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Nomenclature

ĝs;i;
ĝt;i; ĝg;i

= unit vectors defining the ith CMG’s spin s,
transverse t, and gimbal g directions

�IGi
� = inertia tensor of the ith gimbal about its center of

mass, kg · m2

�IS� = spacecraft inertia tensor including all rigid
components and static offsets from each control
moment gyroscope, kg · m2

�IWi
� = inertia tensor of ith wheel about its center of mass,

kg · m2

K = scalar control gain that drives attitude toward
reference, N · m

K_γ = scalar control gain that drives gimbal rate toward
desired value, s−1

L = external torque vector, N · m
n̂ = unit vector defining null space of controlmatrix �D�
�P� = matrix control gain that drives angular velocity

toward reference, N · m · s
ug;i = torque supplied by ith control moment gyroscope

along its gimbal axis, N · m
us;i = torque supplied by ith control moment gyroscope

along its spin axis, N · m
β = quaternion defining orientation of spacecraft body

frame with respect to inertial frame
γi = gimbal angle of ith control moment gyroscope, rad
_γd;i = desired gimbal rate of ith control moment

gyroscope, rad/s
_γmax = maximum allowed gimbal rate magnitude, rad/s
δσ = modifiedRodriguez parameter defining orientation

of body frame with respect to reference frame
δω = angular velocity of body frame with respect to

reference frame, rad/s
λ = Lagrange multiplier used to enforce equality

constraint
μ = Lagrange multiplier used to enforce inequality

constraint
τ = scaling parameter used to define null space motion
Ωi = wheel speed of ith control moment gyroscope, rad/s
ωB∕N = angular velocity of body frame with respect to

inertial frame, rad/s

ωr = angular velocity of reference frame with respect to
inertial frame, rad/s

I. Introduction

ATTITUDEcontrol aboard a spacecraft is typically done in one of
two ways: 1) using external forces to torque the vehicle into a

desired orientation (e.g., thrusters, magnetic torque rods, etc.) and
2) using internal torques to reorient the system [e.g., reactionsWheels
(RWs), control moment gyroscopes (CMGs), etc.]. In the latter case,
internal power is used to operate these momentum management
devices. Spacecraft power must be managed properly and preserved,
because missions can only persist as long as a power source is
available. As such, a minimum power policy for operating these
devices is desired. Optimization methods can also be quite
computationally intense, which is not always suitable for onboard
implementation. As such, we seek control methods that are
computationally simple as well as being power minimizing.
Much of the work in power optimizing attitude control has

focused on RW systems. This work includes that by Schaub and
Lappas [1], who developed a null-space-basedmethod for infinite-
horizon instantaneous L2 power-optimal control; Blenden and
Schaub [2], who investigated flywheel capabilities for energy
storage while controlling attitude; and Dueri et al. [3], who took
advantage of friction in these systems to aid in power optimization.
CMGs provide an effective means to reorient a spacecraft for large
and small missions alike [4,5], and especially for missions that
cannot include a propellant system, it provides the controllability
necessary to accomplish mission goals. As such, power-optimal
attitude control using CMGs is of considerable interest. Research
in this field to date includes the work by Leve et al. [6], who
addressed the problem by optimizing the orientations of the CMGs
within the spacecraft; DeVon et al. [7], who approached the
problem from a passivity formulation using variable speed control
moment gyroscopes (VSCMGs); and Carpenter [8], who
specifically addressed instantaneous power optimization for
CMG systems, but this application is for systems with robotic
linkages rather than spacecraft attitude control. The existing
literature only covers a portion of the larger problem of power-
optimal attitude control with CMGs.
The unexplored problem addressed in this paper is instantaneous

infinite-horizon attitude control of rigid spacecraft with redundant
CMGs (N > 3). Section II reviews the equations of motion for a
spacecraft with N CMG devices along with a control law that
asymptotically tracks a given attitude reference motion. Section III
develops the new power-optimal control tracking law, which is the
primary contribution of this paper. Section IV provides a sample
attitude-tracking simulation in which the minimum norm tracking
control law is compared against the power-optimal solution that is
derived in this paper. Finally, Sec. V provides some concluding
remarks.

