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I. Introduction
Singularity avoidance in Variable Speed Control Moment Gy-

roscope (VSCMG) systems can require significant computation to
determine nullmotion steering commands. This paper presents a
less complicated method of determining appropriate nullmotion
steering laws while achieving similar performance as current, more
complicated, methods.

Control Moment Gyroscope (CMG) clusters, which are often
used for spacecraft attitude control, can encounter singular gim-
bal angle configurations where a general three-dimensional torque
cannot be produced. Such singularities can be overcome through
a variety of methods such as those presented in References 1 - 2.
Another option to help avoid singularities is to use VSCMG de-
vices, which allow a CMG device to vary its wheel speed, and
thus produce a torque about two orthogonal axes (wheel spin and
transfer axis).3, 4, 5 A VSCMG cluster will not encounter gimbal
locks (singular gimbal angle configurations) due to the reaction
wheel modes. If all the CMG torque axes lie in a plane, then
one of the reaction wheel control axis will point apart from this
CMG-torque plane. Thus a VSCMG cluster can always produce
the required torque of a chosen attitude control law without en-
countering temporary small attitude errors as the CMG singularity
is avoided. However, using reaction wheel (RW) modes to drive
through the CMG singular configuration requires significant RW
motor torques, which is not power effective.6 However, using
the null space of the VSCMG system wisely can enable the sys-
tem to avoid this singular CMG situation while completing the
required control maneuvers. The extra RW control modes of the
VSCMG allows for greater effectiveness to rearrange the gimbal
angles away from the CMG singularity.7 This increased null space
of the VSCMG devices can also be used to create novel combined
attitude and energy storage devices.8, 9, 10 Here the rotor speed can
be spun up during sun-lit portions of the orbit to store energy with-
out changing the spacecraft attitude. Then, during a shaded orbit
region the rotors can be spun down using the VSCMG null space
to extract this energy again.

VSCMG steering laws lead to a simple condition which maps
the desired rotor accelerations and gimbal rates into the required
attitude control torque. The null space of this mapping is exploited
by Schaub and Junkins using a gradient based method to drive the
gimbal angles away from a CMG singularity.7 The condition num-
ber of the mapping matrix is used as the singularity index. Yoon
and Tsiotras analyze the CMG singularities of VSCMG devices
in Reference 11 and provide a small modification to the gradi-
ent based null space proposed in Reference 7. The advantage of
this modification is that stability of the singularity avoidance can
be analytically guaranteed. However, this new null space steer-
ing law requires particular control of both the wheel speed and the
gimbal rate, while the earlier method only required gimbal angle
motion. The reduced actuation requirements are a benefit because
this makes it easier for the null space to be used to implement auxil-
iary objects such as power storage demands, or returning the wheel
speeds to their original values and avoiding long term rotor speed
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drift. Lee, Lee and Bang present in Reference 12 a general formula-
tion to develop optimal null space VSCMG steering laws to avoid
a CMG singularity. Their method can account for higher order
CMG cost function sensitivities and provides analytical stability
guarantees. However, as with the method by Yoon and Tsiotras,
the VSCMG steering law dictates both rotor speed and gimbal an-
gle changes. If reduced to a simple first-order form, their general
formulation can be shown to be a generalization of the earlier meth-
ods discussed in References 7 and 11.

Many VSCMG null space steering methods have developed their
formulation around the attitude regulation problem. The algebraic
null space formulation often becomes significantly more complex
if an attitude tracking problem is considered. This technical note
investigates a simplified CMG singularity measure whose perfor-
mance is equivalent to the previously published methods, but is
implemented using a substantial reduction in complexity. In par-
ticular, considering an attitude tracking problems does not lead to
an increase in complexity. The developments are performed, and
numerically simulated, using the optimal steering formulation by
Lee, Lee and Bang. However, the presented results could also be
easily applied to the VSCMG null space steering law presented by
Yoon and Tsiotras.
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Figure 1: Variable-Speed CMG Coordinate Frame Illustration

II. VSCMG Steering Law Overview
Figure 1 illustrates the gimbal frame coordinate system G :
{ĝs, ĝt, ĝg} used to describe the time varying orientation of the
VSCMG relative to the spacecraft body B. The gimbal rate γ̇i is
applied about the body-fixed axis ĝgi , while the rotor speed mo-
tor causes angular accelerations Ω̇i about the spin axis ĝsi . All
VSCMG steering laws for both attitude regulation and tracking ap-
plication leads to a control condition of the form:3, 4, 5, 13

