
spacecraft’s FSW mode, e.g., safe mode or sun pointing.
Task groups are the highest-level grouping of Basilisk compo-

nents. Task groups act as a container for tasks and provide a mecha-
nism for resolving message dependencies between modules as
discussed in greater detail in Sec. III.B. Task groups can be consid-
ered silos of tasks and the messages published and subscribed by
modules within the task group. Figure 3 shows the relationships
between the described Basilisk components as a unified modeling
language (UML) diagram. The SimModel class is the application
root and controls system initialization, simulation time stepping, and
orchestration of the simulation. As previously discussed with refer-
ence to Fig. 2, the SimModel class has references to one or more
instances of the TaskGroup class, which each have references to
one or more instances of the Task class. Each instance of a Task
maintains one or more references to an instance of a Module class,
which inherits from the SysModule parent class. The SysModule
parent class encapsulates core Module data and behavior: most
importantly, the moduleID.

B. Message System

The Basilisk messaging system facilitates the input and output
of data between simulation modules. The messaging system decou-
ples the data flow between modules and task groups and removes
explicit intermodule dependency, resulting in no run-time module
dependencies.

ABasiliskmodule reads inputmessage instances andwrites output
message instances to the Basilisk messaging system. The message
system acts as a message broker for a Basilisk simulation. The
messaging system employs a publisher–subscriber message-passing
nomenclature, as shown in Fig. 4. A single module may read and
write any number ofmessage types. Amodule that writes output data,
registers the “publication” of that message type by creating a new
message-type entry within the message system. Similarly, a module
that requires data output by anothermodule subscribes to themessage
type published by the other module. The messaging system then
maintains the message types read and written by all modules and the
network of publishing and subscribing modules.
A message type is defined by a unique message name, a message

identifier (ID), and a payload data structure (typically a C/C++
struct). The messaging system maintains metadata for each message
type in amessage header. Themessage-type header metadata include
a list of allowed message publishers, subscribers, buffer memory
locations, and read/write statistics.

Fig. 2 Basilisk task group, tasks, and module layout.

Fig. 3 Basilisk task group, tasks, and module class UML.

KENNEALLY, PIGGOTT, AND SCHAUB 499

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

The messaging system implements the message storage as directly
managedmemory.Asshown inFig. 5a, a regionofmemory is allocated

and managed as a the message storage container. The messaging

system manages multiple storage containers: one for each task group.
The size of the allocated memory for each storage container is deter-

mined by the combined size of the number of created message types,

their associated headers, and the number of message instance buffers
allocated for eachmessage type. It is important tonote that allmessage-

type storage is at least double buffered in the messaging system. Ring

buffer logic is used for message-type entries that are registered with
more than two buffers. As shown in Fig. 5a, a module can declare to

increase the number of buffers for a specific message type.
A message type is created in the message system when a module

invokes the call, shown in Listing 2, on the SystemMessaging

singleton. This function call takes a unique message name string,

the maximum size in bytes of the message payload struct, the
number of buffers into which an instance of the message type

may be written, the type of the payload struct, and the identifier

of the module creating the new message type. As demonstrated by
Fig. 5b, the memory allocated in the task group’s message storage

container is increased, and existing message instances are moved

within the allocated memory to accommodate the new message
instance “msg n + 1.” The messaging system returns to the module

a message typewith a unique message ID. It is this message ID with
which a module will reference to write or read message instance

data during runtime.

Listing 2: Register a new message with the messaging system:

Simulation initialization and the associated resolving of message-
type publish–subscribe pairs is discussed in greater detail in Sec. IV.

However, the functionality of a task group interface is described as

follows. A task group interface is a unidirectional message exchange
from one task group to a second task group. Each task group has a

single associated message storage container. This one-to-one design

seeks to accommodate simulation configurations where one set of
tasks is to remain isolated and separate from another set of tasks. An

example of this is the desire tomimic a flightlike configurationwhere
the dynamic and environment modules remain wholly separate from

the flight software modules. This separation, while being useful to

organize related modules within a simulation, becomes significantly
useful when operating Basilisk as a distributed simulation across

multiple compute resources. For example, in a SWIL configuration,

the dynamics and environment modules execute on a desktop

computer, whereas the FSW executes on a separate flight target
processor or processor emulator. A less stereotypical example is
the case in which an analyst runs a computationally expensive
module within a task group on more powerful remote computing
resources (ray traced solar radiation pressure or high-degree gravity
models) and the remaining modules in locally executing task group.
As a result, to facilitate the exchange of messages between task
groups, task group interfaces are available to make this connection.
A task group interface is a unidirectional message exchange from one
task group to a second task group. This allows for modules in a first
task group to publish messages to a second task group and, as
implied, allows modules in the second task group to subscribe to
messages published in the first task group.