II. Dynamics and Control of N CMG Systems

This section focuses on the equations of motion for a system with
N CMGs and an associated reference attitude-tracking control law.
These are defined in the following subsections.

A. N CMG Equations of Motion

A full derivation of these equations of motion is provided in [9]
(Chap. 4); thus, we will focus on the final form of the equations and
the notation that will be used throughout this paper.
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Generally, four frames are used to define the system: 1) the inertial
frameN; 2) the principal body frame B, which stays aligned with the
spacecraft’s principal axes; 3) the gimbal frames G, which stay
aligned with their respective CMG as it gimbals; and 4) the wheel
framesW, which stay alignedwith their respectivewheel as it rotates.
Each CMG has its own G andW frames, but the spacecraft has only
one body frame of interest B.
Summing all sources of angular momentum, taking the inertial

time derivative, and setting this equal to the amount of external torque
in the system, the attitude equations ofmotion for the spacecraft body
frame with respect to the inertial frame are obtained as follows ([9]
Chap. 4):

�I� _ω� A�γ �γ � −ω × �I�ω − A_γ _γ − AΩΩ� L (1)

A�γ � GghJgi (2)

A_γ � Gs�hJsi − hJti � hJgi�hωti �Gt��hJsi − hJti
− hJgi�hωsi � hJsihΩi� (3)

AΩ � GthJsihωgi − GghJsihωti (4)

�I� � �IS� �
XN
i�1

�Ji� (5)

�Ji� � �IGi� � �IWi� (6)

Gs � � ĝs;1 : : : ĝs;N � (7)

Gt � � ĝt;1 : : : ĝt;N � (8)

Gg � � ĝg;1 : : : ĝg;N � (9)

�ωT
s ωT

t ωT
g �T � �Gs Gt Gg �TωB∕N (10)

In the previous expressions (and throughout the remainder of this
paper), the following notational definitions are used:

x � � x1 : : : xN �T (11)

hxi � diag�xi� (12)

This puts the equations in a compact vector form by assembling
CMG values (Js;i, Jt;i, Jg;i, Ωi, γi, _γi, and �γi) into vector and
matrix forms.
These equations make the assumption that the wheel spin axis

inertia dominates the gimbal spin axis inertia. Assuming the user
evaluates these equations in the body frame B, the gimbal frame unit
vectors must also be expressed in the body frame, and the �Ji�must be
rotated to the body frame in Eq. (5). The wheel is also assumed to be
symmetric about its rotation axis so that the same inertia valuemay be

used for the transverse and gimbal directions. It should be noted that

the gimbal axes are fixedwith respect to the body frame by definition,

and the other spin and transverse axes are defined simply by the

gimbal angle as defined as follows [9]:

ĝs;i�t� � cos�γi�t� − γi�t0��ĝs;i�t0� � sin�γi�t� − γi�t0��ĝt;i�t0�
(13a)

ĝt;i�t� � − sin�γi�t� − γi�t0��ĝs;i�t0� � cos�γi�t� − γi�t0��ĝt;i�t0�
(13b)

ĝg;i�t� � ĝg;i�t0� (13c)

To this point, we have only addressed the attitude dynamics of the

spacecraft. Now, we must address the CMG states, which will be

controlled via a gimbal torque as defined in the following for each

CMG using the vector notation of Eq. (11):

C _ω _ω� C�γ �γ � ug � �hJs − Jtihωsi � hJsihΩi�ωt (14)

C _ω � hJgiGT
g (15)

C�γ � hJgi (16)

It should be noted that gimbal accelerations and gimbal rates are

sufficient to define the equations of motion for the CMGs, but

the equations presented previously allow for a more realistic

implementation since gimbal torques are commanded rather than

gimbal accelerations. Spin torques are designed to maintain a

constant wheel rate, and transverse torques are enforced structurally

by the gimbal frame tomaintain a fixed gimbal direction (with respect

to the body).
The system as defined has 3� 2N states: 1) three for angular rate

of the spacecraft, 2) N gimbal angles, and 3) N gimbal rates. A full

state vector is defined as

Z � �ωT γT _γT �T (17)

