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Amethod for the fast computation of spacecraft force and torquedue to solar radiationpressure (SRP) is presented.

A faceted model is employed that tracks which elements of a time-varying geometry are exposed to the sunlight, but

sunlight reflections are not modeled. The method uses the highly parallel execution capabilities of commodity

graphics processing unit (GPU) and the Open Graphics Library (OpenGL) and Open Compute Language

(OpenCL) to render a spacecraft mesh on the GPU. A custom-developed OpenGL render pipeline computes the

per-model facet SRP forces and torques that are summedon theGPUbefore the resultant spacecraft force and torque

vectors are copied back to the CPU bound process. The process is validated on spherical and cubic test shapes. The

evaluation accommodates spacecraft self-shadowing and is capable of accounting for arbitrary spacecraft

articulation. Material properties are encoded with the model to provide realistic specular, diffuse, and absorption

surface light interactions. Numerical simulations illustrate the impact of geometric fidelity and articulated surfaces.

The facetedOpenGL-OpenCLmethod is up to an order of magnitude faster on integratedGPU hardware than high-

end graphics card as the process is not demanding on the GPU and benefits from the fast memory transfer of on-chip

processors.

I. Introduction

E XPLORING novel mission concepts requires rapid numerical

modeling of the spacecraft dynamics. The solar radiation pres-

sure (SRP), the momentum imparted to a body by impinging solar

photons, becomes a dominant nonconservative force above lowEarth

orbit (LEO) regime [1]. Given this importance of SRP, knowledge of

the resultant forces upon a body due to SRP is a primary consider-

ation in the modeling and analysis of spacecraft operating above the

LEO region [2,3].

Thevideo game and animation industries have driven the pursuit to

create more vivid and realistic artificial worlds. This pursuit has

resulted in highly optimized vector graphics software and graphics

processing unit (GPU) computer hardware capable of carrying out

many thousands of floating point operations in parallel [4]. Although

these artificialworlds arevisually persuasive, their implementation of

electromagnetic radiation physics is understandably inaccurate.

However, it is the parallel hardware and efficient vector graphics

software implementations that may be used to simplify the steps of

the SRP computation with great effect.

The ability to model and compute, at orders of magnitude faster

than real-time, the SRP forces and torques on flexible and time-

varying spacecraft structures presents compelling opportunities.

Current SRP evaluation approaches are capable of modeling the

resultant force of an articulated spacecraft where the articulation

motion is known before evaluation [5]. However, there are many

instances in which the articulation motion and the spacecraft state are

dependent on the myriad spacecraft control inputs and constraints.

Accounting for all possible permutations of the spacecraft dynamic

state is further challenged by the inclusion of flexing in large space-
craft structures. Further, the process of precomputing the SRP forces
for all configurations can be a time-consuming initial task that does
not lend itself well to mission design scenarios where multiple space-
craft configurations and scenarios are being considered.
It is evident then that a method of SRP evaluation characterized by

an ability to include time-varying information of the spacecraft state
has potential for a wide range of applications. Effective modeling of
the SRP-induced perturbation of a spacecraft enablesmission design-
ers to consider SRP a valuable actuator rather than a disturbance.
Such a novel use of the SRP force in maneuver and mission design is
exemplified by the MErcury Surface, Space ENvironment, GEo-
chemistry and Ranging (MESSENGER) mission. The MESSEN-
GER mission designers employed a solar sailing technique to
perform each trajectory change maneuver (TCM) and accurately
target each of the mission’s six planetary flyby maneuvers. Typically
TCMs are performed using onboard thrusters. However, using SRP
as the TCM actuator allowed the MESSENGER team to perform
TCMs with more accuracy and finer control due to the smaller
magnitude of the SRP-induced ΔV [6]. Additionally, the MESSEN-
GER team was able to reduce fuel and related structural accommo-
dations in the spacecraft design to reduce overall mission cost [7].
Modeling the spacecraft SRP-induced force and torque with high

geometric fidelity is challenging due to the often computationally
expensive modeling requirements. Of these computationally expen-
sive modeling requirements, three in particular present the greatest
challenge. These requirements are to resolve arbitrary time-varying
articulated spacecraft shape models in real-time with a simulation
environment, spacecraft self-shadowing, and time-varying arbitrary
material optical properties. Typically spacecraft geometries are kept
simple, ignoring important spacecraft detail that has a significant
degradation of amodel’s ability tomore closely evaluate the true SRP
force and torque. Further, methods that do capture changes in space-
craft articulations and self-shadowing do so as part of an offline
evaluation that generates SRP force and torque lookup tables. Such
offline evaluations are executed multiple times to accommodate the
myriad different spacecraft configurations.
A survey of the current landscape of SRP research reveals a variety

of approaches. The most basic model with regard to the analytic
development is referred to as the cannonballmodel. It is often the case
that the coefficient of reflection parameter is continually estimated
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and updated by an orbit determination effort. This model is most
notably used for the Laser Geodynamics Satellite or LAGEOS mis-
sions and continues to prove useful for initial mission analysis [8].
Increased modeling accuracy is often achieved by departing from
the cannonball assumption and defining shape approximations of
the spacecraft. A common shape approximation is to model the
spacecraft bus and solar panels as a box and panels, respectively.
Additionally, the individual reflection, absorption, and emission
characteristics are kept distinct for each surface and set based on
known spacecraft material properties [9]. However, common among
shape approximation methods is that much of the modeling uncer-
tainty occurs in an estimation process within the second step of the
SRP evaluation. It is the model’s computation, the second step of the
process, in which much work is being done. Notably Ziebart details
an evaluation procedure that requires precomputation of the body
forces over all 4π steradian attitude possibilities [10]. Ziebart’s
approach is also capable of modeling self-shadowing by using ray-
tracing techniques and spacecraft re-radiation via reduced spacecraft
thermal model. McMahon and Scheeres extend such a model by
aggregating the resultant SRP forces into a set of Fourier coefficients
of a Fourier expansion [9]. The resulting Fourier expansion is used for
both online and offline SRP evaluationwithin a numerical integration
process. Evaluation of the Fourier expansion in numerical simulation
demonstrates successful prediction of the periodic and secular effects
of SRP. Additionally, the Fourier coefficients may replace spacecraft
material optical properties estimated during the orbit determination
effort.
More recently methods that make use of the parallel processing