C. Dynamics Manager

The third and final piece of Basilisk’s modular design is the imple-
mentation of the dynamics manager. The spacecraft dynamics are
modeled as fully coupled multibody dynamics with the generalized
EOMs being applicable to a wide range of spacecraft configurations.
The implementation, as detailed in Ref. [19], uses a backsubstitution
method to modularize the EOMs and leverages the resulting structure
of the modularized equations to allow the arbitrary addition of both
coupled and uncoupled forces and torques to a central spacecraft hub.
The ability to add arbitrary dynamic effector modules to a spacecraft
hub is a new architecture that sets Basilisk apart from similar tools.
Take, for example, the highly capable and often used 42 spacecraft
attitude and orbit dynamics simulation software. The 42 software
includes many useful spacecraft dynamicmodels; however, an inspec-
tion of the code basewill show that there exists, inmultiple files, direct
reference to data structures and semantic information regarding the
assumed existence of dynamic models such as reaction wheels, mag-
netic torque bars, thrusters, etc. While it is sensible to assume the
potential existence of these models in the simulation of a spacecraft,
doing so explicitly introduces coupling across multiple pieces of code,
which has the potential to increase code complexity and reduce main-
tainability and scalability. In contrast, the Basilisk dynamics engine
assumes only the potential existence of dynamic effectors and state
effectors. No explicit assumptions aremade in code about the nature of
these models, beyond their contribution to resolving the dynamical
system of equations for the spacecraft. As a result, any conceivable
dynamic interaction can be modeled as a Basilisk module and can be

msg 1

msg 2

Module 1

Module 2

Module 3

Module 4

msg 4

msg 3

Msg System

msg n

msg 1

pub sub

Module 6

Module 7

Fig. 4 Notional messaging system’s publish and subscribe map for a
message storage container of a single task group.

a) Message system memory layout b) Message system memory
layout upon new message creation

Fig. 5 Basilisk messaging (msg) system memory layout and
organization.

500 KENNEALLY, PIGGOTT, AND SCHAUB

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

applied to the spacecraft hub without code changes to any part of the

dynamic engine [20].

A module that impacts the translational or rotational dynamics is

called an effector. Effectors are classified as either a state effector or a

dynamic effector. State effectors are those modules that have dynamic

states to be integrated, and therefore contribute to the coupled dynam-

ics of the spacecraft. Examples of state effectors are reaction wheels,

flexible solar arrays, variable-speed control moment gyroscopes, and

fuel slosh. In contrast, dynamic effectors are modules that implement

dynamics phenomena that result in external forces or torques being

applied to the spacecraft. Examples of dynamic effectors include

gravity, thrusters, solar radiation pressure, and drag.

For a module to operate as either a state or dynamic effector,

the implemented module class must inherit from the StateEffector

or DynamicEffector parent classes. The developer of a dynamics

module is responsible for implementing only the dynamics of

the effector model. For a state effector, a developer must provide

a custom implementation of the three functions shown in List-

ing 3. Listing 4 shows the single method for the noncoupled

dynamic effector, for which a developer must provide a custom

implementation.

Listing 3: StateEffector required methods:

Listing 4: DynamicEffector required method:

The dynamics manager transparently organizes and aggregates the
various dynamic contribution of each effector module in a simula-
tion. It ensures all dynamic states are updated and propagated. The
user may select from various numerical integration schemes to
propagate the spacecraft dynamics. Moreover, the interface between
the dynamics manager and the integrator has been generalized to
allow other developers to implement their own desired numerical
integration scheme.

IV. Execution Control

A Basilisk simulation steps through a number of distinct initial-
ization, integration, and shutdown phases. The application flow of
control for a Basilisk simulation is shown in Fig. 6. Basiliskmodules,
tasks, task groups, and their associated message storage and linkages
are initialized by a two-stage process. Each Basilisk module inherits
from the SysModel class. As shown in Listing 5, the SysModel
abstract class defines an interface of four functions, which a module
must implement. These functions are called on eachmodule as part of
the overall simulation flow of control process.
Listing 5: SysModel abstract class interface definition:

The two stages of simulation initialization are self-initialization

and cross-initialization. During self-initialization, each module’s

selfInit() function is called, allowing a module to register the

message types it intends to publish with the messaging system. Next,

eachmodule’scrossInit() function is called, allowing amodule

to subscribe to message types that were made available as published

messages in the previous self-initialization stage. As the last major

step before beginning the run loop, Reset() is called for each

module. The Reset() function provides each module an opportu-

nity to set up to a “clean” known initial state.

