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Abstract. Recently the concept of controlling the relative motion of spacecraft using electrostatic
charging (Coulomb forces) has been proposed. For tight spacecraft formations with separation
distances ranging from 10–100 meters, the Coulomb forces between the spacecraft can be exploited
to provide an extremely fuel and power e�cient means of propulsion. As the charge of a single
craft is varied, the relative motion of the entire formation is a↵ected. The Coulomb force vector
a craft experiences is restricted to be directed along the relative position vectors, which results in
constraints being imposed on how the Coulomb force can be used to control a formation. This paper
investigates how the conservation of angular momentum and the formation center of mass limits the
types of relative orbits that can be controlled. Considering the spacecraft formation to be a system
of N particles, the formation internal Coulomb force can not change the inertial system angular
momentum vector. The center of mass definition and angular momentum constraint are expressed
using di↵erential orbit elements to describe the relative motion. Both Cartesian and orbit element
formation center of mass are discussed. First-order transformations to the nonlinear solutions are
presented. Their accuracy is evaluated both analytically and using numerical simulations. The orbit
element center of mass of the charged spacecraft formation can be approximated to be Keplerian for
charge feedback laws which are proportional to the orbit element tracking errors.

Key words: Coulomb satellite formations, di↵erential orbital elements, formation center of mass,
orbit element center of mass.
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NOMENCLATURE

a semimajor axis
A sensitivity matrix
↵ angle
B control influence matrix
c root mean square deviation approximation constant
C general rotation matrix
Ck single-axis (k) rotation matrix
�u “small” state
e eccentricity
✏ relative deviation error
f true anomaly
fu true anomaly phase angle for in-plane relative motion
� root mean square deviation ratio
� orbit elements to Cartesian coordinates mapping function
h total specific angular momentum magnitude
h total specific angular momentum
H Hill frame
H total angular momentum
i inclination
ı̂h orbit normal vector
Isp specific impulse
kc Coulomb constant
�d Debye length
m spacecraft mass
M total spacecraft formation mass
M0 initial mean anomaly
µ gravitational parameter
⌘ eccentricity measure
⇠ position vector in orbital frame
O order symbol
oe classical orbit elements
! argument of periapsis
⌦ argument of the ascending node
p semilatus rectum
p linear momentum
q spacecraft charge
r relative spacecraft position vector
R absolute spacecraft position vector
⇢ orbital radius
S singular values matrix
t time
✓w true latitude phase angle for out-of-plane relative motion
u non-dimensional x-coordinate in Hill frame
u control acceleration vector
U left singular vectors matrix
v non-dimensional y-coordinate in Hill frame
V right singular vectors matrix
w non-dimensional z-coordinate in Hill frame
x x-coordinate in Hill frame
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X state vector
y y-coordinate in Hill frame
z z-coordinate in Hill frame

orbit element center of mass
cartesian center of mass
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1. Introduction

Spacecraft formation flying control is a challenging research thrust requiring a fundamental under-
standing of both orbital mechanics and control theory. Typically, the amount of propellant aboard
a craft is limited. Nevertheless, even with a carefully chosen relative orbit geometry, the control
system typically needs to perform minor orbit corrections periodically to maintain the formation.
Typical spacecraft interferometry missions, for example, consider separation distances ranging from
hundreds of meters to multiple kilometers. Large baselines are used to provide a highly accurate
sensing of a narrow field of view. The forces required for a continuous thrust propulsion system
to maintain a relative orbit are of the order of mN or less. Pulsed-Plasma Thrusters (PPTs) and
other ion engines are considered as the primary relative navigation propulsion method. The thrust
is achieved by expelling charged ions at a very high velocity. To achieve high escape velocities,
relatively large amounts of electrical power must be provided. Because exhaust plumes contain toxic
chemicals that could damage another spacecraft or its sensors, care must be taken that the ion
engine exhaust does not hit another craft. For formations with relative separations in the order of
kilometers, the exhaust issue is not of concern.

Consider a tight formation to be defined as having spacecraft separation distances ranging be-
tween 10 and 100 meters. Such clusters could be used to perform high accuracy, very wide field of
view missions at Geostationary Orbits (GEO). For example, 20-30 meter formations at GEO could
observe the entire hemisphere with a meter level resolution with infinite dwell time. Alternatively,
tight formations could be used to measure local gradients of magnetic or gravitational fields. Yet
another application exploits the Coulomb forces to navigate a sensor about a larger spacecraft. In
all of these scenarios, the ion engine exhaust plume issue is one of the primary mission concerns.
However, with all craft flying in close proximity, collision avoidance and – in particular – fuel expen-
diture to perform the greatly increased number of relative orbit corrections are of major concern.
The analysis provided in reference [1] use electrostatic charging as a means to perform relative orbit
control. It was found that mN levels of thrust could be achieved between the vehicles with typical
power requirements of < 1 Watt. Calculated Isp fuel e�ciencies were as high as 1010–1013 seconds,
rendering this mode of propulsion essentially propellant less. Measured spacecraft charging data
obtained by the SCATHA GEO mission in 1979 verified that a craft can charge to high voltages in
low space plasma environments such as GEO [2]. More recently, the CLUSTERS mission demon-
strated the feasibility to control the spacecraft charge and maintain a near-zero voltage level [3].
Note that Coulomb force control is only e↵ective for relatively tight formation/proximity flying sce-
narios of 10–100 meters due to the 1/r

