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Abstract. An analytic method is presented to establish J2 invariant relative orbits.
Working with mean orbit elements, the secular drift of the longitude of the ascending
node and the sum of the argument of perigee and mean anomaly are set equal
between two neighboring orbits. By having both orbits drift at equal angular rates
on the average, they will not separate over time due to the J2 influence. Two first
order conditions are established between the differences in momenta elements (semi-
major axis, eccentricity and inclination angle) that guarantee that the drift rates of
two neighboring orbits are equal on the average. Differences in the longitude of the
ascending node, argument of perigee and initial mean anomaly can be set at will,
as long as they are setup in mean element space. For near polar orbits, enforcing
both momenta element constraints may result in impractically large relative orbits.
It this case it is shown that dropping the equal ascending node rate requirement
still avoids considerable relative orbit drift and provides substantial fuel savings.

Keywords: Spacecraft Formation Flying, J2 Invariant Relative Orbit, Analytic
Methods, Satellite Theory

1. Introduction

Previous studies on the relative motion of spacecraft in Earth orbit
have typically used the Clohessy-Wiltshire (CW) equations [4, 8, 6, 9]
to describe the relative equations of motion. With these linearized
equations periodic motions in the relative motion reference frame have
been identified. These periodic motions include in-plane, out-of-plane,
and combinations of these two motion types. The LISA program [2]
has three satellites at 1 AU forming an equilateral triangle in a plane
inclined at 60 degrees to the ecliptic. When one includes perturbations,
some of these periodic orbits are no longer achievable without control
to overcome the deviations. A simple example demonstrates this fact.
Consider an out-of-plane relative motion caused by a difference in in-
clination angles. Due to the J2 perturbation, the inclination difference
will cause a differential nodal precession rate between the two satellites
resulting in an oscillatory out-of-plane motion with increasing ampli-
tude. However, the linear CW equations do not show this motion; they
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indicate an out-of-plane oscillatory motion with a constant amplitude.
To maintain a relative orbit designed with the CW equations, periodic
orbit corrections are necessary to cancel deviations caused by the J2

perturbations. Further, a reference motion and the accompanying state
transition matrix might result in an out-of-plane control that changes
inclination because the state transition matrix does not indicate the
increasing amplitude caused by the inclination difference. For these
reasons it is necessary for the reference motion to include at least
the J2 gravitational perturbation effect. The satellites considered are
assumed to be equal in size and shape. Therefore, compared to the J2

effect, the differential drag effect is of lesser importance in this study
and is neglected. Note that referring to two neighboring orbits as being
J2-invariant implies in this paper that the angular drift rates of the
longitude of the ascending node and the latitude angle are equal on the
average. This statement does not guarantee that the distance between
two spacecrafts will remain small. Since the argument of perigee and
the mean anomaly of each spacecraft may drift at different rates, it
is possible for the lines of perigee to move apart over time. As this
happens, the relative orbit geometry will either expand or contract.
Control strategies to reestablish proper argument of perigee separation
are being investigated separately and are not discussed in this paper.
Note however that the differential drift rate in argument of perigee is
typically rather slow. Using the conditions derived in this paper, the
relative orbit geometry will appear fixed for dozens of orbits.

The relative orbit geometry between two neighboring satellites is
described using the differences in mean orbit elements. Mean orbit ele-
ments are used because the three mean momenta are constant and the
three angles vary linearly with time whereas all six osculating element
vary with time. Since the mean Hamiltonian is a function of only the
momenta, the relative rates between the two bodies are defined by the
differences in the three momenta. Thus, the selection of initial condi-
tions to match the average drift rates is reduced from a six dimensional
space to a three dimensional space. Brouwer’s artificial satellite theory
without drag [3] is used to search for J2 invariant relative orbits. In par-
ticular, we seek to match the average drift rates of the two neighboring
orbits up to first order, resulting in a closed-path relative motion that
is practically invariant to the J2 perturbations. The advantage of these
relative orbits is that they will need very little control to cancel the J2

effects, and thus require less fuel to maintain.
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2. Problem Statement