nature of GPUs have been developed. Tanygin and Beatty employ
modern GPU parallel processing techniques to provide a significant
reduction in time-to-solution of Ziebart’s pixel array method [11].
Reference [12] discusses initial results exploring a GPU method of
evaluating the SRP forces using a faceted spacecraft model. Tichy
et al. useOpenGL, a vector graphicsGPU software interface common
in video games, to dynamically render the spacecraft model and
evaluate the force of the incident solar radiation across a spacecraft
structure approximated by many thousands of facets [13].
This paper studies the GPU-based numerical SRP modeling that

addresses the three aforementioned modeling requirements. In this
study the light interaction with each facet is accounted for individu-
ally and not in a coupled manner through reflection. The prospect of
this faceted SRP method is a very fast computational evaluation.
Although the application is for SRP force evaluations, the techniques
presented can readily be applied to atmospheric drag force evalu-
ation. Here the concern is also that facets are visible to the freestream
for a given mesh geometry and what is the resulting force per facet.
The OpenGL-CL modeling method is explored to yield an imple-
mentation that has a computational speed suitable for online execu-
tion. The technical challenge is how to implement the SRP evaluation
on a time-varying spacecraft mesh while still benefiting from the
massively parallel GPU evaluation pipelines. Of interest is how
modern hardware such as on-chip and dedicated GPUs performs in
evaluating the SRP. The on-chip GPUs are now a commodity hard-
ware and readily available. The approach builds upon the author’s
previous OpenGL-faceted-based approaches [14] and extends the
application of Open Compute Language (OpenCL) to allow for more
flexible arbitrary computation. Additionally, the OpenGL-CL
approach has parallels to the earlier work presented by Tanygin and
Beatty in Ref. [12] and incorporates certain algorithmic decisions
made by that work. Note that inherent with this non-ray-tracing
method is that reflectance [15,16] and complex surface properties
[17] are not included. These influences can contribute to 10–20% of
the SRP evaluation. The benefit of the presented faceted SRP evalu-
ation is that rapid prototyping applications are enabled, as well as
integration with complex hardware-in-the-loop simulations where
the speed of the dynamics evaluation tasks is critical.
The paper is outlined as follows. To start, the OpenGLApplication

Programing Interface (API) is introduced in the context of the render
pipeline. This is followed by a description of the important OpenGL–
OpenCL shared memory context functionality. An optimized
OpenCL kernel is developed to perform a parallel reduction across

the rendered pixel space and thus the final force and torque vectors.
Initial validation is provided and is followed bymore complex space-
craft simulations that demonstrate the method’s capability to capture
the difference between spacecraft mesh models, while comfortably
accommodating detailed meshes of many thousands of vertices.

II. OpenGL Render Pipeline

The Open Graphics Library (OpenGL) is a language-independent
API for rendering computer vector graphics (https://www.khronos
.org/opengl/). The API provides tools to send, process, and retrieve
data on OpenGL-compliant GPUs. A rendered scene is generated by
processing the vertices and primitives (triangle, polygon) of a mesh
model within the OpenGL pipeline. The OpenGL pipeline allows for
various stages to be programmable. A programmable stage is called
a shader program or simply referred to as a shader. Each shader is a
mini-program that serves to process vertices and primitives in a
particular manner. Shaders are written using the OpenGL Shader
Language (GLSL), and each shader stage has a defined set of data
types as inputs and outputs, which are passed along the pipeline to
subsequent shader stages. The default OpenGL render pipeline is
shown in Fig. 1 identifying required and optional processing stages.
A shader stage operates on a single vertex, a set of vertices that

define a shape primitive or a fragment (rasterized pixel). Each of the
vertices or primitives is processed in parallel where thousands of
shader instances are executed simultaneously for each stage in the
pipeline. It is this highly parallel per vertex/primitive operation
(many thousands of evaluations occurring simultaneously) for which
GPU devices have been specifically designed.
A simplified representation of the default OpenGL render pipeline

stages is shown in Fig. 2. A minimally valid OpenGL pipeline
requires the implementation of at least the vertex shader (VS) stage.
The addition of further shader stages allows the software developer to
create a custom render pipeline. The VS processes the individual
vertices of the model having vertex data as both input and output. An
optional tessellation shader stage operates on patches of vertex data,
which are subdivided into smaller primitives (e.g., a large triangle
into multiple smaller triangles). The optional geometry shader has as
input a single primitive and may output one or more primitive
definitions. Finally, the fragment shader (FS) computes per pixel
operations following OpenGL’s internal depth testing and rasteriza-
tion processes. The two shader stages leveraged in this approach are
the VS and FS stages.

Vertex Shader

Tessellation Shader

Geometry Shader

Vertex Postprocessing

Primitive Assembly

Rasterization

Fragment Shader

Per-Sample Operations

Custom stage implementation

Built-in stage implementation

Required stage

Optional stage

Fig. 1 The default OpenGL pipeline.
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Vertex shader: The VS processes the individual vertices of the

model having vertex data as both input and output. The VS is used to

perform setup for later shader stages by performing coordinate frame

transformations on vertex data by mapping vertices from the model

body coordinate frame to the world, view, and projection coordinate

frames. As shown in Fig. 1 the VS is a programmable and required

stage in the pipeline.
Fragment shader: The FS is executed after the pipeline has

rasterized the projected scene. To rasterize the scene, the vertices of

each primitive are mapped from R3 to R2 projection space samples.

Each fragment/pixel can be manipulated within the FS and then

written to one or many texture objects attached to a framebuffer.

The texture object data format is one of either a single or four (RGBA)

32-bit single-precision floating point values per pixel. RGBA stands

for red, green, blue and alpha channels, where the alpha channel

controls transparency. Typically an RGBAvalue is output to a texture

for each pixel. For a typical render it is the color texture that is

displayed to the screen.