[Q]η̇ = Lr (1)
[Q] = [D0 D] (2)

η̇ =

»
Ω̇
γ̇

–
(3)

Here [D0] and [D] are 3 × N matrices, withN being the number
of VSCMGs in the system. The projection matrix [Q] is there-
fore a 3 × 2N matrix which maps the VSCMG control states to
the required N × 1 control vector Lr . This technical note fol-
lows the notation setup in References 7 and 5 which also provide
expressions for Lr for attitude regulation and tracking control for-
mulations. Finally, the parameters Ω̇ and γ̇ are the N × 1 wheel
speed and gimbal rate vectors, respectively.

The wheel speed rate control matrix, [D0], is formulated by5

[D0] = [· · · ĝsiJsi · · · ] (4)
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and the gimbal rate control matrix, [D] for the reference attitude
tracking problem is given by5

[D] = [ · · · Jsi(ĝti(Ωi +
1

2
ωsi) +

1

2
ωti ĝsi)

− 1

2
Jti(ωti ĝsi + ωsi ĝti) + Jgi(ωti ĝsi − ωsi ĝti)

+
1

2
(Jsi − Jti)(ĝsi ĝ

T
tiωr + ĝti ĝ

T
si
ωr) · · · ]

(5)

where ωr is the reference trajectory angular velocity. The G-frame
axes can be grouped into a matrix such that each axis forms a col-
umn. For example, using the transverse axes ĝti we find

[Gt] = [ĝt1 · · · ĝti · · · ĝtN ] (6)

The same notation can be used to create [Gs] and [Gg] matri-
ces. Js, Jt and Jg are the combined wheel and gimbal structure
moments of inertia in the spin, transverse and gimbal directions,
respectively. The projection of the spacecraft body angular veloc-
ity ω = ωB/N onto the ith gimbal frame G yields

ω = ωsi ĝsi + ωti ĝti + ωgi ĝgi (7)

If examining the attitude regulation problem, the VSCMG steer-
ing law projection matrix [D] can be simplified from (5) by setting
ωr = 0 and dropping non-working terms to become5

[D]reg = [· · · ĝti(Jsi(Ωi + ωsi)− Jtiωsi) · · · ] (8)

Note that both versions of [D] depend the gimbal angles γi through
the dependence on ĝsi , ĝti , ωsi and ωti , and on the rotor spin rates
Ωi. A further simplification of [D] is typically made in recogniz-
ing that the Jtiωsi term is very small compared to the other terms
due to the size of the inertias, and therefore the typical form for
regulator control is,

[Q] = [D0 D1] (9)

where

[D1] = [· · · ĝtiJsi(Ωi + ωsi) · · · ] (10)

While the [Q] matrix will never be singular, it is possible for the
[D] or [D1] matrices to become singular. In this case the VSCMG
cannot fully employ the CMG mode and some RW modes must be
employed to produce the required control torque Lr . The goal of
the VSCMG null motion steering law is to keep the [D] or [D1]
matrices (tracking or regulation cases) full rank at all times.

Solving the control constraint in Eq. (1) results in the space-
craft executing the desired stabilizing motion. But, due to the fact
that a typical 4 VSCMG system has a 5-D null space, there are
infinite ways to solve for the steering command η̇. Typically, the
desired solution is executed primarily with the CMG modes using
a weighted minimum norm inverse of Eq. (1). To ensure that the
CMG mode can be utilized at all times happens, the control solu-
tion must consider CMG singularity avoidance using the VSCMG
control modes.

III. Optimal Steering Law
Lee et al. present in Reference 12 an optimal VSCMG null space

steering law formulation to avoid the CMG singular configuration.
This formulation relies on a CMG singularity measure V which
must be minimized while keeping the VSCMG steering commands
η̇ small. This section provides a brief overview of Lee’s method,
including second order sensitivities. If the singularity measure V
has a complex form, then the null space steering law formulation
quickly increases in complexity. This technical note provides first
and second order singularity sensitivities for regulation and track-
ing problems using both the [D] matrix and simplified singularity
measure.