2 behavior of the Coulomb electrostatic force magnitude,
r being the spacecraft separation distance. For minimum separation distances larger than that,
the required spacecraft charging levels simply become impractical due to di↵erential charging issues.
Additionally, Coulomb force e↵ectiveness is diminished in a space plasma environment. The reduced
e↵ectiveness is measured through the Debye length, which indicates the exponential decay e

�r/�d

of the electrostatic field strength [4, 5]. Because �d is in the order of centimeter for Low Earth
Orbits (LEO), the Coulomb satellite concept is not practical at low altitudes. However, at GEO it
was found that �d values are in the order of 100–1000 meters [1], making Coulomb formation flying
(CFF) feasible at higher altitudes.

References [1, 6] discuss interesting steady-state solutions which exist for the charged relative
orbit equations of motion. The authors show how such charged formations are able to establish
fixed relative positions as seen by the rotating Hill coordinate frame. As a result the individual
spacecraft can be shown to perform non-Keplerian orbits to maintain their formation position. Both
in-plane and general three-dimensional steady-state equilibrium conditions were found. However,
none of these formation shapes were found to be stable. Nonlinear charging control laws were
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investigated for a two-satellite formation in reference [7], and for a larger cluster of Coulomb satellites
in reference [8]. An orbit element di↵erence approach was used to describe and control the relative
motion. However, in these control developments, only general stability properties were provided.
Asymptotic convergence was only discussed for algorithms controlling semi-major axis exclusively.
For example, it is intuitive that the inter spacecraft Coulomb forces cannot be used to change a
relative orbit from being an in-plane formation to having out-of-plane components.

Because Coulomb force control inherently only allows for relative motion control (spacecraft
are pushing and pulling o↵ each other), it is natural to describe relative motion of a Coulomb
formation with respect to the formation center of mass. The single-craft control strategies developed
in references [7, 8] identify the formation chief position as the formation center of mass. Furthermore,
these papers assume the Coulomb formation chief to be moving in a Keplerian, unperturbed orbit.
As shown in reference [9], these assumptions are valid approximations and particularly feasible for
small formations using Coulomb thrusting. The analysis in reference [9] examines relative motion
constraints of Coulomb formations for satellite motion described using either inertial or formation-
center-of-mass relative position vectors.

This paper investigates how conservation of inertial angular momentum and the formation center
of mass definition constrain the evolution of Coulomb formations if the relative motion is expressed
using di↵erential orbit elements. The formation center of mass definition is a simple linear rela-
tionship only when using Cartesian coordinates. On the other hand, the Cartesian center of mass
definition becomes a nonlinear function using an orbit elements system description. Similarly, the
precise momentum constraint using orbit element di↵erences is a complex function. First order
approximations are introduced for these transformations and their accuracy is discussed both ana-
lytically and through numerical illustrations. In particular, the concept of an orbit element based
formation center of mass is introduced and compared to the classical Cartesian formation center
of mass. When controlling Coulomb formations, it is more meaningful to describe the formation
with respect to the orbit element center of mass versus the Cartesian formation center of mass.
The presented first order orbit element constraints on Coulomb formations can be used in control
analysis research to investigate convergence and feasible relative motion.

2. Problem Statement

Rather than using traditional Cartesian coordinates with respect to the rotating Hill frame, classical
orbit elements oe = {a, e, i,⌦,!,M0} are used to describe the satellite motion. Note that semi-major
axis a, eccentricity e, orbit inclination angle i, ascending node angle ⌦ and argument of periapses
!, as well as initial mean anomaly M0, are constants of the unperturbed orbital motion (Keplerian
motion case). To describe the satellite motion relative to the formation center of mass, di↵erences
in orbit elements �oe = oe�oec are used with respect to the formation center of mass orbit elements
oec. For unperturbed, uncontrolled relative motion, these di↵erenced elements are constants.