III. Mesh Definition

A triangulated mesh model is used to approximate the spacecraft

shape with high geometric accuracy. A triangulated mesh model

provides a consistent input to the method and removes the need for

code that handles amultitude of other primitive types. Themodel data

format chosen is theWavefront Object (.OBJ) (http://paulbourke.net/

dataformats/obj/). The file format is user friendly due to its wide

spread support by 3D modeling and animation tools, and it is simple

to debug because it is human readable within a text editor (when

encoded as the ASCII-encoded file variant). Figures 3a and 3b show

the .OBJmeshmodel of the Aqua spacecraft with complete materials

and only mesh structure, respectively.

The .OBJ file format may be accompanied by multiple Material
Template Library (.MTL) files. The .MTL file defines common
material properties associated with model shading or rendering.
For the faceted SRP modeling the .MTL file is overloaded and a
number of its variables are taken to have a slightly different meaning
than typical. Two key examples of this are the Kd and Ks parameters,
which indicate the RGB color mixture of the diffuse and specular
optical phenomena for amaterial. Here, thesevariables are used as the
diffuse and specular reflection coefficients commonly associated
with faceted SRP computations. As such only the R channel of the
RGB values is used for Kd � ρ and Ks � γ. Overloading these
variables allows for rapid manipulation of the spacecraft mesh mod-
el’s material properties, through a 3D animation tool such as Blender,
easy export from this tool, and, consequently, import at run time.

IV. Custom OpenGL Render Pipeline

The custom OpenGL pipeline developed here builds upon
Ref. [12], which employs the built-in depth testing and rasterization
stages of OpenGL to equivalently determine the first ray-surface
interaction of a ray tracing approach. Similar to the earlier work, this

Fig. 2 Notional operations for each shader stage.

a) Aqua spacecraft with materials b) Aqua spacecraft mesh

Fig. 3 Aqua spacecraft .OBJ mesh model.

Fig. 4 Overview of OpenGL render pipeline with required custom
vertex shader and fragment shader stages outputting to the textures held
in a framebuffer object.
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method implements custom VS and FS stages. An overview of this
custom pipeline is shown in Fig. 4. The VS stage transforms mesh
vertices to a projection frame and outputs the normal, position, and
material parameters associated with the processed vertex. The pipe-
line depth testing and rasterization determines which vertex values
are sunlit, and the outputs from the VS stage are provided as input for
the corresponding pixel of the FS stage.
The FS executes for each pixel in the specified view port. The FS

stage receives data for each corresponding pixel, some of which will
contain samples from the spacecraft meshmodel that are visible from
the sun-heading direction. The FS outputs values to textures attached
to a framebuffer object (FBO).An FBOallows a developer to define a
nondefault destination for render output. Results from the FS stage,
shown in Fig. 4, are written into the FBO’s attached textures. Devel-
opers can manipulate the active FBO and the texture storage attached
to the FBO.
The FBO is a destination for specific data types generated during the

render process. To store these data, texture objects are attached to the
FBO. Textures are defined as a single array of pixels with a certain
dimensionality (1D, 2D, or 3D), and having a particular data format.
A texture can be either an array of single values or four-component
vectors. Each value component of a single or vector value is specified
as signed/unsigned integer, sign/unsigned normalized integer, or
32-bit IEEE floating point. The FBO and associated texture data
structures are a key enabling portion of the OpenGL API that allows
for the passing of OpenGL generated data to the subsequent OpenCL
SRP computation. Data sharing between the OpenGL and OpenCL
processes is made possible by declaring a shared data context between
the initialized OpenGL and OpenCL computing contexts. This allows
the two contexts to read and write to the same memory, where the
OpenGL process writes data to memory that the OpenCL process then
directly reads. Specifically, 2D textures, intowhich the spacecraftmesh
model vertices, normal vectors, and material optical proprieties are
written, are ultimately passed to the OpenCL SRP computation.
The type of texture object attached is determined by the data type

being stored. OpenGL provides specific texture attachment points to
which particular data products are written. For example, pixel depth
values (distance from projection plane tomesh) arewritten to a texture
at attachment point DEPTH_ATTACHMENT, whereas vector-based
data are written to any one of a number of COLOR_ATTACHMENTi
attachment points, where i is the index of the attachment point.

V. OpenGL Algorithm Steps

The OpenGL portion of the algorithmmoves through four phases.
The first phase is the computation of the spacecraft mesh model
projection into the sun frame that shall produce the projection, view,
and sun transformationmatrices.Mesh articulation operations follow
to configure the time-varying kinematics of the spacecraft mesh as
they vary during run time. The third phase is carried out in the VS
where the frame transformations of the projection, view, and sun

matrices are applied to each mesh vertex. Finally, the FS outputs to
textures the values to be used by the OpenCL kernel.

A. Recursive Bounding Box Computation

An axis-aligned bounding box (AABB) computation simply loops
through all mesh vertices and finds the furthest extents of each mesh

vertex component, in each of the mesh body frame axes B: fx̂; ŷ; ẑg.
From these furthest extents the vertices defining the corners of the
bounding box can be computed. Such a computation is sufficient if
the mesh vertices are not articulated and therefore computed only

once at initialization. In the case where a model comprises multiple
submeshes, which may be articulated, the naive AABB computation
leads to repetitive computations and significantly increased compu-

tation time. A recursive AABB bounding box algorithm is imple-
mented to reduce computation time. This algorithm relies on the
constraint that although individual submeshesmay be articulated and

therefore movewithin themodel body frame, the vertices within each
submesh are fixed. In other words, all submeshes in a model are rigid
bodies. Most spacecraft with time-varying geometries satisfy this

assumption, except for maybe solar sails. This constraint allows for
the computation of an AABB for each submesh once at the start of a
simulation. TheAABB can nowbe computed recursively by comput-
ing the AABB of the vertices that define the corners of each sub-

mesh’sAABB.This reduces the order ofmagnitude for the number of

vertices to evaluate from potentially 105 to 101 or, in the very worst

cases (models with greater than 10 submeshes), 102.