Using this full state notation, we define the combined equations of

motion in a compact matrix form as

�M� _Z � F (18)

�M� �
2
4 �I� 03×N A�γ

03×N IN×N 0N×N
C _ω 0N×N C�γ

3
5 (19)

F �

2
664

−ω × �I�ω − A_γ _γ − AΩΩ� L

_γ

ug � �hJs − Jtihωsi � hJsihΩi�ωt

3
775 (20)

In this notation, IN×N is theN × N identity matrix, and 0N×N is the

N × N zero matrix. Additionally, an attitude description is necessary

to fully describe the system for a tracking problem (such as presented

in this paper). The numerical simulations presented here integrate in

Euler parameters and use modified Rodriguez parameters (MRPs)
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for the tracking control, but any attitude description could be
implemented.

B. Reference Attitude-Tracking Control Law

Having defined the natural equations of motion, we now define a
reference attitude-tracking control using the gimbal rates as control
variables (though the gimbal torques are the actual implemented
control). The control summarized in this section is the same as
developed by Schaub and Lappas [1], and thus only the results are
reported here. The power-optimal guidance strategy developed in this
paper is not tied to this particular attitude control law. Rather, any
CMG-attitude control strategy will lead to the same gimbal rate
control constraint formulation.
This tracking control is obtained using Lyapunov analysis. The

positive definite, radially unbounded, and continuously differ-
entiable Lyapunov function along with its designed negative
semidefinite time derivative is shown in the following to provide a
reference for the control gains involved [1,9]:

V�δσ; δω� � 1

2
δωT �I�δω� 2K ln�1� δσTδσ�

_V�δσ; δω� � −δωT �P�δω (21)

Although the rate is only negative semidefinite, application of
the LaSalle invariance principle [10] or the Mukherjee-Chen
theorem [11] confirms that the resulting control is globally
asymptotically stable. The resulting control strategy is summarized
in the following:

�D�_γ � �B��γ � Lr (22)

�B� � GghJgi
�D� � �D1� − �D2� � �D3� � �D4�

�D1� �
�
Gt

�
hΩi � 1

2
hωsi

�
� 1

2
Gshωti

�
hJsi

�D2� � 1

2
�Gshωti �Gthωsi�hJti

�D3� � �Gshωti −Gthωsi�hJti

�D4� � 1

2
�GshGT

t ωri �GthGT
sωri��hJsi − hJti� (23)

Lr � Kδσ � �P�δω� L − � ~ω��I�ω − �I�� _ωr − � ~ω�ωr�
− �GthJsihωgi −GghJsihωti�Ω (24)

This control strategy requires the gimbal rate and gimbal
accelerations to be chosen such that they satisfy Eq. (22). However,
gimbal rates and accelerations are dynamically linked, so we
cannot control them independently. Instead, we focus on the
gimbal rates and make the assumption that the gimbal acceleration
term is negligible with respect to the gimbal rate term. This leads to
the reduced control law, which is shown in Eq. (25):

�D�_γ ≈Lr (25)

With this reduced control law, the control strategy will focus on
commanding gimbal rates while limiting gimbal acceleration. It is
important to note that, for convergence,Kmust be a positive scalar
and �P� must be a symmetric positive definite matrix.
Next, the equation is rearranged to yield the desired gimbal rates. If

N � 3 and the CMGs are not in gimbal lock (singular configuration),
then a unique solution exists. Otherwise, a greater number of CMGs
yields a null space that offers an infinity of solutions, which provides

room for optimization. Generally, a minimum norm inverse is used to
solve for the desired gimbal rates,

_γMN � �D�T��D��D�T�−1Lr (26)

Motor torques cannot instantaneously implement desired gimbal
rates, so a subservo control loop is used to converge onto these
desired rates. Using a similar Lyapunov analysis, we obtain a control
in terms of gimbal accelerations as

�γ � −K _γ��γ − _γd� � �γd (27)

The subscript d implies desired values that are obtained via the
tracking control law. The desired gimbal accelerations must be
determined numerically, or theymay be ignored if a feedforward term
is not important. For convergence, K _γ must be a positive scalar.