It is convenient to describe Coulomb formations relative to the formation center of mass position
vector Rc. Because the electrostatic Coulomb force is a formation-internal force, the control can not
change the formation inertial angular momentum. If hi is the angular momentum per unit mass of
the i

th satellite, then the formation inertial angular momentum

h =
NX

i=1

hi (1)
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must be a constant of motion, where N is the total number of spacecraft in the formation. This
conservation law provides three integrals of motion of the charged relative motion dynamics. As
pointed out before, the conservation of angular momentum is readily expressed using either inertial
Cartesian position and velocity vectors (Ri, Ṙi) or inertial orbit elements oe. However, the mo-
mentum constraint, as well as the formation center of mass definition, are more complex if relative
position coordinates �oe are employed. Of interest are analytic approximations of the momentum
and center of mass expressions using orbit element di↵erences. While momentum conservation is
specific to the study of Coulomb formations, the center of mass discussion is applicable to general
spacecraft formations.

3. Center of Mass Definition

Let us first investigate the formation center of mass definition using di↵erenced orbit elements. The
inertial position and velocity vectors of the formation center of mass are traditionally defined using
inertial Cartesian position and velocity vectors as

Rc =
1
M

NX

i=1

miRi (2)

Ṙc =
1
M

NX

i=1

miṘi (3)

where M =
PN

i=1 mi is the total formation mass. Eq. (2) defines the true formation Cartesian center
of mass position vector. Later on, approximate solutions are compared to the classical formulation
in Eq. (2). Using relative position vectors ri = Ri � Rc with respect to the formation center of
mass, Eq. (2) can be rewritten as

NX

i=1

mi ri = 0 (4)

Note that Eq. (4) is a vector equation and must hold for any coordinate frame choice to express the
vector components. Further the center of mass definition in Eq. (4) is equivalent to considering the
relative linear momentum p =

PN
i=1 miṙ to be an integral of motion. Let ri vector components be

expressed in the chief Local-Vertical-Local-Horizontal (LVLH) or Hill frame H as [10]

Hri =

0

@
xi

yi

zi

1

A (5)

Next, let the non-dimensional relative position coordinates be defined through

ui =
xi

Rc
vi =

yi

Rc
wi =

zi

Rc
(6)
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Note that the formation center of mass radius Rc is time varying in general (elliptic orbits). An
equivalent expression for the center of mass condition in Eq. (4) is expressed using (u, v, w) as

NX

i=1

miui =
NX

i=1

mivi =
NX

i=1

miwi = 0 (7)

If the relative motion is expressed using Cartesian coordinates, as is commonly done when using
the Clohessy-Wiltshire-Hill equations [10, 11, 12], center of mass definitions in either Eq. (2) or (7)
could be used directly. However, if the relative motion is expressed using orbit element di↵erences,
the center of mass conditions are not obvious, especially if the chief orbit is allowed to be highly
eccentric.

For the subsequent analysis the following notational short hand is used: orbit elements without
subscripts are implied to denote the formation chief or center of mass. To find approximate first
order center of mass conditions using orbit element di↵erences, we first present a direct approach
using the nonlinear map between Cartesian coordinates and orbital elements. Subsequently, we
outline an alternative derivation using a relative motion description presented in references [13, 14].

Let � : R6 ! R6 be the nonlinear mapping that transforms orbital elements into Cartesian orbit
position coordinates, that is,

X = �(oe) , where X , (R, Ṙ) (8)

Using the formation center of mass definition and expanding the resulting orbital element expressions
into a Taylor series about the center of mass, we find that

NX

i=1

mi(Xi �Xc) ⌘
NX

i=1

mi(�(oei)� �(oec)) =
NX

i=1

miAc�oei +O
�
�oe

2
i

�
= 0 (9)

The time-dependent sensitivity matrix Ac = (@/@oe)�(oei)|c is evaluated at the formation center of
mass and is therefore equal for all spacecraft. As a result we can pull Ac in front of the summation
sign to obtain

Ac

NX

i=1

mi�oei +O
�
�oe

2
i

�
= 0 or

NX

i=1

mi�oei = O
�
�oe

2
i

�
i↵ det(Ac) 6= 0 (10)

Since the rank of a map is the rank of its di↵erential, rank(�) = rank(Ac). Considering only
chief orbit element values that are not singular, det(Ac) 6= 0 and as a result the matrix Ac is
invertible. The expression on the right-hand side of Eq. (10) is therefore accurate to second order.
Equivalent first order classical orbit element di↵erence expressions are summarized in the form of
scalar equations as

NX

i=1

mi �ai = 0
NX

i=1

mi �ei = 0
NX

i=1

mi �ii = 0 (11a)

NX

i=1

mi �⌦i = 0
NX

i=1

mi �!i = 0
NX

i=1

mi �Mi = 0 (11b)

Note that Eqs. (11) are only first order approximations of the formation center of mass definition.
While both the Cartesian coordinate center of mass definition in Eq. (2) and (4) are rigorously
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true, the above orbit element di↵erence conditions are first order approximations where we assume
that the orbit element di↵erences are small compared to the chief orbit elements. The result, that
the mass-averaged sum of all relative orbit element di↵erences must equal zero, is equivalent to the
Cartesian version in Eq. (4).

