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Abstract The success of previous lunar science missions can be expanded upon by
using a constellation of satellites to increase the lunar surface coverage. A constella-
tion could also serve as a communications or GPS network for a lunar human base.
Small-sats, deployed from a single mothercraft, are proposed to achieve a lunar con-
stellation. The establishment of a single- and multi-petal constellation is investigated
where the mothercraft does the primary deployment maneuvers. The constellation
lifetime and closed-loop maintenance are addressed once higher order lunar gravity
fields and Earth/solar perturbations are included.

Keywords Lunar constellation · Small satellites · Flower constellation · Repeat
groundtracks

Introduction

The Vision and Voyages for Planetary Science in the Decade 2013-2022 report pro-
duced by the National Academy of Sciences states that the moon ”provides data
critical for understanding the formation and evolution of habitable worlds like our
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own” [1]. The moon, as well as the other inner planets, are critical to assessing how
rocky planets form and change over time. The moon in particular is considered to be
a key to deciphering the evolutionary history of planets because it preserves a surface
record spanning most of solar system history and is very accessible from Earth [2]. In
addition to lunar science missions, if humans were to return to theMoon and establish
a lunar base, they would require a communication satellite structure. A small-satellite
constellation at the Moon, deployed from a single mothercraft, is proposed as a con-
figuration for potential science or communications missions. Small satellites, such as
cubesats, are desired for this constellation due to their affordability.

A constellation at the Moon has never been established, but previous lunar
missions that included formation flying were the Gravity Recovery and Interior Lab-
oratory (GRAIL) from 2011-2012 and the Japanese Kaguya (SELENE) mission to
the Moon from 2007-2009. The GRAIL mission had two identical satellites flying in
a leader-follower formation, similar to the Earth based gravity field mapping mission
known as GRACE [2]. The SELENE mission differs from GRAIL in that there were
a total of three satellites, and the main orbiter carried the two subsatellites on its roof
to the Moon where they were released into their own orbits [3]. These missions have
used more traditionally sized spacecraft, rather than the small-sats proposed in this
work. Some small-sat constellations have been flown successfully at Earth however,
including the Flock constellation from Planet Labs [4] and QB50 [5].

Repeat groundtrack orbits offer interesting options for potential science or com-
munication constellations, as they provide repeat coverage of the surface at a fixed
time between sequential visits. This allows the sensors to revisit the same location of
the celestial body and compare to the location specific data of an extended period of
time with dense data coverage. Flower constellations are a particular family of J2-
frozen repeat groundtrack constellations being studied by Daniele Mortari at Texas
A&M University that utilize repeat groundtracks. Orbital parameters are selected
such that the nodal period of the orbit matches the nodal period of the primary body
by a factor dependent on the number of days to repeat and the number of revolutions
to repeat the groundtrack. All orbits in a flower constellation have identical orbital
elements, with the exception of the right ascension of the ascending node (RAAN)
and the initial mean anomaly, which are determined based on the phasing scheme
desired.

Flower constellations have thus far primarily been studied about Earth, and has
resulted in a wealth of interesting constellation geometries. A flower constellation at
the Moon could be quite useful for science or communications purposes. In this sce-
nario, the flower constellation satellites would be small satellites, which introduces
many unique challenges. The small-sats would have limited propulsion capability
and would be deployed from a mothercraft in order to avoid large, fuel-expensive
plane change maneuvers. Orbital maintenance would then be required after deploy-
ment to retain the J2-frozen repeat groundtrack nature of the flower constellation.
The limited fuel on the small-sats and the maneuvers required determine the lifetime
of the constellation. The communications range of the small-sats will also be limited,
so that once the deployment is complete, the mothercraft must move into a longterm
communications orbit where it can see the children craft as well as Earth, and act as a
communications relay. A lunar flower constellation concept is shown in Fig. 1. Three
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Fig. 1 Small satellites in a lunar flower constellation deployed by mothercraft

of the four small-sats have already been deployed into their orbits and the mothercraft
has just deployed the final satellite.

This paper investigates a mission scenario where a mothercraft deploys a cluster of
small-sats into a single petal of a flower constellation for a planar formation, and into
a multi-petal configuration for a three-dimensional constellation. Of interest is how
such constellations can be deployed without the small-sats performing fuel-expensive
maneuvers, but rather letting the mothercraft do all repositioning. The small-sats
are assumed to depart the mothercraft with a relative velocity typical for a cubesat
deployment system. Finally, as flower constellations only consider J2-frozen orbits,
and the lunar gravity field has other strong pertubations, station keeping maneuvers
are developed and studied to maintain a flower constellation in the presence of these
lunar perturbations.

Flower Constellations at the Moon

Flower constellations are an interesting family of constellations being studied exten-
sively by Daniele Mortari at Texas A&MUniversity. A full development of the flower
constellation setup algorithm is found in References [6–8], and [9]. Flower constel-
lations are characterized by their repeat groundtracks and their axis of symmetry.
Flower constellations are at J2-frozen inclinations of either 63.4◦ or 116.6◦ and argu-
ments of periapsis of either 90◦ or 270◦. As these inclination angles are determined
independent of the actual J2 value, the J2-frozen inclinations are the same for the
moon and the Earth. The remaining orbital parameters are selected based on match-
ing the nodal period of the orbit with the nodal period of the central body about which
the constellation is orbiting with some specified phasing. Scale factors for the num-
ber of days and the number of revolutions to repeat the groundtracks determine the
period of repetition for the constellation [7]:

Tr = NpT� = NdT�B (1)
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In Eq. 1, Tr is the period of repetition for the groundtracks, Np is the number
of revolutions to repeat, T� is the nodal period of the orbit, Nd is the number of
days to repeat, and T�B is the nodal period of the primary body. Another important
parameter is the number of satellites, Ns. Flower constellations are named based on
these three parameters as Np-Nd-Ns constellations. The flower constellation period
equation derived in Reference [6] is given in Eq. 2a. In Eq. 2b, ω� is the angular
rotation rate of the Moon, n is the mean motion, R� is the equatorial radius of the
Moon, p is the semi-latus rectum, and J2 is the oblateness of the Moon. The classical
set of orbital elements, œ = (a, e, i, �, ω, M) are used.