The simulation flow of control is governed by three loop iterations.

The outermost loop iterates through each of the instantiated

task groups according to each task group’s assigned priority level.

Within each task group, each task is looped through. Subsequently,

all modules within a task are iterated through according to their

priority within the task. For each module in a task, the module’s

updateState() function is called. The logic contained in the

updateState() function is custom to each module. However, a

typical sequence of many updateState() implementations is

to read subscribed input message types, perform a computation

defined by the module, and then write published output message

instances for use by other modules. Of particular importance is
the special SpacecraftDynamics module, which implements
the aforementioned dynamics manager. The updateState() of
the SpacecraftDynamics module is responsible for triggering
the dynamics integration process and, in doing so, determines the
integration rate of the spacecraft dynamics.
Following the iteration through each of the task groups and task

loops, the next call times for a task and task group are set. This is
required because each task within a task group may have a different
update rate and tasks may be enabled or disabled at various times
during the simulation. As a result, the next call time for a task, task
group, and therefore the modules can change from one loop to the
next; and updating the next call time allows the simulation to skip
forward to the next expected update time according to the combined
task and task group update rates.

V. Data Logging

Data output by modules through messages or internal module
variables (which have a declared public scope in their C++ class
definition) may be logged. Data to be logged are determined before
a simulation run where a user may specify complete message types,
a single variable within a message type, or internal simulation vari-
ables to be logged and the logging rate desired. The highest logging
frequency is driven by the highest frequency at which the task,
containing the module producing the data, is executed. No interpo-
lation is done for data logged at a frequency higher than the frequency
at which data samples are produced. As shown in Fig. 6, the simu-
lation data logger reads the requested messages and variables at the

KENNEALLY, PIGGOTT, AND SCHAUB 501

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

end of each loop through all task groups. At the conclusion of the
simulation, the user may retrieve the datawith eachmessage type and
variable made available as a series of values associated with time
stamps. This returned data format may be directly used in postpro-
cessing scripts developed in Python using tools like NumPy and
PANDAS.

VI. Monte Carlo Capability

A key benefit of Basilisk’s Python interface is the ability to take
any simulation script and, with minimal code changes, configure that
script as a Monte Carlo simulation. AMonte Carlo simulation can be
executed in a serial or multiprocessing fashion. As a multiprocessing
execution, the simulation can be executed on multiple local CPU
cores or a highly parallel remote execution environment. Addition-
ally, the Monte Carlo functionality includes run-time-generated var-
iable dispersions, logging and saving of simulation dispersed initial
conditions, and logging of simulation data. The logged simulation
data are made available in the portable Dataframes data structure
from the PANDAS Python module.
Variable dispersions are built upon base Python implementations of

scalar, vector, and tensor variable-type dispersion classes. Currently,
Basilisk maintains uniform and normal dispersion for Cartesian
variables, Euler angles, and modified Rodrigues parameter (MRP)
attitude descriptions [21]. However, each of these individual base
dispersions can be inherited by a user’s custom dispersion implemen-
tation, allowing users to generate dispersions for variables with differ-
ent physical bounds, variances, and specific statistical distributions.
The initial conditions, including the dispersed variables and random

number seeds, are saved in a JavaScript Object Notation (JSON) file
format for each Monte Carlo run. This allows a user to rerun and
examine closer one or more particular runs of interest from a Monte
Carlo simulation, with bit-for-bit repeatability.

Multiprocess capability is a key benefit of the Monte Carlo tools.
TheMonte Carlo controller uses the Python multiprocessing module
to spawn and manage as many Python Basilisk simulation processes
as the user or host machine allows. For example, a computer with a
four-core CPU (each physical core with two virtual cores) will be
used by the Monte Carlo controller as a machine with eight process-
ors. The controller will launch eight simulations at once and contin-
ues to provide simulations to the worker pool of processes until all
simulation work is complete. Each simulation execution is handled
individually with data logging, initial conditions, and failures all
logged for later analysis. Postprocessing of Monte Carlo data makes
use of the convenient PANDAS statistical and data manipulation
functions. While single simulation plotting is done with the more
traditional Matplolib package, plotting of large multi-gigabyte data-
sets is achieved using the DataShaders plug-in to the Bokeh plotting
library. This module employs a rasterized plotting approach to dis-
play, in a few seconds of execution, time plots containing extremely
large datasets.