Using small classical orbit element di↵erences, non-dimensional (u, v, w) motion equations of
each satellite can be written as [14]

ui =
�ai

a

� e �ei

2⌘

2
+

1
⌘

2
�ui cos (f � fui) +

e

2⌘

2
�ui cos (2f � fui) +O(�oe2) (12)

vi =
✓✓

1 +
e

2

2

◆
�Mi

⌘

2
+ �!i + cos i �⌦i

◆
� 2

�ui

⌘

2
sin (f � fui) +O(�oe2)

� �ui

⌘

2

e

2
sin (2f � fui)

(13)

wi =
q

�i

2
i + sin2

i �⌦2
i cos (✓ � ✓wi) +O(�oe2) (14)

where

�ui =

s
e

2
�M

2
i

⌘

2
+ �e

2
i (15)

fui = tan�1

✓
e �Mi

�⌘�ei

◆
(16)

✓wi = tan�1

✓
�ii

� sin i �⌦

◆
(17)

This relative motion description is convenient for the current discussion because it provides a direct
description of the general relative motion in terms of secular o↵sets and repeating trigonometric
terms using orbit element di↵erences. Contrary to the analytical solution of the Clohessy-Wiltshire-
Hill equations, the first order relative motion solution is valid for both circular and elliptic chief
motions.

Substituting Eqs. (12–14) into Eqs. (7) the (u, v, w) center of mass conditions are satisfied
by requiring sums of the constant terms, terms depending on cos(f � fui), terms depending on
cos(2f�fui), terms depending on sin(f�fui), and terms depending on sin(2f�fui) of Eqs. (12–14)
to vanish independently. With some modest amount of algebra one ultimately obtains the same first
order approximations of the formation center of mass as presented in Eqs. (11). This longer, but
insightful approach to Eq. (11) is shown in full in Reference [15].

For the sake of clarity, we refer to the mass-averaged orbit element di↵erence location as the
Orbit Element center of mass (OECM ). While not equal to the Cartesian center of mass (CCM ),
the OECM is of value when describing and controlling formations. Consider a simple leader- follower
2-satellite formation as illustrated in Figure 1, where the actual Cartesian center of mass would rotate
at the same period as the satellites while having a smaller semi-major axis. For the more general
elliptic inertial orbit case shown in Figure 1, the CCM clearly does not perform a Keplerian orbit
motion [9]. Computing inertial formation center of mass position and velocity vectors (Rc, Ṙc), and
translating these coordinates into equivalent orbit elements, we find that Keplerian motion predicts
the center of mass to move faster than the satellites. Considering a control law that defines tracking
errors with respect to the true formation Cartesian center of mass, the satellites are controlled with
respect to a chief location which has a slightly di↵erent orbit period. In contrast, if the OECM
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Orbital Element center of mass

Cartesian center of mass

Spacecraft

Spacecraft orbit

Cartesian center of
mass orbit

Periap
ses direct

ion

Figure 1. Cartesian center of mass versus Orbital Element center of mass locations for a formation of two
largely separated spacecraft.

is computed using Eq. (11) for the leader-follower example, the OECM has the same semi-major
axis as the other two satellites. Both satellites and center of mass travel at the same orbital rate
assuming Keplerian motion. Thus, the OECM does indeed evolve in a Keplerian manner. Note that
the di↵erences between the Cartesian and orbit element center of mass locations are very small. A
detailed error analysis follows in a later section. Thus, for orbit element di↵erence based control
strategies, it is advantageous to define and control the formation relative to the formation OECM.
Because this location is Keplerian, its orbit elements oeOECM will be constant.

Constraints in Eq. (11) on the motion of Coulomb formations are useful when analyzing orbit
element based feedback control laws. For example, for the dual-craft formation discussed in [7], if
�a1 ! 0, the center of mass definition in Eq. (11) immediately implies that �a2 ! 0, as well. In
other words, for the 2-satellite system, showing convergence of one satellite is equivalent to showing
convergence of the entire system.