The singularity avoidance cost function used to derive Lee’s op-
timal steering is,12

J(η̇) = V (η + η̇∆t) +
1

2
η̇TW η̇ +

1

2
(η̇ − η̇d)TZ(η̇ − η̇d)

(11)

where η̇d is a vector of preferred gimbal and wheel speed rates.

η̇d =
ηd − η

∆t
(12)

where ηd is a vector of desired values for the gimbal angles and
wheel speeds.

The first term V in the cost function J is the singularity avoid-
ance cost. The second term is the weighted cost for the control
effort, and the final term is the weighted cost for deviated state val-
ues. Typically only the wheel speeds are weighted in the third term,
which allows the gimbals to vary in any way without impacting the
cost function through this term. This is assumed to be the case for
the remainder of this paper.

The Hessian matrix (H̄) and the gradient vector (g) are defined
as

H̄ =≡ ∆t2V ′′(η) = ∆t2
"
∂2V
∂Ω2

∂2V
∂Ω∂γ

∂2V
∂γ∂Ω

∂2V
∂γ2

#
(13)

and

g(η) =

»
gΩ

gγ

–
= ∆tV ′(η) = ∆t

h
∂V
∂Ω

∂V
∂γ

iT
(14)

where gΩ, gγ ∈ RN are the partitions of the gradient matrix. Us-
ing these definitions of the Hessian and the gradient matrices, and
ignoring the higher order terms, the singularity avoidance cost is
approximated as

V (η + η̇∆t) ' V (η) + gT η̇ +
1

2
η̇T H̄η̇ (15)

Using this framework, the optimal steering law is solved to be,»
Ω̇
γ̇

–
= ŜQ̂+Lr + (ŜQ̂+ŜT − Ĥ−1)

»
ĝΩ

ĝγ

–
(16)

where

Ŝ = Ĥ−1QT , Q̂+ = (QĤ−1QT )−1 (17)

Here the modified Hessian and gradient matrices are defined as

Ĥ = H̄ +W + Z (18)

ĝ =

»
ĝΩ

ĝγ

–
=

»
gΩ − ZΩΩ̇d

gγ

–
(19)

It should be noted that this optimal steering law is very similar to
that proposed in Reference 7 for singularity avoidance and constant
wheel speeds. The main difference is that the optimal steering law
uses the second order derivatives for V and requires both Ω̇i and γ̇i
to perform the desired null motion, whereas Reference 7 only uses
the first order derivatives and the gimbal rates γ̇i. The choice of
the singularity index V results in varying algebraic complexities of
the optimal steering law formulation. Further, it is beneficial to not
require both specific γ̇i and Ω̇i to avoid a CMG singularity. This
makes it simpler to implement other objectives such as nominally
constant rotor speeds, or power extraction requirements, using the
VSCMG null motion.

IV. Singularity Avoidance
Although the VSCMG configuration cannot become singular

like a CMG system ([Q] is always full rank),3 avoiding the geo-
metrically singular CMG configuration ĝti in the same plane for
the regulation case) is still desirable. In general, it is more efficient
to steer with the CMG mode as much as possible.6 Furthermore,
the rotor speeds will saturate much sooner than the gimbals when
producing a given torque, therefore smart VSCMG control systems
attempt to keep the wheel speeds near the nominal values.

Mathematically, the singular CMG situation that needs to be
avoided is when the ĝti axis become co-planar. The gimbal rates
γ̇i produce a torque about the ĝti axis. Thus, if these only span a
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two-dimensional space, then the CMG control modes cannot pro-
duce a general three-dimensional vector. This is seen directly for
the regulation case in the [D1] matrix; the columns depend directly
on the transverse axes.

The same argument can be used for attitude tracking problem
with the full [D] matrix. Although there are other terms present
that are proportional to ĝsi , the dominant terms are still the gyro-
scopic term proportional to JsiΩi. If the transverse axes become
co-planar, then torques out of plane could still be produced. But,
because the other terms are small in comparison to the JsiΩi term,
the required motion will be an undesirable method of producing the
torque.