At any instant of time, the current inertial position and velocity vectors
can be transformed into corresponding instantaneous orbit elements. In
the absence of perturbations, these elements are constants. Adding the
J2 perturbation causes the elements to vary according to three types
of motion, namely secular drift, short period motion and long period
motion. The long period term is the period of the apsidal rotation. Over
a short time this looks like a secular growth. The short period growth
manifests itself as oscillations of the orbit elements, but does not cause
the orbits to drift apart. The relative secular growth is the type of
growth that needs to be avoided for relative orbits to be J2 invariant.
This growth is best described through mean orbit elements. These are
orbit averaged elements which do not show any of the short period
oscillations. Mean elements can be obtained analytically or numerically.
Highly accurate mean elements that must include atmospheric drag,
tesseral harmonic and third body effects probably require numerical av-
eraging. In this paper we use an analytical approach to help determine
the accuracy that will be required. By studying the relative motion
through the use of mean orbit elements, we are able to ignore the orbit
period specific oscillations and address the secular drift directly. It is
not possible to set the drift of each orbit to zero. However, instead we
choose to set the difference in mean orbit element drifts to zero to avoid
relative secular growth.

Numerous analytic theories for the motion of an artificial satellite
have been developed. The one developed by Coffey and Deprit is the
most comprehensive [5]; it has been developed to third order with
zonals up to at least J9. In this study we use the theory developed
by Brouwer [3]. We want to look at the motion defined by the mean
elements, thus we will use the averaged elements, or in Brouwer’s nota-
tion, the double-primed elements. This is the Hamiltonian after removal
of the short and long period terms. Since Jn = O(J2

2 ) for n > 2, the
only geopotential effect that is included is J2.

The orbit geometry is described through the Delaunay orbit ele-
ments l (mean anomaly), g (argument of perigee) and h (longitude of
the ascending node) with the associated generalized momenta L, G and
H defined as

L =
√

µa (1a)

G =
√

µa(1 − e2) = Lη (1b)
H = G cos i (1c)
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where a is the semi-major axis, e is the eccentricity and i is the inclina-
tion angle. The variable η is another convenient parameter measuring
the eccentricity and is defined as

η =
√

1 − e2 (2)

Note that G is the angular momentum of the orbit and H is the corre-
sponding polar component. Unless noted otherwise, any orbit elements
used from here on will be assumed to be mean orbit elements. Since
the Delaunay variables are canonical variables, given the Hamiltonian
M , their rates are found through the partial derivatives

l̇ =
∂M

∂L
ġ =

∂M

∂G
ḣ =

∂M

∂H
(3a)

L̇ = −∂M

∂l
Ġ = −∂M

∂g
Ḣ = −∂M

∂h
(3b)

The mean Hamiltonian M can be written as an asymptotic expan-
sion in ε = −J2 as

M = M0 + εM1 + O(ε2) (4)

In this study, we will only focus on the first order terms and ignore
higher order terms in ε. The first two terms M0 and M1 are given by

M0 = − µ2

2L2
(5)

M1 = −µ4R2
e

4L6

(
L

G

)3 (
1 − 3

H2

G2

)
(6)

with Re being Earth’s radius at the equator. The following algebra is
greatly simplified if we work with dimensionless variables. Therefore
distances will be measured in Earth radii Re and time is normalized
by the mean motion of a satellite at one Earth radius (i.e. µ = 1). The
dimensionless equivalents of Eqs. (5) and (6) are

M0 = − 1
2L2

(7)

M1 = − 1
4L6

(
L

G

)3 (
1 − 3

H2

G2

)
(8)

The transformation between osculating and mean elements is shown in
the appendix. Note that Brouwer’s classical theory is known to have
difficulties in translating mean elements into corresponding osculat-
ing elements for near-circular orbits and near-equatorial orbits. These
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problems can be overcome by applying the modifications to Brouwer’s
artifical satellite theory suggested by Lyddane[7] or by using Aknes
reformulation of Brouwer’s theory[1]. However, the mean to osculating
mapping problems are a practical issue which do not directly affect
the analytical results developed in this paper. The J2 invariant orbit
constraints are not depended on what theory is used to map between
mean and osculating orbit elements.