χ = 4 + 2
√
1 − e2 −

(
5 + 3

√
1 − e2

)
(2c)

The anomalistic period is the periapsis-to-periapsis period and is given by the
classic period equation as:

T = 2π

√
a3

μ
(3)

The expression in Eq. 2a can be equated to Eq. 3 and a numerical solver, such as
MATLAB’s built-in solver vpasolve.m, can be used to calculate a. From the semi-
major axis, the eccentricity can be found, based on the design input for the radius of
periapsis using the relationship rp = a(1 − e). It should be noted that the number of
days to repeat (Nd) is defined as a day for the primary body. The Moon takes 27.32
Earth days to complete one rotation, so that an Nd of one lunar day corresponds
to 27.32 Earth days. The long rotation period of the Moon creates very large orbits
when Nd = 1, so that the perturbations from the Earth are dominant and the satellites
actually escape Lunar orbit. A solution is to drastically increase the number of petals,
Np, to at least 50. A comparison of flower constellations at the Moon and Earth are
shown in Fig. 2 in the body-fixed frame and in Fig. 3 in the inertial frame. The inertial
orbits look very similar but the relative orbits as seen in the Earth and Moon body
fixed frame are drastically different due to the rotation periods of the central bodies.
The new look of flower constellations at the Moon creates so many petals that they
become difficult to distinguish from one another. The term vase is perhaps now more
appropriate to describe the look of the constellations in the relative frame.

While the application of flower constellations to the Moon is novel, Russell and
Lara in Reference [10] investigated long-lifetime repeat groundtrack orbits at the
Moon. Periodic solutions where the normalized period of the orbit exactly matched
one period of the Moon’s revolution plus the additional change in the longitude of the
ascending node of the orbit were desired [10]. This is in effect matching the nodal
period of the orbit to the period of the Moon’s rotation, as is achieved by flower con-
stellations. The results of Reference [10] were merely families of solutions for frozen
orbits where the number of orbit revolutions varied from 73 to 328 cycles, while the
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(a) 4-1-4 Flower constellation at Earth
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(b) 73-1-4 Flower constellation at the Moon

Fig. 2 Flower constellation relative orbits at Earth and the Moon

revolution of the Moon was held to one. Interestingly, these orbits are simply flower
constellations with 73 to 328 petals, so that they also appear as vase constellations in
the relative frame. However, these solutions require a specific set of orbital elements,
whereas in Mortari’s flower constellations, all the orbits have the same element set
with the exception of the RAAN. In order to freeze orbits at the moon, the irregu-
lar perturbations from its gravity field and third-body effects from the Sun and Earth
must be accounted for. This results in individual frozen orbit solutions that cannot
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(a) 4-1-4 Flower constellation at Earth
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(b) 73-1-4 Flower constellation at the Moon

Fig. 3 Flower constellation inertial orbits at Earth and the Moon
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apply to the identical RAAN distributed orbits of a flower constellation. Therefore,
for the purposes of this work, the J2-frozen orbit definition of flower constellations
will still be used, with the understanding that J2 is not the dominant perturbation at
the moon. Therefore, station keeping maneuvers will be necessary to maintain the
repeat groundtracks of the flower constellations in the presence of the perturbations
at the moon.

Single Petal Deployment Scheme

Deployment is a primary challenge in the establishment of a constellation at the
Moon. The mothercraft must do all the maneuvering and then deploy the small-sats
into their desired orbits. A string-of-pearls formation within a flower constellation
orbit can be created, and is relatively simple to deploy. This configuration is referred
to as a single petal formation due to the nature of the single inertial orbit. The moth-
ercraft deploys the satellites from an orbit that has a larger semimajor axis, and,
therefore, longer period than the desired flower constellation orbit. A mean anomaly
spacing of δM is desired between each flower constellation satellite. A factor, K , is
used to determine how many orbits the mothercraft will complete between deploy-
ing sequential satellites. Equation 4 shows the relationship between the mothercraft
period (TMC) and the period of the flower constellation orbit (TFC), where nFC is the
mean motion of the flower constellation orbit. This deployment scheme is shown in
Fig. 4.

TMC = TFC + δM

nFCK
(4)

Fig. 4 Single Petal Deployment
Scheme
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Through increasing K , the semimajor axis difference can be decreased, which
decreases the relative velocity between the mothercraft and flower constellation
orbits. Reducing this relative speed decreases the deployment speed required as the
flower constellation satellites are released and put into their proper orbit slots. A
small semimajor axis difference is desired as the impulsive change in velocity ,�V ,
that matches the small satellites to the flower constellation orbits will be entirely
achieved by the cubesat deployment system on the mothercraft. The poly picosatel-
lite orbital deployer (P-POD) is a standard deployment system and will be used as
a baseline for the attainable �V in the cubesat deployment. The nominal rates of
deployment for the P-POD have been shown to be 1.6 – 2.0 m/s [11].