VII. Development Approach: Open Source

Basilisk’s initial motivationwas to support the design and develop-
ment of the attitude determination and control system for an inter-
planetary spacecraft. The intention was to use Basilisk as an early
mission phase A/B design and analysis tool, a flight algorithm
verification and validation tool during latter phase C, and finally as
the space environment and dynamics simulator for HWIL and SWIL
testing during phase D. The referenced missions of phases A, B, C,
and D correspond to the project lifecycle definitions found in the
NASA Systems Engineering Handbook [22]. Basilisk has been used
in all these mission phases. Basilisk’s increasing utility has prompted
the original development team at the Laboratory forAtmospheric and
Space Physics (LASP) and the Autonomous Vehicle Systems (AVS)
Laboratory to make the project available as an open source project.
Basilisk uses an Internet Systems Consortium license, which is a
permissive software license that simply requires attribution and
relinquishes of the creator of liability [23]. It is anticipated that such
a permissive license will help to encourage experimentation and
contribution back to the main Basilisk project.
Basilisk has undergone an internal verification and validation

effort within the LASP and the AVS Laboratory. Furthermore, the
framework does not contain any export controlled components.
Rather, all the included simulation and astrodynamics control algo-
rithms are from open published literature. If a user needs to create
modules that contain company proprietary tools or export controlled
solutions, then the user would create these modules outside the
regular Basilisk framework and import them separately in the Python
simulation script. This allows Basilisk to model several common
dynamical systems such as reaction wheels dynamics in a very
general fashion, but no reaction wheel specific communication inter-
faces are included because these are vendor or mission specific.
Basilisk provides users with the ability to model and analyze

spacecraft attitude control algorithms, vehicle rotational and trans-
lation dynamics, spacecraft trajectory modeling, optical navigation,
validation of FSW algorithms (either SIL or HIL), and visualiza-
tion and playback of spacecraft behavior. Priority features to be
implemented include the addition of more accurate and configu-
rable numerical integration schemes, type checking safety during
message read and write operations, migration to a fully thread-safe
implementation, and formalization of the existing two mechanisms
for simulating multiple intercommunicating spacecraft.

VIII. Example Basilisk Attitude Control Simulation

Constructing a Basilisk simulation scenario requires the creation of
task groups, assigning tasks to these task groups, and the instantiation
of modules within each task. The following example demonstrates the
key Basilisk function calls that configure a simple Earth-orbiting
spacecraft whose attitude control systemmust align to a chosen inertial
attitude. The simulation uses two task groups. The first task group

Fig. 6 Basilisk application flow of control for simulation (sim) execu-
tion.

502 KENNEALLY, PIGGOTT, AND SCHAUB

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

contains all dynamics, kinematics, and environment (DKE) modules.

The second task group contains all flight software algorithm modules.

The arrangement of task groups, tasks, and associated modules is

presented in Fig. 7.

The modules within the DKE task group are separated into two

tasks. In the first task, the modules included are the spacecraft hub,

reactionwheels (fully coupled to the hub), and the Earth gravity field.

In the second task, a module called SimpleNav is included. The

SimpleNav module receives the spacecraft states through the output

message type of the spacecraft module. The SimpleNav module

perturbs the truth state of the spacecraft using a Gauss–Markov error

model. For simple simulations, such as this example, the SimpleNav

module is used in place of the more complex nominal spacecraft

navigation system output. There is a single task in the FSW task

group, and it contains all the modules required to implement anMRP

inertial pointing controller using reaction wheels [21]. The FSW

determines the attitude error by reading the navigation sensor output

message type, whereas the reaction wheel motor torque module

outputs a message type that drives the resulting reaction wheel

assembly (RWA) dynamics.

Task groups and tasks are created and linked for the DKE and

FSW task groups. This is done by creating a task group (also

referred to as a process), and then adding a task to this task group

as shown in Listing 6. The Dynamics task integration rate is set to

0.1 s, and the sensors task rate set to 0.5 s. In Basilisk, the base

time scale is nanoseconds, and so the sec2nanos() conversion

utility is used for convenience. Recall that task groups are message

instance containers. Message types within a task group may only

be published and subscribed to by modules within that task group.

To facilitate message passing between task groups, a task group

interface must be created for each of the desired message flow

directions. In this simulation, it is desired that certain message

types generated in the DKE task group are available to the modules

in FSW, and vice versa. As shown in Fig. 7, two task group

interfaces are created to facilitate the transparent exchange of

message instances between the two task groups.