Since both M0 and M1 depend solely on the mean momenta L, G
and H (i.e. the angle variables are ignorable), according to Eq. (3b)
the mean momenta expressions are constant. Using Eq. (3a), the mean
angle rates l̇, ġ and ḣ are

l̇ =
1
L3

+ ε
3

4L7

(
L

G

)3 (
1 − 3

H2

G2

)
=

1
L3

+ ε
3

4L7η3

(
1 − 3 cos2 i

)
(9)

ġ = ε
3

4L7

(
L

G

)4 (
1 − 5

H2

G2

)
= ε

3
4L7η4

(
1 − 5 cos2 i

)
(10)

ḣ = ε
3

2L7

(
L

G

)4 (
H

G

)
= ε

3
2L7η4

cos i (11)

Since the mean momenta rates L̇, Ġ and Ḣ are always zero, we will only
be concerned with matching the angle rates between two neighboring
orbits in the next section. For the following development L, η and i will
be used as the primary momenta variables.

3. Constraints for J2 Invariant Orbits

In order to prevent two neighboring orbits from drifting apart, the
average secular growth needs to be equal. Short period oscillations can
be ignored here since these are only “temporary” deviations. The long
period rates appear secular over a few weeks and they are O(J2

2 ). Thus,
they are of higher order than the terms we are considering.

Since the mean angle quantities l, g and h do not directly contribute
to the secular growth caused by J2, their values can be chosen at
will. However, the mean momenta values L, G and H (and therefore
implicitly a, e and i) must be carefully chosen to match the secular
drift rates.

To keep the satellites from drifting apart over time, it would be
desirable to match all three rates (l̇, ġ, ḣ). However, as will be shown,
this can only be achieved by having the momenta equal, which severely
restricts the possible relative orbits. Therefore, we impose the condition
that the relative average drift rate of the angle between the radius
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vector be zero. This results in

ḣi = ḣj ∀i $= j (12)

θ̇i = l̇i + ġi = θ̇j ∀i $= j (13)

where θ is the argument of latitude. Thus, the perigees are able to drift
apart. Combining Eqs. (9) and (10), the latitude rate θ̇ is expressed as

θ̇ =
1
L3

+ ε
3

4L7η4

[
η

(
1 − 3 cos2 i

)
+

(
1 − 5 cos2 i

)]
(14)

Let the reference mean orbit elements be denoted with the subscript
“0”. The drift rate θ̇i of a neighboring orbit can be written as a series
expansion about the reference orbit element as

θ̇i = θ̇0 +
∂θ̇0

∂L
δL +

∂θ̇0

∂η
δη +

∂θ̇0

∂i
δi + H.O.T. (15)

where we make use of the fact that θ̇ = θ̇(L, η, i) only. Note that this
theory will leads to an analytical first order condition on the mean orbit
elements. To establish a more precise set of orbit elements satisfying
Eqs. (12) and (13), either δL, δη or δi could be chosen and the remaining
two momena orbit element differences found through a numerical root
solving technique. However, the analytical first order conditions provide
reasonably accurate solutions to these two constraints equations and
provide a wealth of insight into the behavior of J2 invariant relative
orbits.

Let the difference in latitude rates be δθ̇, then a first order approx-
imation of Eq. (15) is written as

δθ̇ = θ̇i − θ̇0 = MθLδL + Mθηδη + Mθiδi (16)

where Mθ = Ml + Mg and

MαA =
∂α̇

∂A

∣∣∣∣
L=L0,G=G0,H=H0

(17)

Similarly, we can expand the nodal rate ḣ to find

δḣ = MhLδL + Mhηδη + Mhiδi (18)

To enforce equal drift rates θ̇i and ḣi between neighboring orbits, we
must set δθ̇ and δḣ equal to zero in Eqs. (16) and (18), resulting in the
following two necessary conditions for relative orbits to be J2 invariant
up to first order.