Once the mothercraft period has been determined, the semimajor axis can be
solved for using the standard period expression given in Eq. 3. The radius of peri-
apsis is set to the same radius of periapsis of the flower constellation orbit, which
was a user input in the flower constellation design. From the radius of periapsis and
semimajor axis of the mothercraft deployment orbit, the eccentricity may be found.
The deployment is then implemented by releasing a satellite at every K th periapsis
passage of the mothercraft. The required �V at which the flower constellation cube-
sats must be released is determined by the difference in the mothercraft and flower
constellation orbit velocities at periapsis. The well-known vis-viva equation is useful
to solve for the velocity, vp, at a periapsis radius, rp, of both mothercraft orbit and
the flower constellation orbit, as given in Eq. 5 [12]. The impulsive �V required is
the difference between these two periapsis velocities. This process continues until all
desired satellites have been deployed.

vp =
√
2μ

rp
− μ

a
(5)

Single Petal Mothercraft Maneuver

After deployment is complete, the mothercraft must maneuver from the deployment
orbit to the longterm communications orbit. The longterm communications orbit cre-
ates a relative orbit that is designed to orbit the flower constellation orbit element
barycenter (FC barycenter). The orbit element barycenter is calculated by finding the
average of the flower constellation satellite elements assuming that all flower constel-
lation satellites are identical and have the same mass. The desired communications
orbit for the mothercraft will have the same orbit elements as the FC barycenter but
with an eccentricity difference. An eccentricity difference in formation flying creates
a 2:1 ellipse of the mothercraft about the FC barycenter. This is a unique application
of a flower constellation where a formation flying scheme is achieved, which could
be strategic for specific science missions. The simple constellation geometry avoids
the more complex out-of-plane maneuvers required of a multi-pedal configuration.
However, this configuration still allows for a distributed nature of the small satellites’
sensor locations. At the end of deployment, the mothercraft will have a difference in
a, e, and M from the FC barycenter. The semimajor axis and eccentricity differences
are typically small, due to the factor K . However, the mean anomaly difference from
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the barycenter at the end of deployment will be half of the prescribed string-of-pearls
mean anomaly range, �M . A correction is performed to maneuver the mothercraft
into the communications orbit. The first burn occurs at the first periapsis passage after
the final flower constellation satellite deployment at periapsis. This maneuver places
the mothercraft into a phase orbit that will correct the mean anomaly error by altering
the semimajor axis (a), eccentricity (e) , and radius of apoapsis (ra) of the mother-
craft. Based on the desired phase orbit, the semimajor axis, and the initial radius of
periapsis (rp), the radius of apoapsis and the eccentricity will change according to
Eq. 6a.

rp = a(1 − e) (6a)

ra = a(1 + e) (6b)

It is recalled that in the final mothercraft orbit, only an eccentricity difference
is desired from the flower constellation satellites. For an orbit to have the same
semimajor axis as another orbit, but a different eccentricity, the radii of periapsis and
apoapsis must both be shifted. The first burn will have already shifted the radius of
apoapsis, which can contribute to an eccentricity difference in the final mothercraft
orbit. Therefore, the second burn is desired to occur at apoapsis in order to maintain
the shifted radius of apoapsis while still matching the desired semimajor axis by now
shifting the radius of periapsis. Since the first burn occurs at periapsis and the second
at apoapsis, the mean anomaly correction will occur over 1.5 phase orbits. In other
words, 2/3 of the mean anomaly error is corrected in one phase orbit period and
the remaining 1/3 is corrected in the final half-phase orbit period. The phase orbit
is designed so that the mothercraft periapsis is raised to an orbit that has a period
equal to the flower constellation orbit period, plus the time needed to cover 2/3 of
the mean anomaly difference. This is described by Eq. 7, where φ is the phase angle
between the mothercraft and the FC barycenter. In other words, φ is the initial mean
anomaly error (�M/2). In this study, φ is a negative value (desired minus actual),
and the phase orbit will have a smaller semimajor axis, and therefore, shorter period,
than the flower constellation orbit.

Tphase = 2π + 2φ
3

nFC
(7)

From Eqs. 4 and 7, the phase orbit semimajor axis can be determined. From there,
Eq. 5 can be used to find the velocity of the mothercraft at periapsis in the original
deployment orbit (Vp,deploy) and the velocity at periapsis required for the phasing
orbit (Vp,phase). The difference in these velocity magnitudes is the impulsive �V1

Table 1 Orbital elements for single petal flower constellation satellites

Satellite a (km) e i (deg) ω (deg) � (deg) M0 (deg)

1, 2, 3, 4 5053.73 0.60670 63.4 270 0 0, 7, 14, 21
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required to place the mothercraft into the phasing orbit, with the burn applied in the
along-track direction.

aphase =
[

μ

(
6π + 2φ

6πnFC

)2
]1/3

(8a)

Vp,deploy =
√

2μ

rp,deploy
− μ

adeploy
(8b)

Vp,phase =
√

2μ

rp,deploy
− μ

aphase
(8c)

�V1 = Vp,phase − Vp,deploy (8d)

After 1.5 phasing orbits the mothercraft makes a second burn at apoapsis (�V2) to
match the desired flower constellation semimajor axis. Again, the magnitude of this
burn is found using the radius of apoapsis of the phase orbit and the semimajor axis
of the phase orbit and the desired orbit to find the initial and final velocities at apoap-
sis respectively. This burn is also in the along-track direction; once completed, the
mothercraft will be in the desired longterm orbit with only an eccentricity difference
from the flower constellation barycenter.