B. Mesh Articulation

The spacecraft mesh model defines the vertex vectors, normal
vectors, indices, and material optical properties of the spacecraft.

Typically a spacecraft is made up of a number of submeshes, each of
which defines separate components of the spacecraft as shown in
Fig. 5. Segmenting a spacecraft model into multiple submeshes is

required for two purposes. The first purpose is that, for a largemajority
of 3D mesh model formats, only a single set of material optical
properties can be assigned to a submesh. To accommodate the variety

of spacecraft materials of which a spacecraft model is comprised, all
vertices that make up regions of the spacecraft with the same material
properties must be defined together in a submesh. The second reason
for using submeshes is to facilitate arbitrary run-time articulation of

spacecraft components such as solar panel structures, antenna, and
instruments. Submeshes provide a convenient data structure whereby
the vertices, indices, normals, and material properties of a mesh are

defined with an associated homogeneous transformation matrix. Dur-
ing simulation this transformation matrix is updated at each time step
according to the time-varying kinematics of the submesh, and the

transformation is applied to themesh, thus performing the articulation.
All mesh vertex and normal data are defined with respect to the

model frame body coordinate system B: fB̂1; B̂2; B̂3g. However, it is

Algorithm 1: Recursive AABB algorithm

Data: node is the node in the mesh model tree structure
1 if node is leaf then
2 node.bbox ← computeBBox(node.vertices);
3 node.bbox.transform(node.transformation);
4 return
5 end

//node is not a leaf so we loop through all child nodes and call the function again
6 bBoxUnion(i, j);
7 for node in nodes(i) do
8 computeNodeBBox(node);

//For each node accumulate the child bounding boxes
9 tmpBoxVertices(8, 3) ← node.bbox.getBBoxQuadMeshVertices();
10 bBoxUnion(i, j)i � end← tmpBoxVertices(8, 3);
11 end
12 node.bbox← computeBBox(bBoxUnion);
13 node.bbox.transform(node.transformation);
14 return
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also convenient to allow the user to define submesh articulations

with respect to a coordinate frame, C: fĈ1; Ĉ2; Ĉ3g, with originC and

orientation different to the B coordinate frame. Such a frame may

define the position and orientation of a solar panel with respect to its

fixed hinge or gimbal point on the spacecraft bus.
The transformation requires the definition of the origin and ori-

entation of the submesh articulation frame C with respect to the

model frame B. Obtaining a vertex in B frame components from

one defined in C frame components is achieved via the following

rotation and translation:

Bp � BpB∕C � �BC�Cp (1)

where �BC� is the direction cosine matrix (DCM) defining the

orthogonal transformation of a C frame vector to the B frame [18].

Note that the left superscript denotes with respect to which frame the

vector components are taken. This translation and rotation operation

can be concisely expressed as a 4 × 4 homogeneous transformation as

�BC� �
� �BC� BpC∕B
01×3 1

�
(2)

Assuming that all mesh vertices are initially defined in the body

frame, then the transformation described by Eq. (1) must be reversed.

This is easily achieved by employing the inverse of the homogeneous

transformation given as [18]

�BC�−1 �
� �BC�T −�BC�TBpC∕B

01×3 1

�
(3)

This transform yields a vertex defined in the C frame as [18]

Cp � �BC�−1Bp (4)

The homogeneous transformation matrix obeys the same successive

transformation property as the direction cosine matrix as exemplified

in the following transformation [18]. Here the inertial frame is

defined as N : fx; y; zg, and A is a general intermediary frame.

Np � �NA��AB�Bp � �NB�Bp (5)

A result of this successive transformation property is that sequential

frame definitions and the subsequent mappings from one mesh

articulation frame to a submesh articulation frame can be carried

out recursively. Such as demonstrated in the field of robotic manip-

ulators, each mapping builds upon the previous. This facilitates an

intuitive input for submesh articulations where a parent submesh

holds references to further child submeshes and the submesh trans-

formation is defined relative to its parentmesh, rather than the body or

inertial coordinate frames.

C. Vertex and Fragment Shader Stages

To facilitate OpenGL’s depth testing and rasterization process, the

model’s vertices are to undergo three primary coordinate frame

transformations:
1) Body frame B to sun frame S, �SB�;
2) S frame to view frame V, �VS�;
3) V frame to projection frame P, �PV�.
The sun frameS: fŜ1; Ŝ2; Ŝ3g is constructedwhere the sun heading

in body frame components Bŝ is used as the first basis vector ŝ1. The
remaining basis vectors, ŝ2 and ŝ3, are computed to provide an

orthogonal frame.
To facilitate the generation of the view and projection coordinate

frames, a loose sun frame AABB is computed. This bounding box is

referred to as loose because it is computed as the bounding box of the

body frame bounding box vertices transformed into the sun frame. To

compute a tight sun frame bounding box requires that all submesh

vertices be transformed into the sun frame and then the sun frame

AABB computed from those sun frame vertices. Computing the tight

sun frame AABB would require operating on tens of thousands of

vertices at each time steps; computing the loose sun frame AABB

may require a few hundred at most (eight vertices for each sun-mesh

bounding box).
The view frame is constructed with its origin at the centroid at the

face of the sun frame bounding box that lies between the sun and the

model as illustrated in Fig. 6. The projection frame is constructed as

an orthographic projection of the mesh model into this same plane.
Of the six sides of the loose sun frame bounding box, the centroid

of the plane that has its normal as −Bŝ is set as the vector Se
commonly referred to as the “eye” location. This is the position of

the notional camera. The center of the bounding box is set as Sc and
referred to as the camera target vector. It is necessary to set the target

Fig. 5 Illustration of a range of submeshes (orange) used to model the Aqua spacecraft.
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vector at the center of the loose sun frame AABB rather than the
model body frame because this ensures that the model’s extents are
centered and captured within the view. The eye and target definitions
allow a set of unit vectors to be defined as

f̂ � e − c

je − cj (6a)

û � b̂2 (6b)

ŝ � f̂ × û (6c)