III. Power-Optimal Control Policy

To develop a power-optimal control law, it is necessary to first
understand how power is related to the implemented control. Using
the work-energy principle, the power equation for an N CMG
spacecraft is shown in the following ([9] Chap. 4):

P � ωTL�
XN
i�1

�Ωius;i � _γiug;i� � ωTL�ΩTus � _γTug (28)

us � hJsiGT
s _ω� hJsihωti_γ (29)

Power is a function of the two rotation rates associatedwith aCMG
(wheel rate and gimbal rate) and the torques associated with these
rates. The gimbal torque is controlled for a CMG, but the spin torque
is not actuated (it just maintains constant wheel speed). For this
analysis, it is assumed that the external torque is independent of the
desired gimbal rate.
This equation for power includes a term that we cannot

instantaneously control, and that has no bearing on the control
torques (ωTL). Additionally, this equation sums over the powers
from each CMG to get a total value for the system. It is assumed that
there is no system in place to reclaim power from the system when a
negative power occurs (e.g., flywheel), so even when power reads as
negative, the CMG must output energy. As such, it is necessary to
adapt our power cost function to bemore meaningful to this problem.
Instead of minimizing the power equation shown previously, an
analog that removes the term with no control torque and sums over
the squares of the powers from the individual CMGs is used. Thiswill
ensure that the focus is on minimizing the magnitude of each of these
powers rather than a sum in which a CMG with a strong negative
power can negate the positive powers from the other CMGs. This
power analogous function is defined as

J �_γ� � 1

2
P2 � 1

2
PTP

P � �hΩihJsiGT
s � h_γihJgiGT

g � _ω
� �hJgih�γi − hJs − Jtihωsihωti�_γ (30)

Other than minimizing this cost, it is important to also ensure that
the control follows the tracking law and that it also does not require
unachievable gimbal rates. As such, the equality constraint defined in
Eq. (31) and the inequality constraint defined inEq. (32) are enforced,

h�_γ� � �D�_γ −Lr � 0 (31)

g�_γ� � _γT _γ − _γ2max ≤ 0 (32)
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It should be noted that themaximum gimbal rate needs be set equal
to or larger than theminimumnorm solution since by definition this is
the smallest gimbal rate that adheres to the tracking control law. Note
that Eq. (31) is written to account for a general CMG steering law that
requires �D�_γ � Lr, and the following general developments are not
specific to the MRP-based attitude-tracking control employed in
this study.
From this point, we will pursue a solution that minimizes this

power analogous function while adhering to these two constraints.
The problem is nonlinear in the control variable; thus, an analytical
solution forN CMGs cannot be obtained; however, for a systemwith
four CMGs, the problem can be solved explicitly. Both of these
solutions will be explored in the following discussion.

A. Optimization for System with N CMGs

Minimization of this power-analogous cost function with an
equality constraint and an inequality constraint is accomplished via
application of the Karush–Kuhn–Tucker (KKT) conditions [12]. To
apply these conditions, it is necessary to define the optimization
Lagrangian function for this problem as

L�_γ; λ; μ� � 1

2
P�_γ�2 � λTh�_γ� � μg�_γ� (33)

The KKT conditions provide three necessary conditions for
optimality (stationary, equality, and inequality conditions) as defined
in Eqs. (34–36):

∂L�_γ; λ; μ�
∂_γ

T

� 1

2
∇P�_γ�2 � ∇h�_γ�λ� μ∇g�_γ� � 0 (34)

h�_γ� � 0 (35)

μg�_γ� � 0; μ ≥ 0 (36)

The Lagrange multiplier on the inequality constraint μ can be
viewed as a switching function, when exploring solutions in the
domain where the constraint is negative the multiplier is zero, and on
the boundary, the constraint acts as an equality constraint.
Evaluating each of the partial derivatives from Eq. (34), the results

in Eqs. (37–39) are obtained:

∇P�_γ�2 � ∂P2

∂_γ

T

� 2
∂P
∂_γ

T
P (37)

∇h�_γ� � ∂h�_γ�
∂_γ

T

� �D�T (38)