4. Angular Momentum

As pointed out before, the inertial angular momentum vector H is a constant of motion for the
formation because Coulomb forces are internal forces of the spacecraft formation [9]. Let Ri be
the i

th inertial spacecraft position vector and mi be the associated constant spacecraft mass. The
spacecraft cluster is assumed to contain N craft. The total formation angular momentum is then
expressed as [10]

H =
NX

i=1

Hi =
NX

i=1

miRi ⇥ Ṙi =
NX

i=1

mihi (18)
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where hi = hiı̂hi is the massless momentum vector and derivatives taken here are inertial time
derivatives. Note that hi can be expressed in terms of the semi-major axis ai and the eccentricity
measure ⌘i =

p
1� e

2
i as

hi =
p

µai⌘i (19)

The orbit normal vector is obtained as [10]

ı̂hi =

0

@
sin ii sin⌦i

� sin ii cos ⌦i

cos ii

1

A (20)

where the vector components are taken with respect to an inertial frame N . Using Eqs. (19) and (20),
the total inertial Coulomb formation angular momentum vector can be written as

H(oe) =
NX

i=1

mi
p

µai⌘i

0

@
sin ii sin⌦i

� sin ii cos ⌦i

cos ii

1

A (21)

If inertial orbit elements are used instead of orbit element di↵erences to describe the satellite motion,
then Eq. (21) provides the full nonlinear formation angular momentum relationship. Because H
is constant, Eq. (21) provides three momentum constraints on the Coulomb relative motion. Note
that so far no approximations have been introduced to the momentum constraints.

Using the OECM location, the inertial angular momentum of the Orbital Element center of mass
is, according to Eq. (21), HOECM = H(oe)|OECM. Because the relative motion is expressed using
orbit element di↵erences, it is desirable to express the law of momentum conservation H(t) = H(t0)
in terms of orbit element di↵erences, as well. Rewriting the formation angular momentum in terms
of orbit element di↵erences, we expand H into a Taylor series about the OECM orbital elements to
obtain:

H = HOECM +
NX

i=1

@hi

@oei

�����
OECM

mi �oei +O
�
�oe

2
i

�

= HOECM +

 
@h

@oe

�����
OECM

!
NX

i=1

mi �oei +O
�
�oe

2
i

�

= HOECM +O
�
�oe

2
i

�

(22)

In Eq. (22) corresponding first-order derivatives of the massless momentum vectors hi are evaluated
at the common OECM and are therefore equal for all spacecraft. Pulling the derivatives in front of
the summation sign and using Eqs. (10) we find the angular momentum of the OECM to be a second
order accurate approximation of the constant formation momentum vector H. In other words, the
total formation inertial angular momentum vector H is not equal to the OECM angular momentum
HOECM in general. However, if relative spacecraft distances are “small”† compared to the inertial
chief orbit radius, then HOECM is reasonably close to the constant total formation inertial angular
momentum, that is, HOECM ⇡H.

The next question is, what are the three momentum constraint equations in terms of �oei?
We point out that Eq. (22) does not yield any linear �oe terms. The answer is that the three
momentum constraints in terms of �oei are inherently satisfied if the formation center of mass

†We quantify the term “small” in section 5.1 of this paper.
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condition
PN

i=1 mi�oei = 0 is satisfied. Thus, to first order, the six conditions in Eq. (11) include
both the three center of mass and three momentum constraints. Expressing the relative motion
using the orbit element di↵erences �oei, we must assure that

NX

i=1

mi�oei = 0 (23)

is true to satisfy all six combined center of mass and momentum CFF constraints of the center of
mass-relative formation description using orbit element di↵erences. In case the true nonlinear con-
straints are to be used instead of the first-order approximation, then the center of mass constraint
in Eq. (4) and inertial momentum constraint in Eq. (21) must be satisfied. The first-order approx-
imation provides a much more convenient form for analysis of feasible relative motion dynamics or
charged relative motion control.

5. Center of Mass Definitions Error Analysis

5.1. First Order Momentum Expression

As pointed out in a previous section, it proves advantageous for control analysis to define the center
of mass of CFF using orbital elements and orbital element di↵erences. Note that Eqs. (11) specify
the formation center of mass location to first order only. A more general nonlinear analysis shows
how center of mass approximations in the orbital element space map into actual position and velocity
errors in inertial space.

The coordinates transformations R(oe) and Ṙ(oe) of mapping (8) can be written as

R = %C(⌦, i,!)

0

@
cos f

sin f

0

1

A and Ṙ =
r

µ

p

C(⌦, i,!)