These unit vectors are used as the basis for the view matrix, which is
constructed as

V �

2
66664

ŝT 0

ûT 0

−f̂T
0

01×3 1

3
77775 (7)

The output from the VS stage and therefore input to the FS stage

requires that vertices be mapped from the view frame to the normal-
ized device coordinates (NDC) frame. The NDC space is defined as a
cube where each of the three axes has a range of �−1; 1�. The ortho-
graphic projection matrix performs the mapping from view frame

coordinates to NDC. The projection matrix P is constructed as

P �

2
666664

2
r−l 0 0 − r�l

r−l

0 2
t−b 0 − t�b

t−b

0 0 − 2
f−n − f�n

f−n

0 0 0 1

3
777775

(8)

where l is the left, r the right,b the lower extent, t the top extents,n the
near plane of the volume, and f the far plane of the volume.
The transformations are applied to each model vertex within the

VS. The body frame vertex is transformed to its submesh articulation

fame as

Rp � �BR�−1Bp (9)

The vertex is transformed from the original articulation frameR to its

updated articulated frame R 0 as

R 0
p � �R 0R�Rp (10)

and then transformed back to the body frame

Bp � �BR 0�R 0
p (11)

The VS next transforms the body frame vertex to NDC by

Pp � �PV��VS��SB�Bp (12)

It is the vertex mapped to the NDC frame, which OpenGL will
process for depth testing and then rasterization and ultimately use
to determine which vertex values are sunlit and subsequently passed
through to the FS stage.
As a final computation, the alpha component of each the RGBA

value of the texture containing the normal vectors is written as the
norm of the normal vector. The OpenGL glClearColor param-
eter controls the color used to reset the values in each pixel of
color buffers when cleared between rendering frames. Here, the
glClearColor parameter is set to an RGBA vector of (0.0, 0.0,
0.0, 0.0). Thus, if a pixel is unoccupied by the spacecraft mesh, the
normwill be zero (due to the black color buffer value) and if occupied
greater than zero. Setting the alpha component provides the OpenCL
stage with a flag to avoid unnecessary computation given the follow-
ing condition: if the value of the normal vector’s fourth component is
greater than zero, then the pixel represents a portion of the space-
craft’s surface and the SRP force and torque computation continues;
otherwise return a zero vector for force and torque.

VI. OpenCL Algorithm Steps

The OpenCL algorithm is contained within a single kernel pro-
gram. This kernel program performs both the force and torque
computation and a parallel reduction summation of each pixel con-
tribution. The kernel program aims to reduce GPUmemory read and
write collisions, reduce code branching (the occurrences of condi-
tional statements in code which result in alternate execution path-
ways), and remove unnecessary instruction overhead by unrolling
loops. For each pixel the force computed as

F⊙k
�−P�jr⊙j�Ak cos�θk�

�
�1−ρsk �ŝ�

�
2

3
ρdk �2ρsk cos�θk�

�
n̂k

�

(13)

where for each pixel k the coefficients of diffuse reflection ρdk and
specular reflection ρsk are contained in one 2D texture object, the

surface normal n̂k is contained in a different 2D texture object. The
torque is computed as

L⊙k
� rP∕C × F⊙k

(14)

where the position vector rP∕C, the point P of action of the force

relative to the spacecraft center of mass at point C, is contained in a
third 2D texture object.
At its simplest a parallel reduction algorithm aims to sum all the

elements from a set by recruiting multiple threads or processors to
each iteratively sum two elements until the final sum is obtained. A
naive implementationmay sum all elements in a binary tree operation
sequence. While parallel, such an implementation does not account
for the particular mechanisms by which GPUs provide parallel
computation. These particulars included memory access patterns,
instruction overhead, and kernel launch time.
To reduce memory access collisions, sequential address striding is

used to load the values to be summed from sharedmemory. Sequential
addressing loads values fromseparatememory banks on theGPU, thus
avoiding contention from multiple threads attempting to load values
from the samememory bank at the same time. Figures 7 and 8 provide
a simplified example of the stages of this sequential addressing
procedure. In this example there are two OpenCL work groups
(WGs), each ofwhich contains twowork items (WI). At each iteration,
aWI sums two values, where the values are denoted in Figs. 7 and 8 as

Fig. 6 Illustration of loose sun frame AABB (blue) and body frame
AABB (green).
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an integerwithin a cell. As a result, summing cells one and three results

in adding values1� 3 � 4. After one iteration the number of values to

sum has been reduced by half. The next iteration sums f4; 6g and

f12; 14g, and so on. Although terminology and low-level chip design

changes from GPU to GPU and vendor to vendor, conceptually aWG

is a processor and a WI is a thread within that processor. Each WG is

accessing a contiguous block of memory, and eachWI is sequentially

addressing values to sum, thus avoiding access collisions.

To reduce kernel execution overhead, eachWI computes the force

and torque and sums these values for two pixels. Rather than iterating

the kernel to continue the reduction, the kernel then strides each

WG’s starting index to a point in the pixel array where further pixels

are yet to be processed. This striding continues until the strided index

exceeds the number of pixels to be processed. The stride size is

computed as 2 ×WGs ×WIs, and this striding is demonstrated in

Fig. 8. In this notional striding example, once WG1’s two WIs have

finished processing their four values, the addressing index strides

over all other WGs and continues to sum a new batch of four values.

The While() loop is shown in an abbreviated version in Listing 1.

Additionally, time overhead is incurred by loop instructions. To

avoid unnecessary instruction overhead, at the completion of the

While() loop, the final parallel summations within a single WG

are computed with unrolled loops. The purpose of the loop unroll

optimization is to expose concurrency to the OpenCL compiler. Loop

unrolling allows the OpenCL compiler to take advantage of the single

instruction,multiple data, or Single Instruction,MultipleData (SIMD)

architecture by optimizing memory loads and scheduling of instruc-

tions given the fixed width of the unrolled loop iterations [19]. An

Fig. 8 Notional parallel reduction striding over all allocated addresses to continue summing sequential blocks of memory in a the While() loop.