MθLδL + Mθηδη + Mθiδi = 0 (19)

MeanElemKluv2.tex; 15/09/2004; 15:37; p.6
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MhLδL + Mhηδη + Mhiδi = 0 (20)

Since Eqs. (19) and (20) have three unknown quantities, namely the
differences in mean momenta elements δL, δη and δi, we are only left
with one degree of freedom in selecting the relative momenta. After
choosing either δL, δη or δi, the remaining two momenta differences
are determined through the two conditions shown above. If we choose
to enforce that the various l̇i and ġi are equal, then we have a nonlinear
system of three variables with three constraints, leaving no degree of
freedom in choosing the momenta quantities a, e and i. These condi-
tions are only satisfied for particular orbit solutions which are of little
interest for spacecraft formation flying.

Since the mean anomaly, argument of perigee and right ascension are
ignorable coordinates in the mean element space, they have no effect on
the secular rates between two objects. In the osculating space they are
not ignorable and consequently have an effect on the secular relative
motion. The angle differences δl, δg and δh can therefore be chosen at
will. Thus, operating in mean element space has reduced the scope of
the problem. This leaves us with a total of four degrees of freedom to
design a J2 invariant relative orbit. In contrast, with J2 = 0,there is
only the constraint δa = 0 leaving us five degrees of freedom.

Using Eqs. (9) through (11), the required partial derivatives are
found to be:

MlL =
∂ l̇

∂L
= − 3

L4
− ε

21
4L8η3

(
1 − 3 cos2 i

)
(21a)

Mlη =
∂ l̇

∂G
= −ε

9
4L7η4

(
1 − 3 cos2 i

)
(21b)

Mli =
∂ l̇

∂H
= ε

9
2L7η3

cos i sin i (21c)

MgL =
∂ġ

∂L
= −ε

21
4L8η4

(
1 − 5 cos2 i

)
(21d)

Mgη =
∂ġ

∂G
= −ε

3
L7η5

(
1 − 5 cos2 i

)
(21e)

Mgi =
∂ġ

∂H
= ε

15
2L7η4

cos i sin i (21f)

MhL =
∂ḣ

∂L
= −ε

21
2L8η4

cos i (21g)

Mhη =
∂ḣ

∂G
= −ε

6
L7η5

cos i (21h)

Mhi =
∂ḣ

∂H
= −ε

3
2L7η4

sin i (21i)
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Using Eqs. (21a) through (21f), we are able to rewrite the condition in
Eq. (19) which enforces equal latitude rates.

− 3
L0

4 δL − ε
21

4L8
0η

4
0

[
η0(1 − 3 cos2 i0) + (1 − 5 cos2 i0)

]
δL

− ε
3

4L7
0η

5
0

[
3η0(1 − 3 cos2 i0) + 4(1 − 5 cos2 i0)

]
δη

+ ε
3

2L7
0η

4
0

(3η0 + 5) cos i0 sin i0δi = 0 (22)

Note that only the term δL appears without being multiplied by the
small parameter ε. Thus δL must be itself of O(ε) and the term in-
volving εδL can be dropped as a higher order term. The first necessary
condition is then simplified to

− δL − ε
1

4L3
0η

5
0

[
3η0(1 − 3 cos2 i0) + 4(1 − 5 cos2 i0)

]
δη

+ ε
1

2L3
0η

4
0

(3η0 + 5) cos i0 sin i0δi = 0 (23)

Using the partial derivatives defined in Eq. (21g) through (21i), we are
able to rewrite the second condition for J2 invariant orbits, given in
Eq. (20), as

ε
3

2L7
0η

5
0

[
− 7

L0
cos i0δL − 4 cos i0δη − η0 sin i0δi

]
= 0 (24)

Since δL = O(ε) the δL term is dropped, resulting in the simplified
necessary condition

δη = −η0

4
tan i0δi (25)

which enforces equal nodal rates ḣ. Note that as the master orbit incli-
nation angle approaches 90 degrees, the change in eccentricity necessary
to compensate for an inclination angle difference grows infinitely large.
Using the δi defined in Eq. (25), we are able to simplify the condition
in Eq. (23) to