0

@
� sin f

e + cos f

0

1

A (24)

where

% =
p

1 + e cos f

, p = a

�
1� e

2
�

, and f = f(M, e) (25)

and

C(⌦, i,!) = C3(�⌦)C1(�i)C3(�!) (26)

with Ci being the single-axis rotation matrix for the i

th coordinate axis. While we are expressing
position and velocity in terms of true anomaly angle f , di↵erences in mean anomaly M are used to
express the relative motion, therefore f = f(M, e). Let ˜ denote states of the OECM location

X̃ , �(õe) (27)

The Cartesian formation center of mass (CCM) state vector X⇤ is then expressed as

X⇤ , 1
M

NX

i=1

mi �(õe + �oei) (28)
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Varying only one of the orbital elements at a time, the center of mass error vector becomes

�X , X⇤� X̃

=
1
M

NX

i=1

mi

"
�(õe) +

@�
@õei

�����
OECM

�oei +
1
2

@

2�
@õe

2
i

�����
OECM

�oe

2
i +O

�
�oe

3
i

�
#
� �(õe)

=
1

2M

@

2�
@õe

2
i

NX

i=1

mi �oe

2
i +O

�
�oe

3
i

�

(29)

Using similar arguments as were used to derive Eq. (22) first-order terms in the Taylor series expan-
sion in Eq. (29) again vanish according to conditions (11). Let us investigate center of mass model
deviations behavior further. Using Eq. (29) it is straightforward to show that with �X = (�R,�Ṙ)

�R =
1
M

NX

i=1

mi

 1X

k=2

1
k!

@

kR

@oe

k
i

�����
OECM

�oe

k
i

!
=

1
M

1X

k=2

1
k!

@

kR

@oe

k

�����
OECM

 
NX

i=1

mi �oe

k
i

!
(30)

and therefore

�R = k�Rk =
1
M

1
2

�����
@

2R

@oe

2
i

�����
OECM

�����

NX

i=1

mi �oe

2
i +R�R

�
O(�oe3

i )
�

= c�R
1

2M

NX

i=1

mi �oe

2
i +R�R

�
O(�oe3

i )
�

(31)

where we have introduced the symbol c�R to simplify notation. A similar expression is obtained for
�Ṙ mutatis mutandis; the root mean square (RMS) deviation ratio �(�oei) then yields

�(�oei) , �Ṙ

�R

=
c�Ṙ

c�R

h
1 + R̃�Ṙ

�
O(�oei)

�i

h
1 + R̃�R

�
O(�oei)

�i = c (1 +O(�oei)) (32)

Algebraic expressions for RMS deviation approximation constants c�R = c�R(oe, �oei) and c�Ṙ =
c�Ṙ(oe, �oei) are listed in the Appendix.

As discussed in a previous section, both the Cartesian and the orbital element description provide
a meaningful definition for the system center of mass. While traditionally the CCM has been used
extensively in the literature, the OECM o↵ers distinct advantages for formation control applications.
From this point of view it is more adequate to refer to the di↵erence between the two center of mass
definitions as deviations rather than errors. Consequently, we employ from now on the terminology
center of mass (or equivalently center of mass) deviation vector to denote �X and similarly �R
and �Ṙ.

Reference [16] presents RMS deviations for a linearized relative motion description using orbital
element di↵erences which can be explained analytically using Eq. (29). The RMS deviations show
a quadratic behavior in general with the exception of positional deviations due to variations in
semi-major axis. In nonlinear mappings between orbit element and inertial Cartesian coordinates
in Eq. (8), the satellite semi-major axes ai appear linearly. Therefore, the position deviation vector
yields �R(�oei = �ai) = 0, as expected.

The following numerical simulation illustrates the formation center of mass model deviations.
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The chief orbital element set is given in Table I. The individual orbit element di↵erences are varied
for each case shown up to a corresponding maximum satellites separation from the formation center
of mass of 1000 meters.

Table I. Chief orbital elements.

Orbital element a [km] e [1] i [�] ⌦ [�] ! [�] M [�]

Value 6739.6 9.0⇥ 10�4 51.7 14.6 �33.0 �19.0

Figure 2 shows parametric plots for �Ṙ and �R as orbit element di↵erences are increased. Ten
steps are used to sweep the orbit element di↵erences. Note the near-linear behavior plotting �Ṙ vs.
�R and predicted by Eq. (32) for the full nonlinear solution.

With RMS deviation approximation constants readily available (Appendix) we introduce the
quantities ✏(�Ṙ) and ✏(�R) to measure the accuracy of RMS deviation approximations via

✏(�R) =
�R� c�R

1
2M

PN
i=1 mi �oe

2
i

�R

=
R�R

�
O(�oe3

i )
�

�R

, ✏(�Ṙ) =
R�Ṙ

�
O(�oe3

i )
�

�Ṙ

(33)

For the two-spacecraft formation example, Table II lists RMS position and velocity deviations and
corresponding relative errors ✏(�R) and ✏(�Ṙ) for a spacecraft-center of mass displacement of 1000
m. The relative error magnitudes justify approximating center of mass deviations using only the
first term in the expansion in Eq. (31).