In any case, a VSCMG steering law not only implements the
required torque, but also has some null motion to avoid the singu-
larity situation. For the regulation case, Reference 7 continuously
minimizes the condition number of the [D1] matrix. The condi-
tion number of a matrix, κ, is defined as the ratio of the largest to
smallest singular values of the chosen 3xN matrix,

κ =
σ1

σ3
(20)

For the tracking case one would use the condition number of the
[D] matrix. Likewise, these condition numbers can be used as the
CMG singularity V function in the optimal steering law developed
by Lee.12

This technical note proposes to always use the condition num-
ber of the [Gt] matrix in place of the [D] or [D1] matrix condition
numbers. This makes intuitive sense; the situation that is to be
avoided is the transverse axes ĝti becoming co-planar, and thus the
loss of full 3-D CMG control authority. If the condition number
of [Gt] is kept small, then the matrix is being kept at full rank,
and therefore the transverse axes are spanning 3-D space instead of
becoming co-planar. Furthermore, using [Gt] works for the regu-
lation or tracking case, unlike [D] or [D1], and therefore does not
require reworking the steering law for each specific case.

Note the following subtle issue with using the condition number
of [Gt] versus that of [D] or [D1]. The later matrices depend on
the rotor speeds Ωi. Thus, the VSCMG null motion can modify
the rotor speeds to minimize the condition number κ. This ability
is lost with the simplified singularity measure using the condition
number of [Gt] only. However, as is illustrated in the enclosed
numerical simulations, as long as the rotor speeds are kept apart
from zero, the resulting CMG avoidance performance is essentially
equivalent to those of using the more complex condition number
formulation of the [D1] and [D] matrices.

A second order form of Lee’s optimal steering law is examined
which requires the first and second partial derivatives of the con-
dition number with respect to both the gimbal angles and wheel
speeds. The first partial derivatives are defined as

∂κ

∂Ωi
=

1

σ3

∂σ1

∂Ωi
− σ1

σ2
3

∂σ3

∂Ωi
(21)

∂κ

∂γi
=

1

σ3

∂σ1

∂γi
− σ1

σ2
3

∂σ3

∂γi
(22)

and where i = 1, . . . , N . The partial derivatives of the singular
values of a given matrix, [A], are given by14

∂σj
∂Ωi

= uTj
∂[A]

∂Ωi
vj (23)

∂σj
∂γi

= uTj
∂[A]

∂γi
vj (24)

where the SVD of [A] is

[A] = [U ][Σ][V ]T

uj is the j th column of [U ], and vj is the j th column of [V ].
The second partial derivatives of κ can be obtained by applying

the chain rule to Eqs. (21) and (22) to get,

∂2κ

∂Ωi∂Ωj
=

1

σ3

∂2σ1

∂Ωi∂Ωj
− 1

σ2
3

∂σ1

∂Ωi

∂σ3

∂Ωj

− 1

σ2
3

„
∂σ3

∂Ωi

∂σ1

∂Ωj
+ σ1

∂2σ3

∂Ωi∂Ωj

«
+

2σ1

σ3
3

∂σ3

∂Ωi

∂σ3

∂Ωj

(25)

∂2κ

∂Ωi∂γj
=

∂2κ

∂γi∂Ωj
=

1

σ3

∂2σ1

∂Ωi∂γj
− 1

σ2
3

∂σ1

∂Ωi

∂σ3

∂γj

− 1

σ2
3

„
∂σ3

∂Ωi

∂σ1

∂γj
+ σ1

∂2σ3

∂Ωi∂γj

«
+

2σ1

σ3
3

∂σ3

∂Ωi

∂σ3

∂γj

(26)

∂2κ

∂γi∂γj
=

1

σ3

∂2σ1

∂γi∂γj
− 1

σ2
3

∂σ1

∂γi

∂σ3

∂γj

− 1

σ2
3

„
∂σ3

∂γi

∂σ1

∂γj
+ σ1

∂2σ3

∂γi∂γj

«
+

2σ1

σ3
3

∂σ3

∂γi

∂σ3

∂γj

(27)

The second partials of the singular values can then be determined
by differentiating Eqs. (23) and (24),

∂2σj
∂Ωi∂Ωk

= uTj
∂2[A]

∂Ωi∂Ωk
vj (28)

∂2σj
∂Ωi∂γk

=
∂2σj
∂γi∂Ωk

= uTj
∂2[A]

∂Ωi∂γk
vj (29)

∂2σj
∂γi∂γk

= uTj
∂2[A]

∂γi∂γk
vj (30)

For a given matrix [A] (which will be [D], [D1], or [Gt]), the
partial derivatives will have the form:

∂[A]

∂γi
= [0 · · ·0 χi 0 · · ·0] (31)

∂[A]

∂Ωi
= [0 · · ·0 ψi 0 · · ·0] (32)

∂2[A]

∂ΩiΩj
= 0 ∀i, j (33)

∂2[A]

∂Ωiγj
=

∂2[A]

∂γiΩj
= [0 · · ·0 ξi 0 · · ·0] (34)

∂2[A]

∂γiγj
= [0 · · ·0 φi 0 · · ·0] (35)

The derivation for each of the three matrices is shown in the follow-
ing subsections. It is made clear that determining the singularity
avoidance controls is much simpler for [Gt] than either [D] or [D1].

A. [D1] Matrix Condition Number
For the attitude regulation control case, Reference 7 presents the

partial derivative of [D1] with respect to γi as,

χi = −ĝsiJsi(Ωi + ωsi) + ĝtiJsiωti (36)

Likewise, the partial derivative of [D1] with respect to Ωi is,

ψi = ĝtiJsi (37)

The second partial derivative of [D1] with respect to γi and Ωi is,

ξi =


0 i 6= j
−ĝsiJsi i = j

(38)

The second partial derivative of [D1] with respect to γi is,

φi =


0 i 6= j
−ĝtiJsi(Ωi + 2ωsi)− ĝsiJsiωti i = j

(39)
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B. [D] Matrix Condition Number
For the reference attitude tracking control case, the first partial

derivative of [D] with respect to γi is,

χi = Jsi(−Ωiĝsi − ωsi ĝsi

+ ωti ĝti) + Jti(ωsi ĝsi − ωti ĝti)

+ (Jsi − Jti)(ĝti ĝ
T
tiωr − ĝsi ĝ

T
si
ωr)

(40)

The partial derivative of [D] with respect to Ωi is,

ψi = ĝtiJsi (41)

The second partial derivatives of [D] with respect to γi and Ωi is,

ξi =


0 i 6= j
−ĝsiJsi i = j

(42)

The second partial derivative of [D] with respect to γi is,

φi =

8>>><>>>:
0 i 6= j

2Jsi(− 1

2
Ωiĝti − ωsi ĝti − ωti ĝsi)

+ 2Jti(ωti ĝsi + ωsi ĝti)

− 2(Jsi − Jti)(ĝsi ĝ
T
tiωr + ĝti ĝ

T
si
ωr)

i = j

(43)

C. [Gt] Matrix Condition Number
For both the attitude regulation and tracking cases, the first par-

tial derivatives of [Gt] have the very simple form,

χi = −ĝsi (44)
ψi = 0 (45)

Likewise, the second partial derivatives have the simple form,

ξi = 0 (46)

and

φi =


0 i 6= j
−ĝti i = j

(47)

The functional form of using the condition number of [Gt] is
much simpler than those of the [D1] or [D] matrices. Further-
more, it is important to note that the wheel speeds are not needed to
determine the nullmotion steering commands for singularity avoid-
ance, unlike with the other cost functions. The effectiveness of this
simple CMG singularity measure is demonstrated in the following
numerical simulations.

V. Simulation Results
A test simulation is used to illustrate the performance of the

singularity avoidance using [Gt] for a tracking case. For this
simulation, the satellite properties are the same as were used by
Schaub,7 and are reproduced in Table 1. This simulation uses the
full nonlinear acceleration-based equations of motion developed
in Reference 5. A sub-servo gimbal acceleration controller (with
feed-forward term) is used to implement the VSCMG gimbal rate
γ̇i commands from the optimal steering law.

In the following simulation the optimal steering law proposed by
Lee et al.12 is used, and the control parameters are shown in Table
2. An additional VSCMG state goal is implemented where any ro-
tor speeds Ωi should return gradually back to their original states.
The attitude control goal is to track a reference rotation while con-
tinuously avoiding a CMG singularity. The reference trajectory is
created assuming the satellite is commanded to constantly point at
a fixed spot on the Earth’s surface. This is executed by rotating the
spacecraft about it’s first body axis b̂1 in order to always keep the
body-z axis pointing at the desired location.