Listing 6: Simulation, task group, tasks, and task group message sharing interface instantiation:

With the core Basilisk structures instantiated, the next step is to populate the simulation with various Basilisk modules. As shown in Listing 7,

the DKE modules are instantiated and assigned to their respective tasks. The SpacecraftPlus() module instantiates the rigid-body hub to

which other StateEffectors and DynamicEffectors can be associated.

Listing 7: Instantiate DKE modules and assign to respective tasks:

KENNEALLY, PIGGOTT, AND SCHAUB 503

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

The FSW modules are created and populated in the FSW task

group as shown in Listing 8. While modules can be developed in

either Python, C++, or C, the FSW modules employed in this

simulation are developed in C.Developing thesemodules in C allows

analysts to run the same code and algorithm in simulation, SWIL, and

eventually HWIL. The FSW modules included are 1) Iner-
tial3dPoint, which computes the spacecraft reference attitude;

2)AttitudeError, which determines the spacecraft attitude error

from the reference attitude; 3) MRPControl, which computes

required control torques according to the MRP-based feedback con-

trol law; and 4) RWMotorTorque, which maps the attitude control

torque onto a set of reaction wheel torque commands.

The novel utility of Basilisk’s modularity is demonstrated by the

arrangement of these FSW algorithm modules. Each of these FSW

modules computes a specific kinematic or control-related quantity.

As such, each module can be used as a building block to compose

complex FSW behaviors. In this simulation scenario, four modules

are used to create an inertial pointing control scheme. The movement

of output data generated and the input data required by thesemodules

are facilitated by published and subscribed message instances.

Greater detail of the application and theory enabled by this building

block approach is contained in Ref. [24].

Listing 8: Instantiate FSW modules and assign to respective task:

To begin the simulation, three function calls are made. The first

initializes the task groups, tasks, and modules by calling the Self-
Init(), CrossInit(), and ResetInit() functions. Follow-

ing this, the simulation stop time is set, and then the simulation is

launched.

Listing 9: Launching a simulation:

External changes to the simulation configuration can be made via

conditionally triggered events or, more simply, after a set duration of

execution as demonstrated in Listing 10. This is useful to simulate

specific spacecraft sequence instruction sets and FSWmode changes.

Events can be set to trigger a custom user-provided function. This

user-provided function allows an analyst to trigger and change any

variable/state in the simulation that is available through the Python

interface of each Basilisk module.

Fig. 7 Concept diagram of simple attitude feedback control Basilisk simulation configuration.

504 KENNEALLY, PIGGOTT, AND SCHAUB

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

Listing 10: Spacecraft mode changes made after the simulation executes for a specified duration:

Plots are created from the simulation generated data using NumPy, Matplotlib, and PANDAS python packages. For the presented simulation,

the evolution of the attitude is shown in Fig. 8. It is evident that the spacecraft controls to the reference attitude, with convergence achieved

after 8 min. Figure 9 shows the computed control torques and the resulting actuated reaction wheel control torques. In this simulation, each

reaction wheel’s maximum available torque has been set as 0.2 N∕m. As shown, reaction wheels 2 and 3 saturate their actuated torque early in

the simulation. Finally, the resulting reaction wheel control speeds are shown in Fig. 10.

IX. Example Basilisk Multibody Dynamics
Orbital Simulation

The following simulation demonstrates Basilisk’s ability to simulate

a spacecraft trajectory under the influence of multiple gravity bodies.
The simulation contains a single task group, containing a single task

and seven modules. The Basilisk simulation models a single orbit of
the Hubble Space Telescope’s (HST’s) trajectory and compares the

simulated trajectory to both the HST trajectory SPICE [25] kernel

(hst_edited.bsp§§) and to a GMAT-simulated trajectory of the

same initial conditions and dynamic environment. The Basilisk SPICE

module outputs amessage for the ephemeris of each gravity body object

at each time step. Each gravity body reads its position and velocity

ephemeris message. As shown in Listing 11, a number of gravity bodies

Fig. 8 Evolution of attitude error in each MRP component.

Fig. 9 Evolution of computed reaction wheel torques (dashed lines) and the actual reaction wheel torques.

Fig. 10 Evolution of reaction wheel speeds.

§§Data available online at https://naif.jpl.nasa.gov/pub/naif/HST/kernels/
spk/aareadme.txt [retrieved 2020].