δL = − ε

4L4
0η

5
0

(4 + 3η0)
(
1 + 5 cos2 i0

)
︸ ︷︷ ︸

D

L0δη (26)

Combined, Eqs. (25) and (26) provide the two necessary conditions on
the mean momenta differences between two neighboring orbits to yield
a J2 invariant relative orbit.
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For more physical insight into these constraints, it is convenient to
map the differences in L into differences in the semi-major axis a. The
reason for choosing to deal with variations in η and not the eccentricity
measure e itself will become clear shortly. Recalling that L =

√
a (L

is a non-dimensional variable), the variations in L and a are related
through

δL =
1

2L
δa =

δa

2
√

a
(27)

Substituting Eqs. (27) into Eq. (26), the constraint enforcing equal
latitude rates between two orbits is rewritten as

δa = 2Da0δη (28)

Note that this a is the non-dimensional semi-major axis and must be
multiplied by the Earth radius Re to obtain proper physical units. Com-
bined, Eqs. (25) and (28) form the two necessary momenta constraints
expressed in terms of a difference in semi-major axis, eccentricity and
inclination angle.

To write the constraint in Eq. (25) in terms of the eccentricity e
directly, we must take the first variation of η =

√
1 − e2.

δe = −η

e
δη (29)

Substituting this into Eq. (25) we find

δe =
(1 − e2) tan i

4e
δi (30)

Clearly numerical difficulties arise with this constraint expression when-
ever e → 0 and the reference orbit becomes circular. According to
Eq. (30), it would appear that the change in eccentricity required for
a given δi would grow infinitely large as e becomes zero. However,
Eq. (25) shows that this is not necessary. Using η as the eccentricity
measure, we find that the change in eccentricity reaches a finite limit
for a circular orbit. The reason for this discrepancy is that it is not the
constraint condition that causes the singularity, but the transformation
between variations in e and η in Eq. (29). To avoid numerical difficulties
with circular reference orbits when setting up necessary mean orbit
element differences, it is therefore convenient to describe necessary
changes in eccentricity through δη and then use the nonlinear mapping
e =

√
1 − η2 to compute the adjusted eccentricity.

If J2 is set to zero (i.e. pure Keplerian motion), then we are only left
with the constraint that δa = 0. This makes sense intuitively, since the
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!o

!o= cos e-1

ao

J = 0 constraint surface2

J = 0 constraint line2

2i"

Figure 1. Drift free constraint illustration in momenta space.

semi-major axis a determines the orbit period. For Keplerian motion, if
the orbit periods are not equal, then the two spacecraft will drift apart.
In the momenta space (a, e, i) this constraint represents the surface of
a sphere as illustrated in Figure 1. For a particular chief orbit with
a0, e0 and i0, the neighboring orbit momenta elements must lie on this
surface. However, once the J2 perturbation is included, the geometric
constraint on the momenta elements to achieve drift free relative motion
is a straight line which is not tangent to the sphere surface.

It is interesting to study the energy levels of two neighboring orbits
which are J2 invariant using the necessary first order conditions estab-
lished in Eqs. (25) and (28). For the system studied, the Hamiltonian
M is the total energy. Including the J2 term, the averaged energy in
terms of normalized orbit elements is given by

M = − 1
2a

+ ε
1

4a3η3
(−1 + 3 cos2 i) (31)

Where for Keplerian motion the energy level of an orbit only depends
on the semi-major axis a, including the J2 effect makes the energy
expression depend on all three momenta elements a, e and i. The
difference in energy δM of a neighboring orbit and a reference orbit
is approximated as

δM = M − M0 ≈ ∂M0

∂a
δa +

∂M0

∂η
δη +

∂M0

∂i
δi (32)

Computing the partial derivatives in Eq. (31) while keeping in mind
that δa is of order O(ε) we find that

δM =
1

2a2
0

δa + ε
3

4a3
0η

4
0

[
(1 − 3 cos2 i0)δη − 2η0 sin i0 cos i0δi

]
(33)

For two neighboring orbits to be J2 invariant, the differences in a, η and
i must abide the two conditions in Eqs. (25) and (28). Substituting these
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variational constraint, the energy difference between two J2 invariant
orbits is given by

δM = ε
tan i0
4a3

0η
4
0

(1 + 5 cos2 i0)δi (34)

Eq. (34) states that if the two orbits have a non-zero difference in
inclination angle δi (or implicitly a difference in η or a), then the two
orbits must have different energies. Only if all three momenta elements
a, η and i between two orbits are equal will the orbit energies themselves
be equal. Note that this condition still allows the two orbits to have
different mean l, g and h.