The flower constellation to be studied for the numerical simulation is a 73-1-4
constellation with a periapsis height of 250 km. A mean anomaly range (�M) of 21◦
is specified, resulting in the orbital elements given in Table 1. A value of K = 5
in Eq. 4 is selected resulting in a required �V magnitude of 0.55 m/s, which is
well within the capability of a cubesat deployer. The deployment simulation does not
include any perturbations. It is important to note that in real applications, the irregular
gravity field of the Moon and third-body effects from the Sun and Earth would need
to be considered. Instead, this simulation assumes that any initial errors that would
result from ignoring perturbations can be corrected for through the controls in the
first longterm orbit maintenance maneuver.

The mean anomalies achieved at the end of the deployment phase for the constella-
tion satellites are shown in Table 2. In comparison to the mean anomalies in Table 1,
it can be seen that the desired values are achieved with small errors. These errors can
be corrected for in the first longterm orbit maintenance maneuver.

The inertial orbits at the end of the deployment phase are shown in Fig. 5. The red
orbit is the orbit of the mothercraft and the blue orbit is the flower constellation orbit.
In this view, the two orbits appear to be the same, but there are small differences in
semimajor axis and eccentricity, as shown in Table 3. The red circle indicates the
mothercraft’s location at the final deployment and the blue plus signs represent the

Table 2 Mean anomalies achieved for flower constellation satellites after deployment

Satellite 1 2 3 4

Mean anomaly (deg) −0.4275 6.5722 13.5725 20.5729
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Fig. 5 Inertial Orbits at moment of final FC satellite deployment

flower constellation satellites. The final flower constellation and mothercraft satel-
lites are shown to be at the same location at the moment of deployment.

Now that deployment of the flower constellations satellites is complete, the
mothercraft must move into its longterm communications orbit. At the end of the
deployment phase, the initial mean anomaly error is -11.90◦. The inertial orbits dur-
ing the mean anomaly correction period are shown in Fig. 6. The first burn has
a magnitude of 4.2794 m/s and the second burn has a magnitude of 14.4396 m/s,
both in the along-track direction. These burn magnitudes are small and found to be
acceptable.

In Fig. 6a, the mothercraft starts at periapsis on the black orbit. The black dot
shows where the first maneuver is made at periapsis to lower the mothercraft into
the phase orbit shown in red. The phase orbit elements are given in Table 4. After
1.5 phase orbits, the second maneuver is made at apoapsis, marked by the red dot.
The resulting orbit is the final mothercraft orbit shown in blue in Fig. 6a. This new
mothercraft orbit is also given in Table 5 and matches the FC barycenter orbit but
with an eccentricity difference. The mothercraft orbits during this correction period
are shown with the flower constellation orbit in Fig. 6b. The final position of the
mothercraft relative to the flower constellation satellites can be seen; as desired, the
mothercraft is aligned with the mean anomaly of the FC barycenter.

The initial and final flower constellation and mothercraft orbit elements, as well
as the phase orbit elements are given in Table 5. All values in Table 5 are taken at

Table 3 FC and mothercraft orbits during deployment

Orbit a (km) e i (deg) ω (deg) � (deg)

Flower constellation 5053.73 0.60670 63.4 270.0 0

Mothercraft 5066.82 0.60771 63.40 270.0 0
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(b) Inertial Orbits at end of mean anomaly correction

Fig. 6 Mothercraft mean anomaly correction

the FC barycenter apoapsis passage, as this is where the final maneuver occurs. An
eccentricity difference between the final FC barycenter and final MC orbits are all
that remain.

Multi-Petal Deployment Scheme

In contrast to the single petal formation, the full flower constellation involving mul-
tiple orbit planes will be referred to as a multi-petal constellation, due to the multiple
inertial orbits. This deployment scheme is more complicated as it does involve large
plane changes in the RAAN. One-burn plane changes are the simplest maneuver to
alter the plane of an orbit and will serve as the baseline cost. A one-impulse plane
change must be performed at one of the two nodes where the initial and desired
orbit planes intersect. This optimal point is found numerically after looping through
various values of the mean anomaly in two neighboring flower constellation orbits.
Two node possibilities exist; the node located at the larger radius magnitude will be
less costly as the local velocity will be lower. Two neighboring orbits from a 73-1-4
flower constellation are shown in Fig. 7 with the two nodes for one-impulse maneu-
vers shown by the red dots. The cost of this one-burn plane change can be found by
calculating the magnitude of the difference in the inertial velocity vectors between
the two orbits at the node.

Table 4 Phase orbit elements

a (km) e i (deg) ω (deg) � (deg)

Phase Orbit 4979.21 0.60081 63.40 270.00 0
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Table 5 Orbits during mean anomaly correction

Orbit a (km) e i (deg) ω (deg) � (deg) M (deg)

Initial FC barycenter 5053.73 0.60670 63.40 270.00 0 11.8754

Initial MC 5066.82 0.60772 63.40 270.00 0 360.9996

Final FC barycenter 5053.73 0.60670 63.40 270.00 0 359.8478

Final MC 5053.73 0.57721 63.40 269.98 359.80 359.8455

It is known, however, that three-impulse plane change maneuvers (i.e. bi-elliptic)
are usually optimal over one-impulse plane changes [13]. A bi-elliptic plane change is
shown in Fig. 8, where the majority of the plane change occurs at the second maneu-
ver, and a small amount occurs at the first and third burns. Unfortunately, a bi-elliptic
maneuver can be problematic at the Moon, where the Sun and Earth can cause sig-
nificant perturbations in the large transfer orbits. A modified bi-elliptic plane change
with only a slight increase in the semimajor axis is investigated. It is assumed that
the mothercraft is initially in one of the desired flower constellation orbits, and has
already deployed the first small-sat. In the deployment of the remaining Ns −1 satel-
lites it is assumed that the mothercraft performs all burns to conserve fuel in the
small-sats.