∇g�_γ� � ∂g�_γ�
∂_γ

T

� 2_γ (39)

The partial derivative of the power-analogous function is
nonlinear; thus, an explicit solution to this optimization problem
cannot be obtained. Linearizing the problem to develop an iterative
approach that converges on the nonlinear optimal solution provides a
numerical method for solving the problem.
When linearizing, one cannot have discontinuities in the linearized

parameters; thus, the solution must be approached in two ways:
1) optimize assuming the solution lies within the inequality
constraint, and (if this solution is found to invalidate the inequality
constraint) 2) optimize assuming g�_γ� is an equality constraint. For
the first approach, one must completely neglect the impact of the
inequality constraint. Because the tracking constraint is linear in
the control variable, it is not necessary to linearize with respect to the

Lagrange multiplier, only with respect to the gimbal rates. This

linearization is defined with respect to a nominal gimbal rate _γ�i� as
shown in Eq. (40), where the i superscript indicates the values on the
ith iteration,

1

2
�∇P2�_γ�i�� � ∇2P2�_γ�i��δ_γ�i�� � �D�Tλ�i� � 0 (40)

Solving for the deviation in the gimbal rate from the nominal rate,

one can substitute this into Eq. (35) to solve for the Lagrange

multiplier in terms of the gimbal rate, which can in turn be used to

solve explicitly for the linearized gimbal rate. The results of this

process are defined in Eqs. (41) and (42). This process should be

iterated until the gimbal rate update is less than a set tolerance

(kδ_γ�i�k∞ < Δ). In practice, starting with theminimumnorm solution

as the initial guess for this iterative root finder has been found to be

effective at solving the problem,

_γ�i�1� � _γ�i� � δ_γ�i�

� _γ�i� − �∇2P2�_γ�i���−1�2�D�Tλ�i� � ∇P2�_γ�i��� (41)

λ�i� � −
1

2
��D��∇2P2�_γ�i���−1�D�T �−1

× ��D��∇2P2�_γ�i���−1∇P2�_γ�i�� − ��D�_γ�i� − Lr�� (42)

If the solution to this problem does not satisfy the inequality

constraint, the next step is to reoptimize now, assuming this

constraint to be an equality constraint. Because this constraint is

nonlinear in the gimbal rate, it is necessary to linearize with respect

to its Lagrange multiplier. This linearization is defined in Eqs. (43)

and (44):

1

2
�∇P2�_γ�i�� � ∇2P2�_γ�i��δ_γ�i�� � �D�Tλ�i�

� �μ�i�∇g�_γ�i�� � 2μ�i�δ_γ�i� � ∇g�_γ�i��δμ�i�� � 0

(43)

�_γ�i�T _γ�i� − _γ2max� � 2_γ�i�T δ_γ�i� � 0 (44)

Solving these equations along with the tracking equality

constraint results in the linear solutions in Eqs. (45–49). Again, this

process should be iterated until the desired level of convergence is

achieved in both the gimbal rates and the inequality constraint

Lagrange multiplier,

_γ�i�1� � _γ�i� � δ_γ�i�

� _γ�i� −
�
1

2
∇2P2�_γ�i�� � 2μ�i�IN×N

�−1
�
1

2
∇P2�_γ�i�� � μ�i�∇g�_γ�i�� � �D�Tλ�i� � ∇g�_γ�i��δμ�i�

�
(45)

μ�i�1� � μ�i� � δμ�i� (46)

�
λ�i�

δμ�i�

�
� Q−1T (47)

Q�

2
664

�D�
h
1
2
∇2P2�_γ�i���2μ�i�IN×N

i−1
2_γ�i�T

h
1
2
∇2P2�_γ�i���2μ�i�IN×N

i−1
3
775h �D�T ∇g�_γ�i��

i
(48)
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T � −
� �D�
2_γ�i�T

��
1

2
∇2P2�_γ�i�� � 2μ�i�IN×N

�−1

×
�
1

2
∇P2�_γ�i�� � μ�i�∇g�_γ�i��

�
�

"
�D�_γ�i� −Lr

_γ�i�T _γ�i� − _γ2max

#
(49)

This method provides a solution that minimizes the power-
analogous cost function subject to constraints that ensure the
control still tracks the reference motion and does not command
gimbal rates that are too large. The method works forN > 3CMGs
in the system but must be solved iteratively to obtain a control
solution. The next subsection focuses on systems with N � 4
CMGs and how an analytical solution may be obtained for this
specific case.