Fig. 7 Notional parallel reduction by summing sequenced addressing.

Listing 1 Abbreviated excerpt of the while loop in the OpenCL parallel
reduction kernel

unsigned int i = group_id * group_stride + local_id;
while (i < texture_size)
{
// compute x, y coords for lookup in square image map (texture)
int y = i/tex_width;
int x = i % tex_width;
float4 nHat_B = read_imagef(normalsMap, coords);
if (nHat_B[3] > 0){
// Perform positon and material read_imagef and
// compute force and torque for pixel

}
// If the mesh size is smaller than the group_size then we
// have to stop trying to compute the second facet in the
// parallel reduction because there will be no
// more facets in the mesh.
unsigned int secondPixelIdx = i + group_size;
if (secondPixelIdx < textureSize) {
float4 nHat_B_1 = read_imagef(normalsMap, coords_1);

if (nHat_B_1 [3] > 0) {
// Perform position and material read_imagef and
// compute force and torque for pixel

}
}
i += local_stride;

}
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abbreviated portion of the unrolled loops is shown in Listing 2. The
number of unrolled loops is controlled at kernel compile time by the
kernel macro GROUP_SIZE. At kernel compile time (application
runtime) the MAX_WORK_GROUP_SIZE parameter is queried from
the compute platform on which the code is executing. The queried
value is used to set GROUP_SIZE and thus only expose the number of
unrolled loop iterations that match the hardware’s maximumWG size.
At the end of the first kernel execution the number of computed

force and torque vectors is equal to the number of WGs ×WIs.
A second simple parallel reduction kernel is launched for all mar-
shaled WIs to return the final resultant force and torque vectors.

VII. Model Validation

Tovalidate the approach, two comparisons are performed. The first
validation is to demonstrate that the force and torque on a spherical
spacecraft model matches that computed by the analytic cannonball
model. The spacecraft model used in the computation is a sphere of
radius 1 mmade up of 5120 triangular facets. Evaluated at a distance
of 1 AU the analytic cannonball model computes a force of

F⊙ � �−1.42559 × 10−5 N; 0.0; 0.0�. The percent error for increas-
ing pixel resolutions of the mesh model force evaluation with respect

to the analytic cannonball evaluation is shown in Fig. 9. It can be seen
that the error decreases rapidly as the resolution increases to

64 × 64 pixels. For resolutions of beyond 190 × 190 pixels the error
remains less than 0.01% for the ŷ and ẑ force components. The x̂
component maintains an offset in error of approximately 0.1% for all

pixel resolutions. This is because the projected area of the mesh

model is not precisely that of a circle, whereas for the analytic

cannonball model the projected area is exactly A � πr2. This offset
demonstrates the importance of a sufficiently accurate mesh model

spacecraft representation. Increasing the spheremesh to 20,480 faces

results in a lower offset of 0.034%. Further increasing the mesh to

81,920-facets reduces the offset to 0.0076%. For the symmetric
cannonball model the torque is expected as zero. Given that the mesh

models are not exact spheres, there is a small torque computed. This

torque is of the order of 10−10 N ⋅m for the 5120 sphere, decreasing

to 10−12 N ⋅m for the 20,480 sphere, and 10−14 N ⋅m for the 81,920

sphere.
A second validation is carried out with a cube mesh with material

coefficients of reflection for diffuse and specular properties of ρd �
0.6 and ρs � 0.2, respectively. The sun heading in the body frame is

ŝ � �0.7071; 0.7071; 0�. The resulting percentage force error with

Listing 2 Abbreviated excerpt of the unrolled loops in the OpenCL parallel reduction kernel

#if (GROUP_SIZE >= 512)
if (local_id < 256) {
ACCUM_LOCAL_F4(shared_force, local_id, local_id + 256);
ACCUM_LOCAL_F4(shared_torque, local_id, local_id + 256);

}
#endif
// unrolled loops for GROUP_SIZEs 256, 128, 64, 32, 16, 8 and 4 omitted here.
#if (GROUP_SIZE >= 2)
if (local_id < 1) {
ACCUM_LOCAL_F4(shared_force, local_id, local_id + 1);
ACCUM_LOCAL_F4(shared_torque, local_id, local_id + 1);

}
#endif
if (get_local_id(0) == 0)
{
float4 v_force = LOAD_LOCAL_F4(shared_force, 0);
float4 v_torque = LOAD_LOCAL_F4(shared_torque, 0);
STORE_GLOBAL_F4(output_force, group_id, v_force);
STORE_GLOBAL_F4(output_torque, group_id, v_torque);

}

Fig. 9 Error with respect to analytic cannonball evaluation for 1 m sphere mesh.

Fig. 10 SRP force evaluation error with increasing resolution.
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respect to a faceted evaluation of the same model is shown in Fig. 10.
The error decreases with increased resolutionwhere the error remains
below 0.1% for resolutions above 1400 × 1400 pixels.

A. Impact of Mesh Detail on Accuracy

To demonstrate the method’s ability to capture increased force
resolution, three model variants of the OSIRIS-REx spacecraft are
evaluated over an evenly spaced sampling of spacecraft sun headings
Bŝ over the 4π steradian sphere of possibilities. The three spacecraft
models are shown in Fig. 11. Eachmodel represents an increase in the
detail of the modeled spacecraft. The first model in Fig. 11a is a

simple box-and-wing model with a single large face oriented in the x̂
body frame direction in order to approximate the sun-pointing pro-
jected area of the spacecraft. The second spacecraft model in Fig. 11b

incorporates larger spacecraft components, including the high-gain
antenna (HGA), thruster ring, and sample return module. The final
model in Fig. 11c is the high-fidelity spacecraft model exported from
a CAD software package.
Evaluations of the high-fidelity model are treated as the baseline

model evaluation. Force and torque values, for all three models, are
computed for all sampled sun headings. Material optical properties
remain the same for each model to allow the comparison to better
exemplify the effect on force resolution of increased mesh modeling
fidelity. The materials are Germanium Kapton MLI (ρd � 0.102 and
ρs � 0.408) and general solar panels (ρd � 0.022 and ρs � 0.088).
The percentage difference of each mesh evaluation relative to the

high-fidelity mesh model evaluation is computed. To convey an
intuitive sense of change in force and torque between evaluations
of the different mesh models, the magnitude of the percentage differ-
ence is computed with respect to a baseline value as computed in

Eq. (15). The baseline value is computed as the average of the
magnitude of either the force or the torque computed over all sun

headings of the high-fidelity OSIRIS-REx mesh. The percentage

difference is thus computed as given in Eq. (16). This approach is

used for plotting both the force and torque differences.