The optimal orbits can be found using MATLAB’s built-in constrained optimizer,
fmincon.m. A transfer orbit sequence will be considered optimal if it is less costly
than an impulsive maneuver. The goal of this optimization problem is to find the
optimal values of the parameters given in Table 6.

Intuitively, it is expected that M1 will be near periapsis and that the first burn,
�V 1, will raise the apoapsis of the orbit. Some of the plane change will be accom-
plished by �V 1 and �V 3, but both of these maneuvers will primarily be responsible
for adjusting the size (semimajor axis) and shape (eccentricity) of the orbits. The

Fig. 7 Nodes for one-impulse
maneuvers
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Fig. 8 Bi-elliptic three-burn
plane change [13]

majority of the plane change will occur with �V 2, with this burn doing very little
to change either the size or shape of the transfer orbit. The third burn, �V 3 is also
expected to occur near periapsis as this maneuver will lower the orbit back to the
flower constellation semimajor axis and eccentricity values.

Scaling is very critical in optimization. All parameters to be optimized–as well
as bounds and constraints on the system–must all be the same order of magnitude.
For this problem, all values are desired to be between ±1. In order to achieve this
scaling, normalization is used for parameters that would otherwise fall outside of the
±1 scale limits. The mean anomaly is normalized by 2π with a lower bound of 0 and
an upper bound of 1. The �V components do not require normalizing as they are
already bounded to be between ±0.5 km/s.

The cost function for this problem is simply the total �V required for the three-
burn maneuver. As such, the cost is given by the sum of the magnitudes of the
individual burns. The first and second burn �V components are parameters to be
optimized. The third burn �V3 is simply determined by the magnitude of the differ-
ence between the velocity vector at M2 in the final flower constellation orbit and the
velocity vector at the end of the second transfer orbit. The cost function is given by
Eq. 9.

f = �V1 + �V2 + �V3 (9)

There are also some constraints on this problem in addition to the bounds that
were placed on the optimization parameters. These constraints take the form of either
equality constraints or inequality constraints. The equality constraints state that the
components of the inertial position vectors at the end of the second transfer orbit must

Table 6 Optimization parameters

M1 Mean anomaly in initial FC orbit at which to perform first impulsive burn

�V 1 Inertial delta-V vector for first impulsive burn

MT Mean anomaly in transfer orbit at which to perform second impulsive burn

�V 2 Inertial delta-V vector for second impulsive burn

M2 Mean anomaly in final FC orbit at which to perform third impulsive burn

�V 3 Inertial delta-V vector for third impulsive burn
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match the components of the position vector at M2 in the final flower constellation
orbit. The position vectors (R) are normalized by the semimajor axis of the flower
constellation orbits for scaling purposes, as given by Eq. 10

g = RT2f

aFC
− RFC2M2

aFC
= 0 (10)

There are several inequality constraints on the problem. The first constraint is that
the eccentricities of the transfer orbits must be less than one to ensure an elliptic
transfer orbit. The second constraint is that the radius of periapsis of the transfer
orbits must be larger than the radius of the Moon (Rm) in order to prevent impact.
This constraint uses the radius of the Moon to normalize for proper scaling. The final
inequality constraint is that the semimajor axis of the transfer orbits must be less than
a specified semimajor axis limit. This constraint is normalized by the semimajor axis
of the individual transfer orbits to ensure proper scaling. The inequality constraints
are summarized by Eq. 11a

h1 = eT1 − 1 ≤ 0 (11a)

h2 = eT2 − 1 ≤ 0 (11b)

h3 = Rm − rp,T1

Rm
≤ 0 (11c)

h4 = Rm − rp,T2

Rm
≤ 0 (11d)

h5 = aT1 − amax

aT1
≤ 0 (11e)

h6 = aT2 − amax

aT2
≤ 0 (11f)

Within the confines of the small bi-elliptic strategy employed in this study, there
exist trade-offs between the fuel spent in the first burn to raise apoapsis and fuel
savings in changing the RAAN at a larger radius of apoapsis where the velocity is
smaller. Additionally, large orbits about the Moon are greatly impacted by third-body
perturbations from the Sun and Earth. The limit given to the semimajor axis of the
transfer orbits, amax, will greatly impact the solution. The larger amax is, the lower the
overall cost, since the largest burn, �V3 will decrease. However, it is desired for the
transfer orbits to remain relatively small in order to avoid significant third-body per-
turbations. Perturbations are not included in this optimization, with the assumption
that small errors that would accumulate over the transfer duration can be corrected
for either by the mothercraft once in the final orbit, or by the children craft after
deployment in the orbit maintenance maneuvers.