KENNEALLY, PIGGOTT, AND SCHAUB 505

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://naif.jpl.nasa.gov/pub/naif/HST/kernels/spk/aareadme.txt
https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010762&iName=master.img-000.jpg&w=350&h=96
https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010762&iName=master.img-001.jpg&w=351&h=97
https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010762&iName=master.img-002.jpg&w=351&h=97

are created and the Earth gravity body is assigned to be the central body. Assigning Earth as the central body ensures that the spacecraft hub translational

states are computed relative to theEarth as thezeroBase locationof the coordinate frame.TheEarth gravitybody is set to employ a spherical harmonics
gravitymodelwhereGRACEGravityModel 03 (GGM03) provides the first 100 harmonic coefficients [26]. Finally, the gravitymodel is assigned to the

spacecraft’sgravityField reference.TheSPICEmodule is configured as shown inListing 12.The samegravity body factory convenience functions
are used to set up thegravity bodies are used to configure theSPICEmodule. TheSPICEmodule is also configuredwithEarth as the zeroBase location of

the coordinate frame in which the gravity bodies are defined. Finally, the SPICE module is added to the simulation task.

Listing 11: Configuring multibody gravity:

Listing 12: Configuring NAIF SPICE module:

The spacecraft’s initial position and velocity are set by querying a position and velocity from theHSTSPICE kernel. The spacecraft trajectory is

simulated for 100 min at a 1 s time step. The integrator used for the Basilisk simulation is a fourth-order Runge–Kutta (RK4) method, whereas a

variable-step Runge–Kutta45 (RK45) is the simplest integrator availablewithin theGMAT. The Basilisk-simulated position is comparedwith the

SPICE kernel position. The difference between the Basilisk-simulated inertial position and the HST SPICE position ephemeris is displayed in

Fig. 11. The inertial position difference reaches a maximum of 856 m. The difference between the Basilisk-simulated inertial position and the

GMAT-simulated inertial position is displayed in Fig. 12. It is evident that the GMAT’s more accurate and configurable RK45 integrator produces

less error in the spacecraft’s propagation than Basilisk’s default RK4. The GMAT propagation demonstrates close (within 100 m) errors, giving

confidence that the Basilisk trajectory error is within an acceptable magnitude and attributable to the less capable fixed time-step RK4 integrator.

Providing more advanced integration methods is a high-priority feature extension for future Basilisk development.

Fig. 11 Position error of Basilisk-simulated trajectory with respect to position as given by the HST SPICE kernel.

Fig. 12 Position error of Basilisk-simulated trajectory with respect to a GMAT-simulated HST trajectory.

506 KENNEALLY, PIGGOTT, AND SCHAUB

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010762&iName=master.img-003.jpg&w=353&h=95
https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010762&iName=master.img-004.jpg&w=354&h=94

X. Conclusions

The Basilisk astrodynamics framework provides a new open
source alternative for fully coupled spacecraft dynamics mission
simulation with integrated flight algorithm emulation. Among the
suite of other available simulation tools, Basilisk provides an ena-
bling mix of usability, extensibility, and computational speed. Basi-
lisk is able to achieve this usability by providing a Python user
interface for each component. The Python interface enables users
to leverage the depth of the Python math and data analysis package
ecosystems. Basilisk’s modular architecture of modules, tasks, task
groups, and themessaging system supports this usability by enabling
users to configure simulation scenarios from the very simple early
feasibility analysis to complex mission verification and validation.

References

[1] Schiff, C., and Dove, E., “Monte Carlo Simulations of the Formation
Flying Dynamics for the Magnetospheric Multiscale (MMS) Mission,”
Journal of Aerospace Engineering, Sciences and Applications, Vol. 4,
No. 4, 2012, pp. 66–78.
https://doi.org/10.7446/jaesa.0404.06

[2] Dichmann, D. J., Alberding, C. M., and Yu, W. H., “Stationkeeping
Monte Carlo Simulation for the James Webb Space Telescope,” 24th

International Symposium on Space Flight Dynamics, Vol. 1, 2014,
pp. 1–21.

[3] MATLAB/Simulink, “MathWorks,” Software Package Version 9.5,
Natick, MA, 2018, https://www.mathworks.com/products/matlab.html
[retrieved 23 Oct. 2018].

[4] Systems Tool Kit, “Analytic Graphics,” Software Package Version 11.4,
Exton, PA, 2018, https://www.agi.com/products/engineering-tools
[retrieved 20 Oct. 2018].

[5] FreeFlyer, “a.i. Solutions,” Software Package Version 7.3, Lanham,
MD, 2018, https://ai-solutions.com/freeflyer/ [retrieved 21 Oct.
2018].

[6] General Mission Analysis Tool, “NASAGoddard Space Flight Center,”
Software Package Version 17.4.0, Greenbelt, MD, 2018, https://
software.nasa.gov/software/GSC-17177-1 [retrieved 27 Oct. 2018].