Fbase �
1

N

XN
n�1

jFnj (15)

ΔF � Fmodel − Fhifi

Fbase

× 100 (16)

The force percentage differences of both low-fidelity models

relative to the high-fidelity model are shown in Fig. 12. It is evident

that the box-and-wing model overpredicts the resultant force for sun

headings in the �x̂ and −x̂ direction while significantly underpre-

dicting the force for headings in the�ŷ and −ŷ. The torque percent-
age difference of both low-fidelitymodels relative to the high-fidelity

model are shown in Fig. 13. It is clear that the absence of the HGA

from the box-and-wing model results in an underprediction of torque

for a large region of sun heading midlatitude and longitudes.
The force and torque percentage differences for the box-and-wing

model relative to the high-fidelity model, in each of the body frame

components, are shown in Figs. 14 and 15, respectively. The approxi-

mation of the box-and-wing model is most evident in the x̂ force

component of Fig. 14a. In the region spanned by latitude range

−40 deg to �40 deg and longitude −50 deg to �50 deg the box-

and-wingmodel overpredicts the force due to the absence of theHGA.

Additionally, at sun headings of longitude−90 deg and�90 deg the
absence of the thruster ring, sample returnmodule, and depthdue to the

HGA result in over- and underpredictions of greater than 20%.
The force and torque percentage differences for the HGA model

relative to the high-fidelity model, in each of the body frame compo-

nents, are shown in Figs. 16 and 17, respectively. By comparison to

a) Box-and-wings

c) High-fidelity model

b) High gain antenna, thruster ring, and
sample return module

Fig. 11 OSIRIS REx spacecraft mesh models.

a) Force box-and-wing model relative high-fidelity model b) Force HGA model relative high-fidelity model

Fig. 12 Force percentage difference between low-fidelity models relative to the high-fidelity model with baseline value 5.73361 × 10−5 N.
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a) Torque box-and-wing model relative high-fidelity model b) Torque HGA model relative high-fidelity model

Fig. 13 Torque percentage difference between low-fidelity models relative to the high-fidelity model with baseline value 6.57817 × 10−5 N ⋅m.

a) Torque x % difference b) Torque  y % difference

c) Torque ẑ % difference

 ̂  ̂

Fig. 15 Torque percentage difference between box-and-wing model relative to the high-fidelity model with baseline value 6.57817 × 10−5 N ⋅m.

a) Force x % difference b) Force  y % difference

c) Force ẑ % difference

 ̂  ̂

Fig. 14 Force percentage difference between box-and-wing model relative to the high-fidelity model with baseline value 5.73361 × 10−5 N.
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the percentage force error of the box-and-wing model shown Fig. 14,
theHGAmodel shows less error acrossmidlatitudes. The largest SRP
improvement is along the body ŷ axis for this particular spacecraft
geometry. The presence of the HGA, thruster ring, and sample return
module results in a significant improvement of torque modeling.
Because of the symmetry in this particular spacecraft geometry the
torque differences in the ẑ axis are already small with the lower-
fidelity model. The torque modeling improvements in the x̂ and ŷ
axes with a higher-fidelity model are very evident. However, the
model does show a slight increase in force difference when the sun
heading predominates in the �ẑ and −ẑ body frame components.
Note that these results are an example of how the spacecraft geometry
modeling can impact the SRP force and torque modeling results. The
value of the fast SRP evaluation, given a CAD model, is that there is
less need to spend time doing a reduced-ordermodel tradeoff. Rather,

the GPU evaluation allows numerical analysis to be performed with a

high geometric fidelity.

B. Model Articulation and Detailed Material Properties

To demonstrate the articulation capability of thismodelingmethod
theAqua spacecraft, shown in Fig. 3b, is simulated in Basilisk (http://

hanspeterschaub.info/basilisk). The open-source Basilisk astrody-

namics framework is a modular spacecraft simulation architecture

[20]. The OpenGL-CLmethod is implemented as a Basilisk dynamic

effector module that allows it to be integrated into the general

propagation of a spacecraft rigid-body hub [21]. The simulation orbit

is a 1000-km-altitude polar orbit, and the Keplerian orbital elements

are listed in Table 1. The spacecraft’s solar panel is controlled to

articulate in a manner that causes the panel normal vector to track the

a) Force x % difference b) Force  y % difference

c) Force ẑ % difference

 ̂  ̂

Fig. 16 Force percentage difference between HGA model relative to the high-fidelity model with baseline value 5.73361 × 10−5 N.

a) Torque x % difference b) Torque  y % difference

c) Torque ẑ % difference

 ̂  ̂

Fig. 17 Torque percentage difference between HGA model relative to the high-fidelity model with baseline value 6.57817 × 10−5 N ⋅m.
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inertial heading �1; 0; 0�. The spacecraft is assigned three reaction
wheel control devices that serve to control the spacecraft attitude to
the computed reference attitude. The spacecraft maintains a nadir
pointing attitude for its instrument deck, and the computed reference
attitude is given by the orbital Hill frame.
The spacecraft is assigned material parameters for each submesh

defined and shown previously in Fig. 5. The material optical proper-
ties are given in Table 2. The material parameters are chosen loosely
to provide variation among materials rather than to serve as an exact
reference for the optical properties of each material.
The body frame force over two orbits is shown in Fig. 18. The body

torque over two orbits is shown in Fig. 19. The eclipse period is
visible in both plots where the force and torque return zero.
The rendered output at three time steps is shown in Fig. 20. The

viewing orientation is looking in the −Bŝ direction in the sun frame
bounding box. It is evident that the spacecraft’s solar panel normal
vector is directed along the sun heading in each frame while the
spacecraft bus rotates to control to the attitude reference orbit
Hill frame.
It is clear that different modeling approaches will yield different

simulated dynamics. To demonstrate the potential difference in fidelity
offered by theOpenGL-CLmethod, a comparison ismadebetween the
detailed Aqua spacecraft model and a box-and-wing approximation of
Aqua spacecraft model. The detailed Aqua spacecraft model is shown