Note that Eq. (25) shows a fundamental limitation of these mean
momenta constraints. For near-polar orbits, where the inclination angle
is close to 90 degrees, the tan i term grows very large. Even a small
change in inclination angle δi, typically done to achieve out-of-plane
relative motion in polar regions, would result in a relatively large change
in eccentricity. The result is that the resulting J2 invariant relative
orbits grow very large for near-polar orbits, making these orbits of
little practical use for close formation flying applications. An analogous
conclusion is made studying the relative energy condition in Eq. (34).
Since the relative orbit energy difference grows infinitely large for a po-
lar orbit, it is clear that for near-polar reference orbits the J2 invariant
relative orbit would be very large. However, note that the three mean
angle variables l, g and h can still be picked at random without causing
any orbit drift, even for the polar case. Further, note that if a change in
eccentricity is prescribed for a near-polar orbit, the associated required
change in inclination angle would be very small. Thus enforcing equal
drift rate conditions for near-polar orbit only encounter practical dif-
ficulties if a particular change in orbit inclination angle is demanded.
As numerical simulations will show, setting up this worst case problem
in mean element space and then transforming to corresponding inertial
position and velocity vectors will typically still exhibit less secular drift
than if the problem is simply setup using osculating elements. Further,
while it will not be possible to perfectly compensate for the ascending
node drift difference due to δi, it is still possible to equalize the latitude
rate drifts θ̇i using Eq. (28).

4. Numerical Simulations

Two numerical studies are presented illustrating J2 invariant relative
orbits for both non-polar and near-polar master orbits. The orbit ele-
ments for the master orbit are the same for each simulation except for
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12 H. Schaub and K. T. Alfriend

the inclination angle i as shown in Table I. The orbit has an altitude
of 775 km. The parameter J2 is 0.001082 and the Earth’s radius is
set at 6378.2 km. Since each spacecraft is assumed to be of equal
type, differential drag effects are ignored here. The purpose of these
simulations is to illustrate how well the first order conditions in Eq. (25)
and Eq. (28) render the resulting relative orbit J2 invariant. Further,
the power of setting up relative orbits in terms of mean orbit elements
vs osculating element space is shown.

Table I. Master satellite orbit eements.

Desired Average

Orbit Elements Value Units

a 7153 km

e 0.05

i 48 or 88 deg

h 0.0 deg

g 30.0 deg

l 0.0 deg

The relative orbit is constructed in these simulations by choosing
particular differences in mean orbit elements, and then translating the
adjusted mean orbit elements of the second satellite into corresponding
osculating orbit elements. The numerical simulation then uses the cor-
responding initial position and velocity vector and solves the system
using the nonlinear equations of motion including the zonal Ji terms
up to fifth order. However, in all cases tested the inclusion of the J3

through J5 terms had an minimal effect on the answer.
Other techniques could be used as well to setup the initial relative

orbit. For example, it is possible to establish a desired relative orbit
using the natural solutions of the linear CW equations. Since this is the
desired mean behavior, these six position and velocity coordinates must
then be first translated into six corresponding mean orbit elements.
Thus we are able to make use of the analytic first order transformation
shown in the appendix to obtain the corresponding initial osculating
elements (i.e. actual position and velocity vector).