Table 7 Orbital elements for 73-1-4 multi-petal flower constellation satellites

Satellite a (km) e i (deg) ω (deg) � (deg) M0 (deg)

1, 2, 3, 4 5053.73 0.60670 63.4 270 0, 270, 180, 90 0, 180, 0, 180
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Table 8 Final values of optimization parameters for amax = 9000 km

M1 �V1x �V1y �V1z MT �V2x �V2y �V2z M2

( deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

338.3 0.0478 −0.0557 −0.1172 154.3 0.1716 0.1827 −0.2772 40.97

The flower constellation to be studied for the numerical simulation is a 73-1-4 con-
stellation with a height of periapsis of 250 km. The orbital elements for the satellites
in this constellation are summarized in Table 7.

The baseline cost of a one-burn RAAN change is calculated and found to be
0.93084 km/s. For a small bi-elliptic method to be optimal over the one burn strat-
egy, it must have a total cost less than 0.93084 km/s. Initially, the limit on the transfer
orbit semimajor axis is set to 9000 km. The total cost for this maneuver is found
to be 0.686234 km/s and is, therefore, optimal over the one-burn maneuver with a
cost savings of 0.24460 km/s. The final values for the optimization parameters are
summarized in Table 8.

The trajectories for this optimal three-burn maneuver are shown in Fig. 9. The
first burn at M1 is marked by the turquoise asterisk, the second burn at MT by the
light blue asterisk, and the third burn at M2 with the magenta asterisk. While not
a constraint on the problem, the first and second transfer orbits have nearly match-
ing orbital elements with the exception of RAAN and inclination, as these were
desired to be changed in the maneuver. The orbital elements of the transfer orbits are
summarized in Table 9.

Ultimately, the limit placed on the semimajor axis of the transfer orbits signif-
icantly alters the optimal solution that can be found. As the semimajor axis limit
becomes smaller, the bi-elliptic nature of the transfer orbits no longer holds since the
transfer orbit is not allowed to be much larger than the flower constellation orbits
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Fig. 9 Optimal three-burn orbits for amax = 9000 km
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Table 9 Orbital elements for transfer orbits for amax = 9000 km

Transfer orbit a (km) e i (deg) ω (deg) � (deg) M0 (deg)

1 8985.24 0.75436 63.50 253.38 0.01 352.45

2 8994.71 0.72790 65.16 293.49 270.89 182.38

themselves. This change occurs approximately at a semimajor axis limit of 5200 km.
However, even in these schemes, a three-burn maneuver is still shown to be optimal
over a one-burn maneuver. Again, the baseline cost is 0.93084 km/s. When the limit
on the transfer orbits semimajor axis is set to 5200 km the total cost for the three-burn
maneuver is found to be 0.86228 km/s and is, therefore, optimal over the one-burn
maneuver with a cost savings of 0.06855 km/s. The final values for the optimization
parameters are summarized in Table 10.

While still optimal over the one burn maneuver, the strict semimajor axis limit
causes the transfer orbits to take on a new form, as shown in Fig. 10 and summarized
in Table 11. The first burn is performed near apoapsis instead of closer to periapsis
in Fig. 9. The apoapsis of the first transfer orbit is only slightly raised to a semimajor
axis of 5198.66 km and almost a full orbit is completed before the second maneuver.
After the second burn, the orbit elements almost match the desired final constellation
orbit, with the third burn eliminating these small differences.

These simulations have assumed a 73-1-4 constellation, so that there are four orbit
planes, each at a 90◦ RAAN separation. However, asNs is increased, the�� between
orbits decreases. It is desired to know if the three-burn method is always optimal
over the one-burn method. For a semimajor axis limits of 9000 and 5200 km, the
parameter Ns is varied from four to twenty and the cost of the three-burn maneuver
is compared to a one-burn maneuver. The results are plotted in Fig. 11. The values of
�� corresponding to Ns are also plotted.

It can be seen in Fig. 11a, that the initial difference between the one-burn and
three-burn maneuver for amax = 9000 km is greater than in Fig. 11b for amax = 5200
km. Regardless of the semimajor axis limit, as the number of satellites is increased,
the RAAN change required per satellite decreases and the cost of the three-burn
maneuver approaches the cost of the one-burn maneuver. However, the three-burn
maneuver is always less than or equal to the one-burn method.

It was also desired to observe trends in the cost for the establishment of the entire
constellation as Ns is varied. For the semimajor axis limit of 9000 km, the general

Table 10 Final values of optimization parameters for amax = 5200 km

M1 �V1x �V1y �V1z MT �V2x �V2y �V2z M2

(deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

158.3 0.0675 0.1525 −0.3769 141.3 0.1784 0.0887 −0.3987 25.34
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Fig. 10 Optimal three-burn orbits for amax = 5200 km

trend is that the total cost grows as the number of satellites increases, due to the
increased number of maneuvers. However, there are some interesting fluctuations in
the total cost for eight, nine, and eleven satellites. It is actually less expensive to
establish an eight or nine satellite constellation than one with only seven satellites.
Likewise, it costs less to create an eleven satellite constellation compared to a ten
satellite constellation. For the semi-major axis limit of 5200 km, the general trend of
increasing total cost is more consistent than for the semimajor axis limit of 9000 km.
The only deviants from the trend are a ten satellite constellation, which is equal in
cost to a nine satellite constellation, as well as a twelve satellite constellation, which
is equal in cost to an eleven satellite constellation.

Ultimately, for any number of satellites, Ns, a three-burn maneuver should be used
to deploy the individual satellites in the constellation. The larger the semimajor axis
limit, the less costly the three-burn maneuver. However, the larger the transfer orbits,
the more prominent the third-body perturbations will be, perhaps requiring larger
initial corrections by the flower constellation satellites after deployment. As is true in
all optimization problems, the optimal solution is dependent upon the requirements
of the problem at hand.