Figure 2 shows attitude error between the body quaternion and
the reference trajectory quaternion, and Figure 3 shows the body

Table 1: Spacecraft properties.
Parameter Value

Is1 15,053 kg-m2/s
Is2 6,510 kg-m2/s
Is3 11,122 kg-m2/s
N 4
θ 54.75◦

Js 0.70 kg-m2

Jt 0.35 kg-m2

Jg 0.35 kg-m2

Table 2: Control parameters.
Parameter Value

Ωi(t0) 628 rad/s
γi(t0) [ 45 -45 45 -45 ] deg
∆t 0.01 s
Ωd 628 rad/s
Wγ 0.8IN×N
WΩ 0.008IN×N
ZΩ 0.008IN×N
K 2 kg-m2/s
[P ] 30IN×N kg-m2/s

axis angular velocities along with the reference trajectory com-
mands. The difference between the actual and reference trajecto-
ries is very small. Also recall that using any method of singularity
avoidance results in the same tracking performance since the sin-
gularity avoidance motion is in the null space, and therefore does
not apply any net torques to the spacecraft. The differences shown
in the three illustrated cases are due to the different gimbal rate
commands resulting in slightly different gimbal acceleration based
implementations.
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0
0.002

β(
0)

0 100 200 300 400 500 600 700
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0
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β(
1)

0 100 200 300 400 500 600 700
−0.002

0
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β(
2)

0 100 200 300 400 500 600 700
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0
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β(
3)

Time (sec)

Figure 2: Quatornion attitude errors between body and ref-
erence frame. (- - -) illustrates the results using the [Gt] cost
function, (- - -) uses the [D] cost function , and (—) illustrates
the case without any CMG avoidance null motion.

Figures 4 and 5 show the VSCMG wheel speeds and gimbal an-
gles, respectively, for the controller using the condition number of
[D] and [Gt]. Different singularity avoidance methods are expected
to show different motions for each individual VSCMG component.
However, this case shows that the results of using the different sin-
gularity avoidance measurements results in almost identical motion
for every component of the system. This implies that the methods
result in nearly identical null motion commands, and therefore the
considerably more complex computations to use [D] made little
difference in the final closed-loop performance.

Finally, Figure 6 shows the comparison of the condition numbers
for the three different singularity control methods. It is evident
that the two optimal steering methods using either the condition
number of [D] or [Gt] have nearly identical performance. The dif-
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Figure 3: Spacecraft (—) and reference (- - -) angular velocities
in mili-radians/second
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Figure 4: Time histories of the 4 VSCMG wheel speeds Ωi. All
four wheels show nearly identical speed profiles using [Gt] (- -
-) or [D] (- - -)
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Figure 5: Time histories of the 4 individual VSCMG gimbal
angles γi. All four wheels show nearly identical orientations
using [Gt] (- - -) or [D] (- - -)

ferences is only 0.62% at the peak of κ at 450 seconds, too small
to be of practical consequence. During the time frame when the
condition number increases, the wheel speeds also change in Fig-
ure 4; this is when the VSCMG cluster is near the CMG singularity.
Both singularity avoidance methods work appropriately to reduce
the condition number, and then to return the rotor speeds back to
their nominal values. The third simulation contrasts the optimal
VSCMG steering law performance to the simple first order gradi-
ent method proposed in Reference 7. The condition number is also
reduced back to a small value, but after growing first to a much
larger value of approximately 82000. This comparison is inter-
esting in that the optimal steering law minimizing the condition
number of [Gt] also only requires the gimbal rates in the resulting
null space motion.
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Figure 6: Condition numbers of using the optimal controller
with [D] (- - -) and [Gt] (- - -). (—) illustrates the performance
of the first order gradient method of Reference 7 using the con-
dition number of [D].

VI. Conclusion
This technical note introduces a simple method to implement a

Control Moment Gyroscope (CMG) singularity avoidance null mo-
tion for a Variable Speed Control Moment Gyroscope (VSCMG)
control system. This method is based on tracking the range of
the transverse axes, instead of the rank of the VSCMG steering
control projection matrix. The new approach does not require any
knowledge of the rotor speeds in order to create singularity avoid-
ance nullmotion steering commands. The performance using this
simpler CMG singularity cost function is essentially identical to
previously published methods, as is illustrated with a simple nu-
merical simulation. The main benefit of this new method for CMG
singularity avoidance using VSCMG devices is that the null motion
commands are greatly simplified compared to previous methods.
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