B. Optimization for a System with Four CMGs

Mechanical redundancy in space-based missions helps to prevent
missions from early mechanical and electrical failures, and thus it is
desirable; however, this must be balanced against the addedmass and
power requirements that redundant systems require. As such, a
typical attitude control system has only four momentum exchange
devices to provide the minimum amount of redundancy. Three are
required for complete controllability, and the fourth provides the
minimum amount of redundancy (assuming they are arranged
properly to avoid gimbal lock). Our focus now is on obtaining an
analytical solution to this problem for systemswith four CMGs, since
thiswouldmake the algorithm farmore practically implementable for
a real application.
In the previous method, tracking constraints were enforced via a

Lagrange multiplier; however, given this is a linear constraint in the
control, it can be implemented in an alternative manner. The �D�
matrix for a system with four CMGs has a defined null space that is
one dimensional. The unit vector that defines this null space n̂ is the
unit eigenvector that accompanies the eigenvalue of zero for the
matrix �D�T �D�. If the solution to the gimbal rate is defined as
described in Eq. (50), then the gimbal rate satisfies the tracking
constraint for any real value of τ. The problem now is to select the
parameter τ that minimizes the cost function subject to the defined
inequality constraint,

_γ�τ� � _γMN � n̂τ (50)

To start this optimization process, the cost function is defined in
terms of τ as shown in Eqs. (51–54):

J �τ� � 1

2
P2 � 1

2
PT
0P0 � PT

1P0τ�
�
PT
2P0 �

1

2
PT
1P1

�
τ2

� PT
2P1τ

3 � 1

2
PT
2P2τ

4 (51)

P0 � �hΩihJsiGT
s � h_γMNihJgiGT

g ��I�−1�−ω × �I�ω − A_γ _γMN

− AΩΩ − A�γ �γ � L� � �hJgih�γi − hJs − Jtihωsihωti�_γMN (52)

P1 � �hJgih�γi − hJs − Jtihωsihωti�n̂ − �hΩihJsiGT
s

� h_γMNihJgiGT
g ��I�−1A_γn̂� hn̂ihJgiGT

g �I�−1�−ω × �I�ω
− A_γ _γMN − AΩΩ − A�γ �γ � L� (53)

P2 � −hn̂ihJgiGT
g �I�−1A_γn̂ (54)

This results in a simple fourth-order polynomial cost function. To
optimize this and obtain a solution, one simply needs to take the
derivative of this polynomial and find the zeros of the resulting third-
order polynomial [Eq. (55)], for which an analytic solution exists [13]:

dJ �τ�
dτ

� PT
1P0 � �2PT

2P0 � PT
1P1�τ� 3PT

2P1τ
2 � 2PT

2P2τ
3 � 0

(55)

There will be three solutions to this minimization, but only real
roots of the derivative that have positive second derivatives [Eq. (56)]
can be minimizing solutions,

d2J �τ�
dτ2

� �2PT
2P0 � PT

1P1� � 6PT
2P1τ� 6PT

2P2τ
2 > 0 (56)

In practice, only one of the three roots has been real with a positive
second derivative (indicating a unique solution), but if a situation in
which two plausible solutions exist arises, the one that gives a smaller
cost function value or provides smaller commanded gimbal rates (if
they are equal in cost) should be selected. It is easily shown that the
solution is unique if and only if the following condition is satisfied:

Δ < 0 and a2 > 0, where

a� 2PT
2P2 b� 3PT

2P1 c� 2PT
2P0 �PT

1P1 d� PT
1P0

Δ� 18abcd− 4b3d� b2c2 − 4ac3 − 27a2d2

If the resulting solution does not adhere to the inequality
constraint, then the next step is to revaluate while using it as a new
equality constraint [Eq. (57)]. This equation accounts for the fact that
the null vector is orthogonal to the minimum norm solution by
definition. This gives a quadratic equation in τ that is guaranteed to
have two real solutions given that the maximum gimbal rates are not
set lower than the minimum norm solution. One chooses the positive
or negative root based on which yields a smaller cost function
evaluation; this avoids having to solve for a Lagrange multiplier
associated with this constraint,

τ2 � �_γTMN _γMN − _γ2max� � 0 (57)

This fully defines our analytical power-optimal solution for systems
with four CMGs. The method is easily implementable onboard a
real spacecraft, requiring no integration or solution iteration, just
accurate state estimates. For more complex systems, a power-optimal
solution for N CMG systems is also derived. Although this solution
requires iteration, it still provides a control with instantaneous power
savings that asymptotically tracks a given reference motion. The
following section provides an example of this algorithm at work and a
discussion of how it compares to the minimum norm solution.

IV. Numerical Simulations

A numerical implementation of this policy is presented in this
section. The results from the power-optimal policy are compared to
the minimum norm solution to provide metrics for how these
control policies perform. The minimum power is run at two
different levels for the maximum gimbal rate in order to show how
the inequality constraint affects the response. The first case sets the
maximum at twice the minimum norm magnitude, and the second
case sets it at four times the minimum norm magnitude. The test
case presented here involves a spacecraft with four CMGs tracking
the reference displayed in the following (D � 1∕1000 s).
Simulation parameters are defined in Tables 1–4. The initial

Table 1 System
inertias

Inertia Value, kg · m2

IS;1 86.215
IS;2 85.070
IS;3 113.565
Jsi 0.130
Jti 0.040
Jgi 0.030
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angular velocity and CMG orientations are defined with respect to

the body fixed frame:

σ �
2
4 2Dt
−�Dt�2
1
2
Dt

3
5 (58)

Figure 1 shows the convergence of the attitude and attitude rates

of the simulation for each control law (body frame with respect to

the reference motion). It is clear from these results that the two
methods perform quite comparably over the entire simulation. At
times, one performs slightly better than the other, but in general, no
method is consistently dominant. This is to be expected since both
control policies satisfy the tracking constraint that we derived.
Given the same gains, both methods should converge at a
comparable rate based on our Lyapunov analysis barring numerical
errors in either method. The larger the maximum gimbal rate, the
slower the convergence after 700 s, though. As such, it is
recommended to switch to the minimum norm solution once the
bulk of the convergence has been obtained since power savings are
no longer a concern at such small torque levels, and the minimum
norm solution performs better when subtle changes are needed
since it requires smaller commanded gimbal rates as compared to
the minimum power solutions.
The desired gimbal rates from all three simulations are

summarized in Fig. 2. One might expect the minimum norm
solution to have the smallest gimbal rates, but this is not the case. The
highest peak gimbal rates occur for the minimum norm case, and as
the maximum allowed gimbal rate is increased, that peak diminishes.
This is because these control policies are optimal in an instantaneous
sense, meaning they provide minimal solutions at the given time for a
given set of states and control gains. Since these two solutions create
two separate trajectories (with the same gains, but different states),
there is no requirement that one must always provide a minimal
gimbal rate or minimum power solution at all times. These optimal
behaviors tend to pop out over the course of an entire simulation, but
there will be times when the other solution performs better.
Having compared convergence and control results, it is now

appropriate to compare performances based on the metric of interest
in this paper, the power analogous cost function that was proposed
[Eq. (30)]. These results are summarized in Fig. 3. It is clear in these
results that the minimum power solution minimizes our cost function
of interest in general, and it provides the best results as the maximum
allowed gimbal rate is increased. Its peak power usage is smaller than
the minimum norm solution for both cases, and there are periods in
which it clearly outperforms the minimum norm solution (e.g.,
between 125 and 325 s). There are times when the minimum norm
solution performs slightly better (especially in the turbulent periods
when compared to the first minimum power simulation), but this is a
symptom of the instantaneous nature of the optimization as discussed
previously.
While this optimization procedure makes no guarantees about

minimizing the cost across some duration, this might be expected
since it guarantees optimal behavior at each instant. Figure 4 shows