Table 11 Orbital elements for transfer orbits for amax = 5200 km

Transfer orbit a (km) e i (deg) ω (deg) � (deg) M0 (deg)

1 5198.66 0.60928 65.27 268.93 317.96 222.03

2 5101.79 0.60818 63.43 270.67 269.99 205.59
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Fig. 11 Maneuver costs for various values of N s

Multi-Petal Mothercraft Maneuver

Once the flower constellation has been fully deployed, the mothercraft must maneu-
ver to a longterm communications orbit. The requirement of this orbit are that the
mothercraft must periodically pass by all of the children craft in order to communi-
cate with them and relay back to the Earth due to the limited communications range
of the small-sats. A polar orbit for the mothercraft has been selected as it maintains
the same symmetry as the flower constellation about the spin axis of the Moon. The
semimajor axis is desired to be larger than the flower constellation orbit semi-major
axis so that there is a period difference. This period difference will allow the moth-
ercraft to travel by all children satellites rather than maintaining the same relative
positions to the children satellites were the semimajor axis to match. The RAAN
will drift with time due to lunar perturbations and this motion will not be controlled
against, so that the initial RAAN is not a critical parameter. Therefore, to minimize
fuel costs in this maneuver, the RAAN will not be changed from the final flower
constellation orbit to the longterm mothercraft orbit.

Once again, a 73-1-4 flower constellation is studied. The desired semimajor axis
for the longterm mothercraft orbit is chosen to be 10 % larger than the flower con-
stellation semimajor axis. As it will be shown later, it is the inclination change from
the J2 frozen inclination of 63.4◦ to a polar inclination of 90◦ that drives the cost of
this maneuver. Therefore, the semimajor axis difference used is almost arbitrary. The
initial mothercraft orbit elements are the same as the final flower constellation orbit.
The desired elements are the same except for the polar inclination and semimajor
axis. The initial and final elements for the mothercraft are summarized in Table 12.

The simplest way to move the mothercraft into the desired orbit is to first perform
one orbit with small burns in the along-track direction at both periapsis and apoapsis
to raise the semimajor axis of the orbit. The costs of these burns are found using the
impulsive orbit element control equations of Reference [14]. Once the desired semi-
major axis is obtained, the plane change maneuver can be performed. It is desired
to perform this maneuver second as the velocity will be smaller in the larger orbit,
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Table 12 Initial and final mothercraft orbits

Orbit a (km) e i (deg) ω (deg) � (deg)

Initial orbit 5053.72 0.60670 63.4 270 90

Final orbit 5559.10 0.60670 90 270 90

decreasing the cost of the maneuver. The location at which to perform the plane
change maneuver will be governed by the critical angle, θc at which plane change
maneuvers are optimal. This burn will occur in the out of plane direction and is
computed using the equation for �Vh in Reference [14]. The total baseline cost for
this sequence of maneuvers was found to be 0.61438 km/s.

Similarly to the deployment scheme discussed for establishing the flower constel-
lation orbits, this maneuver also involves a costly large plane change. Therefore, it
is likely that there is a three-burn transfer orbit maneuver to change both the inclina-
tion and semimajor axis that would be optimal over the series of impulsive burns just
discussed. The cost functions and constraints remain unchanged from Eqs. 9, 10, and
11a. The only difference between these two optimization problems is the initial and
final orbits desired. It should also be noted that the impulsive burns for the baseline
cost are all in the local vertical local horizontal (LVLH) frame whereas the burns to
be optimized in the three burn transfer orbit scheme are inertial velocities. However,
when comparing magnitudes, the frames used are irrelevant.

For the three-burn transfer orbit method to be optimal over the impulsive burn
series strategy, it must have a total cost less than the baseline cost of 0.61438 km/s.
The limit on the transfer orbits semimajor axis is set to 9000 km. The total cost for this
maneuver is found to be 0.44432 km/s and is, therefore, optimal over the impulsive
burn series with a cost savings of 0.17007 km/s. The final values for the optimization
parameters are summarized in Table 13 and shown in Fig. 12.

The orbital elements of the transfer orbits are summarized in Table 14. Figure 12
shows that the second transfer orbit nearly matches the desired orbit. This is verified
by comparing the orbital elements in Table 12 for the desired orbit to the elements in
Table 14 for transfer orbit two. The final burn is a small burn that simply matches the
two orbits more precisely.

Many orbits are feasible for the mothercraft longterm communications orbit, as
long as the mothercraft periodically comes into communications range of all satellites
in the constellation. The one example presented in this section is a good candidate
orbit. The three-burn transfer orbit strategy used for this orbit can also be applied to
other mothercraft maneuvers that may require large plane changes.

Table 13 Final values of optimization parameters for final mothercraft maneuver

M1 �V1x �V1y �V1z MT �V2x �V2y �V2z M2

(deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

60.09 0.1886 0.0200 0.1041 301.89 -0.2230 -0.0208 -0.0424 25.02
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Fig. 12 Optimal three-burn orbits for amax = 9000 km

Longterm Maintenance

Once deployment is complete, the flower constellation satellites are subject to lunar
perturbations. The orbits are not high-fidelity solutions and are only J2 compati-
ble, therefore, they must be corrected periodically to maintain the repeat groundtrack
nature of the flower constellation. This will be simulated through propagating the
orbits under the influence of the 50 × 50 lunar gravity field, as well as point mass
effects from the Earth and Sun. The impulsive feedback control law developed in
Reference [14] will be used to perform impulsive orbit element corrections in the
simulation. The accumulated �V corrections from the impulsive control will be used
to predict fuel expenditure, and from that, the constellation lifetime. As the lifetime
maintenance is very similar for the single petal and multi-petal configurations, only
the simulation for the multi-petal configuration is presented.