[7] “Trick Simulation Environment [online database],” NASA Johnson
Space Center, Houston, TX, 2018, https://nasa.github.io/trick/
[retrieved 20 Oct. 2018].

[8] CS Systèmes d’Information, “OreKit Software PackageVersion 9.1: An
Accurate and Efficient Core Layer for Space Flight Dynamics Applica-
tions,” 2018, https://www.orekit.org [retrieved 15 Oct. 2018].

[9] DARTS Shell (Dshell), “Jet Propulsion Lab., DARTS Lab.,” Software
Package Version 2018, Pasadena, CA, 2018, https://dartslab.jpl.nasa
.gov [retrieved 1 Oct. 2018].

[10] “42: A Comprehensive General-Purpose Simulation of Attitude and
Trajectory Dynamics and Control of Multiple Spacecraft Composed
of Multiple Rigid or Flexible Bodies”), Software Package, NASAGod-
dard Space Flight Center, Greenbelt, MD, Oct. 2018, https://software
.nasa.gov/software/GSC-16720-1 [retrieved 1 Oct. 2018].

[11] Vaughan, W. W., Owens, J. K., Niehuss, K. O., and Shea, M. A.,
“The NASA Marshall Solar Activity Model for Use in Predicting

Satellite Lifetime,” Advances in Space Research, Vol. 23, No. 4,
1999, pp. 715–719.
https://doi.org/10.1016/S0273-1177(99)00140-4

[12] Cuseo, J., “STK/SOLIS and STK/ODySSy Flight Software: Supporting
the Entire Spacecraft Lifecycle,”Workshops on Spacecraft Flight Soft-

ware, Johns Hopkins Univ. Applied Physics Lab., Laurel, MD, 2011.
[13] “STK SOLIS: Commercial Plug-In to the Analytical Graphics, Inc

(AGI) Systems ToolKit (STK),” Software Package, Advanced Solu-
tions, Littleton, CO, Oct. 2018, http://www.go-asi.com/solutions/stk-
solis/ [retrieved 1 Oct. 2018].

[14] Lim, C. S., and Jain, A., “Dshell++: A Component Based, Reusable
Space System Simulation Framework,” Proceedings—2009 3rd IEEE

International Conference on SpaceMission Challenges for Information

Technology, SMC-IT 2009, IEEE, New York, 2009, pp. 229–236.
[15] Jain, A., and Rodriguez, G., “Recursive Flexible Multibody System

Dynamics Using Spatial Operators,” Journal of Guidance, Control, and
Dynamics, Vol. 15, No. 6, 1992, pp. 1453–1466.
https://doi.org/10.2514/3.11409

[16] Martin, R. J., Agile Software Development, Principles, Patterns, and

Practices (with Contributions from W. Newkirk and Robert S. Koss),
1st ed., Pearson, Upper Saddle River, NJ, Oct. 2002, pp. 94–98.

[17] Stevens, W. P., Myers, G. J., and Constantine, L. L., “Structured
Design,” IBM Systems Journal, Vol. 13, No. 2, 1974, pp. 115–139.
https://doi.org/10.1147/sj.132.0115

[18] Sommerville, I., Software Engineering, 10th ed., Pearson, Upper Saddle
River, NJ, 2015, pp. 464–490.

[19] Allard, C., Ramos, M. D., Schaub, H., Kenneally, P., and Piggott, S.,
“Modular Software Architecture for Fully Coupled Spacecraft Simula-
tions,” Journal of Aerospace Information Systems, Vol. 15, No. 12,
2018, pp. 670–683.
https://doi.org/10.2514/1.I010653

[20] Allard, C. J., “Modular Software Architecture for ComplexMulti-Body
Fully-Coupled Spacecraft Dynamics,” Ph.D. Thesis, Univ. of Colorado,
Aerospace Engineering Sciences Dept., Boulder, CO, Aug. 2018.

[21] Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems,
3rd ed., AIAA Education Series, AIAA, Reston, VA, 2014.
https://doi.org/10.2514/4.102400

[22] Hirshorn, S. R., Voss, L. D., and Bromley, L. K., “NASA Systems
Engineering Handbook,” NASATR SP-2016-6105, Feb. 2017.

[23] “ISC License [online database],”Open Source Initiative, Palo Alto, CA,
2018, https://opensource.org/faq [retrieved 15 Oct. 2018].