Table II. Center of mass RMS deviations �Ṙ and �R and relative errors of first-order center of mass RMS
deviation approximations ✏(�Ṙ) and ✏(�R) for a formation of two spacecraft and a spacecraft-center of
mass displacement of 1000 m.

�oei �Ṙ [m/s] ✏ (�Ṙ) [%] �R [m] ✏ (�R) [%]

�ai 6.3545⇥ 10�5 3.2974⇥ 10�7 0 0
�ei 2.7945⇥ 10�5 5.3899⇥ 10�3 5.5828⇥ 10�3 2.0733⇥ 10�2

�ii 5.2028⇥ 10�5 7.8786⇥ 10�7 5.8517⇥ 10�2 1.9257⇥ 10�7

�⌦i 7.4239⇥ 10�5 2.5434⇥ 10�7 5.8184⇥ 10�2 7.0776⇥ 10�8

�!i 8.4727⇥ 10�5 5.2788⇥ 10�7 7.4125⇥ 10�2 1.5317⇥ 10�6

�Mi 8.4791⇥ 10�5 1.9782⇥ 10�7 7.4181⇥ 10�2 3.3985⇥ 10�8

5.2. Second Order Momentum Expression

We pointed out before that for small relative spacecraft distances the total inertial angular momen-
tum can be approximated reasonably well by the inertial angular momentum of the OECM, that is,
HOECM ⇡H. In fact, using a Taylor series expansion about the OECM we found that HOECM is a
second-order accurate approximation of H. We also note that the angular momentum expression in
Eq. (21) is neither a function of ! nor M0 (only the orbit geometry defines the angular momentum).
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Figure 2. Center of mass RMS deviations �Ṙ versus �R for a formation of two spacecraft and a maximal
spacecraft-center of mass displacement of 1000 m using the full nonlinear solution. Discrete data points —
are plotted using equidistant step sizes �oei.
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Hence, the “small” relative spacecraft separation assumption does not need to be satisfied in terms
of these orbital elements for HOECM ⇡H to hold.

Analyzing the dominating second-order terms in the expansion of H (Eq. (22)) we find that

H = HOECM

"
1 +

NX

i=1

✓
�a

2
i

aOECM

�
�
�⌦2

i + �i

2
i

�◆
#

+

@hi

@ai@⌘i

����
OECM

NX

i=1

mi�ai�⌘i + . . . + O
�
�oe

3
i , �oe

2
i �oej , . . .

�
(34)

It proves advantageous to use the eccentricity measure ⌘ =
p

1� e

2 rather than the eccentricity itself
in the Taylor series expansion: ⌘i appear linearly in Eq. (21), therefore, there are no corresponding
second-order terms in in the first line in Eq. (34). Nevertheless, the eccentricity does appear as
a second-order e↵ect through the mixed derivatives. Also, by using the eccentricity measure one
can avoid mathematical singularities for cases when ei ! 1, which would appear in the expansion
otherwise.

In Eq. (34), the first group of terms such as @

2H/@a

2
i produce deviations in the direction of

HOECM whereas the mixed second-order derivatives cause directional corrections to the angular
momentum vector of the OECM. As indicated in the first line in Eq. (34), by dividing the entire
equation through the common factor (at least in magnitude) of |HOECM|, we can compare second-
order corrections directly to the leading term (which is o(1)) and conveniently quantify deviations
of the total angular momentum vector from HOECM.

6. Coulomb Control Influence on OECM

Consider the simple example of having N satellites floating in space in a “zero-gravity” environment.
Because the Coulomb forces are formation internal forces, they cannot influence the motion formation
Cartesian center of mass. However, if this same spacecraft cluster is orbiting about a planet, then
the Coulomb forces can have an influence on the Cartesian center of mass motion. If the charges
are used to slightly change the semi-major axis, then the satellites will drift apart and the CCM
orbit radius will decrease. In contrast, it has already been shown that the OECM will evolve in a
Keplerian manner if no spacecraft charges are active. In this section the spacecraft charge influence
on the OECM is investigated. The question of interest is: can the OECM be approximated to be
Keplerian even with spacecraft charges present?

For unperturbed and uncontrolled motion of the satellite formation the individual orbital ele-
ments of the satellites are constants of motion. Therefore, also the orbital elements of the OECM
are constants of motion since, by definition, ȯeOECM = 1/M

PN
i=1 miȯei. For controlled Coulomb

formations, however, this is not the case. According to Gauss’ variational equations the oei the time
rate of change of orbital elements due to perturbing accelerations ui can be written as [17]

ȯei = B(oei)ui (35)

where B(oei) is the 6⇥ 3 control influence matrix. For Coulomb formations the time rate of change
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of the OECM therefore results in

ȯeOECM =
1
M

NX

i=1

miȯei =
1
M

NX

i=1

miB(oei)ui (36)

where

ui = kc

NX

j 6=i

1
mi

qiqj

|rij |3
rij (37)