Table 2 Initial states

State Value

σ �0.414; 0.3; 0.2�
BωB∕N

, rad/s �0.01; 0.05;−0.01�
Ωi, rad/s 14.4
γi�0�, rad 0
_γ�0�, rad/s �0; 0; 0; 0�

Table 3 Initial CMG orientations

Axis Values

Gs�0�
2
4 1 −1 0 0

0 0 1 −1
0 0 0 0

3
5

Gt�0�
2
4 0 0 −0.8166 0.8166

0.8166 −0.8166 0 0

−0.5771 −0.5771 0.5771 0.5771

3
5

Gg�0�
2
4 0 0 0.5771 −0.5771
0.5771 −0.5771 0 0

0.8166 0.8166 0.8166 0.8166

3
5

Table 4 Control gains

Gain Value

K, N · m 0.2
K _γ , s

−1 1.5

�P�, N · m · s

2
4 3 0 0

0 3 0

0 0 3

3
5
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Fig. 1 Attitude (top) and attitude rate (bottom) convergence for each control law: (MN) minimum norm solution and (MP) minimum power solution.
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the power-analogous cost function integrated with respect to time for
all three cases. This integrated cost is similar to an energy metric
(though the power was squared to make it positive definite), so it
indicates how much energy the torques must impart on the system
from the system’s power subsystem. These results indicate that over
the course of the maneuver the minimum power simulations
outperform the minimum norm with total integrated costs that are
33% less and 92% less than the minimum norm’s integrated cost,
respectively. Both cases are significant power savings, but the latter is
drastic. This demonstrates this algorithm’s ability to save energy
while providing comparable tracking performancewhen compared to

the minimum norm solution. Furthermore, by adjusting system
parameters such as gains and the maximum allowed gimbal rate
magnitude (as demonstrated), it may be possible to find even greater
energy savings. Such adjustments should be made before beginning
any real attitude maneuver.
This simulation has demonstrated theminimum norm solution and

this paper’s minimum power solution as applied to a sample attitude-
tracking scenario. It is clear from the results that both methods
accurately track a reference motion and that the power-optimal
solution tends tominimize power usage in the systemwith the drastic
energy savings over the course of the entire simulation. This specific
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Fig. 2 Desired gimbal rates for each control law on their individual trajectories.
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Fig. 3 Quadratic power analog for each control law on their respective trajectories.
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example has some turbulent behavior that is a symptom of the system
approaching gimbal lock. Without this issue, we would expect to see
smoother behavior in the commanded gimbal rates and the power
performance. In general, both methods should be simulated a priori
and adjusted via gain selection in order to smooth out performance for
actual implementation aboard a spacecraft.

V. Conclusions

This paper developed a new globally asymptotically stable
tracking control policy that instantaneously optimized a power-
analogous cost for systems with N control moment gyroscopes
(CMGs). This development fills a hole by providing an instantaneous
power-optimal infinite-horizon control policy for N CMG systems
that is computationally simple to implement for real-time
applications. The method developed may be solved via an iterative
approachwhen the system hasmore than four CMGs, but for systems
with four CMGs, an analytical solution was derived.
Through a numerical simulation, a comparison between the

performance of this power-optimal policy and a more standard
minimum norm solution was made. This revealed that both control
policies accurately track a moving reference and that the optimal
power policyminimizes power usage in the system,with the ability to
yield drastic energy savings over the course of an entire maneuver.
There are short periods in which the minimum norm solution
performs slightly better, but overall the optimal solution performs
better. Because these control policies are optimized instantaneously,
there is no guarantee that the power-optimal solution will outperform
theminimumnorm solution for a given set of gains since they provide
convergence via two separate state trajectories. As such, both
methods should be tested a priori before large attitude maneuvers to
determine which is best suited to be implemented and what the gains
for the maneuver should be.
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Fig. 4 Integrated cost function as a function of time for minimum norm and minimum power simulations.

708 JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, VOL. 40, NO. 3: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
M

ar
ch

 1
3,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
16

59
 