[24] Cols-Margenet, M., Schaub, H., and Piggott, S., “Modular Attitude
Guidance: Generating Rotational Reference Motions for Distinct Mis-
sion Profiles,” Journal of Aerospace Information Systems, Vol. 15,
No. 6, 2018, pp. 335–352.
https://doi.org/10.2514/1.I010554

[25] Acton, C. H., “Ancillary Data Services of NASA’s Navigation and
Ancillary Information Facility,” Planetary and Space Science, Vol. 44,
No. 1, 1996, pp. 65–70.

[26] Tapley, B., Ries, J. C., Bettadpur, S., Chambers, D., Cheng, M., Condi,
F., and Poole, S., “The GGM03 Mean Earth Gravity Model from
GRACE,” AGU Fall Meeting Abstracts, Nov. 2007, Paper G42A-03.

J. P. How
Associate Editor

KENNEALLY, PIGGOTT, AND SCHAUB 507

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://doi.org/10.7446/jaesa.0404.06
https://doi.org/10.7446/jaesa.0404.06
https://doi.org/10.7446/jaesa.0404.06
https://doi.org/10.7446/jaesa.0404.06
https://doi.org/10.7446/jaesa.0404.06
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.agi.com/products/engineering-tools
https://www.agi.com/products/engineering-tools
https://www.agi.com/products/engineering-tools
https://ai-solutions.com/freeflyer/
https://ai-solutions.com/freeflyer/
https://software.nasa.gov/software/GSC-17177-1
https://software.nasa.gov/software/GSC-17177-1
https://software.nasa.gov/software/GSC-17177-1
https://software.nasa.gov/software/GSC-17177-1
https://nasa.github.io/trick/
https://nasa.github.io/trick/
https://nasa.github.io/trick/
https://www.orekit.org
https://www.orekit.org
https://www.orekit.org
https://dartslab.jpl.nasa.gov
https://dartslab.jpl.nasa.gov
https://dartslab.jpl.nasa.gov
https://dartslab.jpl.nasa.gov
https://software.nasa.gov/software/GSC-16720-1
https://software.nasa.gov/software/GSC-16720-1
https://software.nasa.gov/software/GSC-16720-1
https://doi.org/10.1016/S0273-1177(99)00140-4
https://doi.org/10.1016/S0273-1177(99)00140-4
https://doi.org/10.1016/S0273-1177(99)00140-4
http://www.go-asi.com/solutions/stk-solis/
http://www.go-asi.com/solutions/stk-solis/
http://www.go-asi.com/solutions/stk-solis/
http://www.go-asi.com/solutions/stk-solis/
https://doi.org/10.2514/3.11409
https://doi.org/10.2514/3.11409
https://doi.org/10.2514/3.11409
https://doi.org/10.2514/3.11409
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.2514/1.I010653
https://doi.org/10.2514/1.I010653
https://doi.org/10.2514/1.I010653
https://doi.org/10.2514/1.I010653
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://doi.org/10.2514/4.102400
https://opensource.org/faq
https://opensource.org/faq
https://doi.org/10.2514/1.I010554
https://doi.org/10.2514/1.I010554
https://doi.org/10.2514/1.I010554
https://doi.org/10.2514/1.I010554
https://arc.aiaa.org/action/showLinks?system=10.2514%2F3.11409&citationId=p_15
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010653&citationId=p_19
https://arc.aiaa.org/action/showLinks?system=10.2514%2F1.I010554&citationId=p_24
https://arc.aiaa.org/action/showLinks?crossref=10.1147%2Fsj.132.0115&citationId=p_17
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2F0032-0633%2895%2900107-7&citationId=p_25
https://arc.aiaa.org/action/showLinks?crossref=10.1109%2FSMC-IT.2009.35&citationId=p_14
https://arc.aiaa.org/action/showLinks?crossref=10.1016%2FS0273-1177%2899%2900140-4&citationId=p_11

This article has been cited by:

1. Thibaud Teil, Samuel Bateman, Hanspeter Schaub. 2020. Closed-Loop Software Architecture for Spacecraft Optical
Navigation and Control Development. The Journal of the Astronautical Sciences 66. . [Crossref]

2. C. J. Capon, P. Lorrain, B. Smith, M. Brown, J. Kurtz, R. R. Boyce. Numerical Predictions for On-Orbit Ionospheric
Aerodynamics Torque Experiment 1-12. [Crossref]

D
ow

nl
oa

de
d

by
 U

N
IV

E
R

SI
T

Y
 O

F
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n
Se

pt
em

be
r

16
, 2

02
0

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.I
01

07
62

https://doi.org/10.1007/s40295-020-00216-1
https://doi.org/10.1109/AERO47225.2020.9172256