In Eq. (36) the parameter kc = 8.99⇥ 109 Nm2/C2 is Coulomb’s constant, qi is the (control) charge
of the ith spacecraft and rij is the relative position vector of the jth spacecraft with respect to the
ith spacecraft. Expanding the control influence matrix into a Taylor series about the OECM we find
that

ȯeOECM =
1
M

(
B(oeOECM)

NX

i=1

miui +
����

@B(oe)
@oe

����

�����
OECM

NX

i=1

mi�oei ⌦ ui +O
�
�oe

2
i

�
)

(38)

In Eq. (38) we have introduced the ⌦ operation to denote the multiplication of two n-vectors with
a n ⇥ n ⇥ n matrix. Note that Coulomb forces are system internal control forces. As a result the
first term on the right-hand side of Eq. (38) vanishes. What we are left with is a dominating term
proportional to expression of the form / �oei ⌦ ui. In other words

ȯeOECM =
1
M

����
@B(oe)

@oe

����

� ����
OECM

NX

i=1

mi�oei ⌦ ui +
1
M

O
�
�oe

2
i

�
= O

�
�oe

2
i

�
(39)

for ui = O
�
�oei

�
. Assume that the desired formation is prescribed through an orbit element

di↵erence set �oep. Orbit element di↵erence-based tracking error descriptions are then defined as
�oe = �oe � �oep. The analysis in reference [7] demonstrates that for certain cases conventional
control laws u / M�oe based on Lyapunov’s first method globally stabilize Coulomb formations.
Typically we find that �oe⌧ �oe. However, even for the large tracking error case where �oe / �oe,
the third term in Eq. (39) is a second-order term. Thus the OECM motion can be considered to
remain Keplerian to first order, as long as the charge control yields a control vector ui which is
at worst proportional to �oei. A practical conclusion is that Coulomb formation control strategies
using orbit element di↵erences with respect to the OECM can assume that the OECM will continue
a Keplerian motion (thus oeOECM = const. and ȯeOECM = 0) even while small spacecraft charging is
present.

7. Conclusion

First order constraints of Coulomb formations are presented using orbit element di↵erences. The
formation chief position is chosen to be the formation center of mass. Because all Coulomb propul-
sion forces are formation internal forces, the inertial momentum vector of the entire formation is
conserved. This constant vector, along with the center of mass definition of the formation chief,
impose 6 constraints on the Coulomb formation. Using orbit element di↵erences, first order approx-
imations of the Cartesian center of mass are found. Further, the orbit element center of mass of
the formation is introduced. This center of mass definition has advantages if used as a referenced
point for formation control laws. The momentum constraint does not yield first order orbit element
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constraint conditions. A careful analysis is presented detailing the position and velocity di↵erences
between the Cartesian and orbit element center of mass definitions. First order analytical solutions
are presented to compute the center of mass di↵erences. Further, this paper demonstrates that the
OECM motion can be assumed to be Keplerian to first order, even while Coulomb charge control
laws are active.
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8. Appendix

In starting to analyze mappings (24), we notice that the coordinate transformations can be written
as products C(⌦, i,!) ⇠(a, e, f(M, e)). Therefore, when evaluating derivatives with respect to a
particular orbital element one needs to focus only on either the rotation matrix or the respective
vector ⇠. We further note that for our analysis the true anomaly is treated as a dependent variable,
depending on independent variables M and e.

Calculations of deviation constants c�Ṙ and c�R for semimajor axis variations are straightfor-
ward. Deviation constant computations for variations in orbit orientation parameters {⌦, i,!} are
facilitated by hand by using Singular Value Decompositions (SVD) for the particular rotation matrix.
Note that

d

2

d↵

2
Cj(↵) = U(↵)jSjVj , j = 1, 2, 3 (40)

where |det(Uj) | = 1, Sj projects vectors onto the 1–2 plane and Vj essentially simply reorders vector
components. For the inclination angle, for example, the problem of calculating (d2

/di

2)C(⌦, i,!)
can therefore be replaced by the problem of computing S1V1C3(�!). A similar analysis can be
performed to yield deviation constants for the ascending node angle and the argument of periapses.

Deviation constants for mean anomaly variations and eccentricity variations are more complex
since mappings (24) are expressed using true anomaly and f = f(M, e) as pointed out before. For
eccentricity variations c�Ṙ and c�R are therefore calculated (using operator notation) [d/de]2 (·) .=⇥
@/@e + (@f/@e)(@/@f)

⇤2(·). Deviation constants for mean anomaly variations are obtained in a
similar fashion.
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Table III. First-order center of mass RMS deviation constants c�Ṙ and c�R .
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