The relative orbits for the repetition period are shown in Fig. 13a. The overall vase
shape is maintained, although the perfect latticework of the relative orbits is compro-
mised by the lunar perturbations and the drift that occurs between control periods.
The difference between the constellation with full perturbations and only J2 can be
seen by comparing Fig. 13b with Fig. 2b. However, the lunar surface coverage of the

Table 14 Orbital elements for transfer orbits for amax = 9000 km

Transfer Orbit a (km) e i (deg) ω (deg) � (deg) M0 (deg)

1 5390.58 0.60714 76.04 271.01 100.87 53.66

2 5559.42 0.60663 90.00 270.00 89.94 304.78
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Fig. 13 73-1-4 multi-petal FC perturbed orbits

constellation is still achieved, just without the exact repeat groundtrack nature that
would occur with only J2, or if controls were to be applied every orbit to constantly
eliminate drift.

The inertial orbits over the repetition period are shown in Fig. 13b. It can be seen
that the perturbations cause precession in the inertial orbits over the 27-day repetition
period, by comparing Fig. 13b to Fig. 3b where only J2 was included. The total con-
trol costs are sensitive to how close the corrections are applied relative to the desired
locations of periapsis, apoapsis, and θc. It was found that satellite one experienced
the largest �V and after further investigation, it was found to be due to how close
the in-plane corrections were performed relative to the actual periapsis crossing. This
is an implementation challenge and is manifested in the higher control �V cost for
satellite one compared to the remaining satellites, as shown in Table 15. Since satel-
lite one is the worst case, only the results of the control simulation for satellite one
(� = 0◦) are presented in detail.

The errors in the orbital elements for satellite one are shown in Fig. 14. From
Fig. 14a, it can be seen that on average, a, e, and i do not grow, but rather osculate
around a mean value. However, in Fig. 14b, ω, �, and M grow over the first five days
before the first control cycle is implemented. However, after each control period,

Table 15 Total �V magnitude over five control orbits

Satellite 1 2 3 4

�V (m/s) 360.6 219.3 201.5 231.8
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Fig. 14 Satellite one element errors controlling every four days

the element errors are reduced to nearly zero. In other words, the control sequence
corrects the actual orbit elements to match the desired orbit elements. This behavior
is better shown in Fig. 15: the red dashed line shows the desired elements and the
solid blue line is the actual elements over time. After each sequence of five control
orbits, the actual elements converge on the desired element values. In Fig. 15a, the
desired values for a, e, i, and ω are all constant, as described in Table 7. However,
the RAAN (�) is drifting over time. The control phase captures the drift behavior
and converges to the current RAAN value rather than the initial RAAN, as shown
in Fig. 15b. The initial jumps that occur at the beginning of each control phase for
the in-plane elements (a, e, and ω) are all due to the application of the controls at
a point near periapsis, but not exactly at periapsis. These errors that are introduced
are eliminated in subsequent control orbits from the burns at apoapsis, where better
accuracy is achieved due to the slower orbital velocity near apoapsis.
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Fig. 16 Multi-petal FC lifetime prediction for a 4 kg satellite with 1 kg fuel

In order to predict the lifetime of a flower constellation at the Moon, two pieces
of information are needed: the fuel required and the fuel available for each satellite.
The �V required per 27-day repetition period, per satellite was given in Table 15 and
corresponds to the fuel required. Two primary factors that affect cubesat fuel con-
sumption are overall mass and the type of engine or propellant used. Reference [15]
provides propellant mass required as a function of �V for various types of propel-
lant assuming a 4 kg cubesat. This relationship is used to estimate the constellation
lifetime.

In Fig. 16, the red curve in the bottom left of the plot is the actual calculated
average �V s after every four days for 28 days. The black curve is the linear curve fit
produced from the first 28 days of calculated burns, extrapolated for 900 days. It can
be seen in Fig. 16 that for a monopropellant thruster and 1 kg of fuel, the constellation
can last exactly 100 days. As the thruster efficiency increases in the form of a higher
Isp, the lifetime increases. A pulsed plasma thruster can support the constellation for
240 days, the electrostatic thruster extends the lifetime to just over 400 days, and the
hall thruster provides the longest constellation lifetime at over 800 days.

Conclusion and Future Work

This work provided an initial investigation of the feasibility for establishing a flower
constellation at the Moon. This constellation can take the form of either a single-petal
constellation or a multi-petal constellation. Both constellations studied were 73-1-
4 constellations with a height of periapsis of 250 km. The challenges of applying
flower constellations to the Moon, optimal deployment schemes, and constellation
lifetime and maintenance were all investigated. Overall, it has been demonstrated
that flower constellations are indeed feasible at the Moon. In fact, the constellation
can achieve a significant scientific mission with a lifetime of at least 90 days. While
this investigation made many specific assumptions in the studies and simulations
performed, the techniques can be generalized to any sort of constellation at any Moon
or other celestial body, including orbits at Earth. The perturbations and constellation
configuration would differ based on the central body involved.
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