Table 2 Spacecraft submesh material optical
parameters

Material Specular (ρs) Diffuse (ρd)

Gold MLI [22] 0.184 0.736
Silver MLI [23] 0.66 0.16
Germanium MLI [24] 0.3 0.3
Solar array rear [25] 0.1 0.3
Solar array front [25] 0.023 0.092
Solar array boom [25] 0.3 0.3

Fig. 18 Body frame force components over two orbits.

Table 1 Spacecraft orbit
parameters for polar orbit

Parameter Value

a, km 7378

e 0

i, deg 90

M0, deg 90

Ω, deg 0

ω, deg 0

Fig. 19 Body frame torque components over two orbits.

a) Scene 1 b) Scene 2 c) Scene 3

Fig. 20 Sequential rendered spacecraft in sun frame.
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in Fig. 21a and the box-and-wing model shown in Fig. 21b. The high-
fidelity Aqua spacecraft model is assigned the material optical proper-
ties given in Table 2, whereas the box-and-wing model is assigned the
properties given in Table 3. The values in Table 3 are computed as the
surface-area-weighted average of the material optical properties given
to bus and solar panel components of the high-fidelitymodel’smaterial
properties. The simulation scenario is again the polar orbit with
reaction wheel spacecraft control as previously described in this
section. To convey the variation in the two modeling approaches the
difference of the high-fidelity model relative to the box-and-wing
model is computed for both the inertial positionvector and the reaction
wheel angular velocities, and shown in Figs. 22 and 23, respectively.
This result serves as an illustration of the type of analysis that can be
performedwith this fast SRPmodeling tool. TheSRPmodeling impact
is naturally tied to the spacecraft being studied. In this case over a
period of two orbits the translational differences are still small but
growing in an unstable manner. In contrast, the difference in the
reaction wheel momentum is already significant after two orbits.

VIII. Computational Performance

To demonstrate the computational performance of this method, a
series of evaluations of the Aqua spacecraft model are carried out for
increasing resolutions. Three different GPUs are used to exemplify
three particular qualities. The key implementation consideration is
the use of the OpenGL–OpenCL shared memory context. This
feature, used to transparently share content data between the two
APIs, offers significant performance benefits on GPU hardware that
shares a common direct random access memory (DRAM) space with
theCPU [26]. The Intel HDGraphics 630 is employed to demonstrate
the performance of an integratedGPU. TheAdvancedMicroDevices
(AMD) Radeon Pro 560 is chosen to demonstrate the performance of
a commodity low-to-mid-range performance discrete GPU. The
NVIDIA GTX 1070 is chosen to represent the high-performance
discrete GPU.
The computation time for resolutions from 10 × 10 pixels to

2048 × 2048 pixels is shown in Fig. 24. Although the Intel HD
Graphics 630–integrated GPU possesses less computation capability
than the other GPUs, it is able to outperform the other GPUs up to
resolutions of 1029 × 1029 pixels. The performance of the Intel-
integrated GPU is due to the DRAM shared with the CPU. This
shared memory space facilitates zero-copy memory objects and
sharing of pointers to data objects. While the discrete GPUs incur a
data transfer latency, the integrated GPU does not need to copy and
move data across device data buses. Only when the computational
load passes a particular volume is the data transfer latencymasked by

Fig. 21 Illustration of the two Aqua spacecraft models considered, each with an articulated solar panel substructure.

Table 3 Box-and-wing aqua spacecraft
model material optical parameters

Material Specular (ρs) Diffuse (ρd)

Bus 0.32 0.5
Solar array 0.11 0.16

Fig. 22 Inertial position difference of the high-fidelity model relative to the box-and-wing model.

Fig. 23 Reaction wheel speed difference of the high-fidelity model relative to the box-and-wing model.
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computational latency. The computational capability of the Radeon
Pro 560 and NVIDIA GTX 1070 exceeds that of the built-in Intel
graphics card for resolutions slightly above the 1080 range. The
greater computational capability of theNVIDIAGTX1070 is evident
as there is no appreciable increase in computation time for all
resolutions tested. All the test cases considered returned effectively
the same computation time, indicating that it is the communication
overhead that is determining the evaluation time, not the SRP evalu-
ation, whereas for the Radeon Pro 560 the computation time steadily
increases with increased resolution, illustrating that for this graphics
card the computation time for this spacecraft case is a function of both
communication overhead and SRP evaluation.

IX. Conclusions

This paper provides a detailed description of the faceted OpenGL-
CL SRP modeling approach. The approach provides a solution to
resolving, in an online simulation context, arbitrary time-varying
articulated spacecraft shape models, spacecraft self-shadowing, and
varied arbitrarymaterial optical properties. Arbitrary spacecraftmesh
complexity and articulation are accommodated. The method quickly
captures the difference between spacecraft mesh models and com-
fortably accommodates detailed meshes of many thousands of ver-
tices. Further, a general parallel reduction algorithm is described in
which the computation of SRP is tightly integrated to seek best use of
GPU computing resources through theOpenCLAPI. These enhance-
ments provide a method for computing high-geometric-fidelity SRP
in a computationally performant and configurable manner. The
OpenGL-OpenCL approach provides significant modeling capabil-
ity and enables previously computationally prohibitive analysis on
modest personal computing hardware. Using the OpenGL–OpenCL
shared context allows this modeling approach to easily be applied to
other force and mesh modeling. For example, at orbit altitudes where
the atmosphere is well modeled as free molecular flow, the same
methodology as developed for SRP can be employed to model drag
with only a few lines of change to the entire code base.
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