4.1. Non-Polar Master Orbit

The first simulation illustrates how well the matching conditions work
for non-polar orbits. Here the inclination angle is set to 48 degrees.
The relative orbit is described by choosing the following mean orbit
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Figure 2. A) Initial relative orbit setup in osculating elements. B) Initial relative
orbit setup in mean elements.

element differences. To achieve some out-of-plane motion, an ascending
node difference of δh = 0.005 degrees is prescribed. The line of perigee
and initial mean anomaly differences are set equal and opposite in sign
as δg = 0.01 degrees and δl = -0.01 degrees. Of the three momenta
elements, we chose to prescribe a change in eccentricity δe = 0.0001
to exaggerate the in-plane, relative orbit. Using Eqs. (25) and (28),
the corresponding changes in a and i must be δa = -0.351765 meters
and δi = 0.001035 degrees. Note that both the required δa and δi to
compensate for this δe are rather small.

The resulting relative orbits, as seen in the Local-Vertical-Local-
Horizontal (LVLH) frame, are shown in Figure 2. The rotating LVLH
frame is defined with its first axis being along the chief orbit radial
axis, the third is along the orbit normal direction, and the second being
orthogonal to the previous two satisfying the right-hand rule. The plots
always show the data of 45 orbits, which correspond to roughly 3 days
of simulation time. The LVLH frame is chosen such that the x̂ direction
is along the instantaneous master satellite position vector. The out-of-
plane component ẑ is found by computing the cross product of x̂ with
the normalized velocity vector. The along track ŷ direction is then
found by taking the cross product of ẑ and x̂. The initial relative orbit
is always shown as a solid black line, while the path of the remaining 45
orbits is shown as a gray line. Both simulations use the same initial orbit
element differences. In Figure 2.A the initial orbit element differences,
which determine the initial shape of the relative orbit, are chosen in
osculating element space. Substantial relative orbit drift is apparent due
to the perturbative influence of J2. Figure 2.B illustrates the drastic
improvements that may occur if the initial orbit geometry is setup in
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Figure 3. A) Difference in ascending node h for osculating element setup. B)
Difference in latitude angle θ for osculating element setup.
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Figure 4. A) Difference in ascending node h for mean element setup. B) Difference
in latitude angle θ for mean element setup.

mean element space. Since the matching conditions in Eq. (25) and
(28) are only up to first order, the relative orbit will not necessarily be
perfectly J2 invariant. While some periodic thrusting is still necessary,
the frequency of these orbit corrections can be greatly reduced.

The differences of δh and δθ between the master and secondary
orbits are shown in Figure 3 for the case where the initial setup is
performed in the osculating element space. The mean orbit elements
are shown as a solid black line, while the osculating elements are shown
as a gray line. The corresponding orbit element differences are shown
in Figure 4 for the case where the setup is performed in mean element
space. While for an inclination angle of 48 degrees both orbits experi-
ence a substantial nodal rate ḣ, the difference in ascending node rates is
rather small. Setting up the relative geometry in mean element space
does reduce the relative nodal drift, but not substantially. A rough
calculation of the ∆v required per year to compensate for this drift
shows 0.0725 m/s required for the osculating element setup, and only
0.0181 m/s required for the mean element setup. Both are relatively
small numbers. At this inclination, the θ̇ drift is the dominant factor
pulling the two orbits apart. Comparing Figures 3.B and 4.B the benefit
of using mean elements is clear. Using the osculating setup where the
initial chief and deputy orbit elements are constructed in osculating
orbit element, the ∆v required per year is roughly 40.15 m/s. Using the
mean orbit elements to setup the geometry reduces this to 0.145 m/s.
Using the momenta element matching condition and working in mean
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Figure 5. A) Initial relative orbit setup in osculating elements. B) Initial relative
orbit setup in mean elements.
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Figure 6. A) Initial relative orbit setup in mean elements using δa = 2Daδη. B)
Initial relative orbit setup in mean elements using both matching conditions.

orbit element space, we are able substantially reduce the J2 induced
drift and the corresponding ∆v’s required to reset the relative orbits.

4.2. Near-Polar Master Orbit

The second simulation illustrates some issues that arise when trying
to generate J2 invariant relative orbits for near-polar master orbits
and demanding a specific inclination angle difference for out-of-plane
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motion. The inclination angle is set to 88 degrees for this purpose.
The relative orbit is described by choosing the mean orbit element
differences δh = 0.0 degrees (all out-of-plane motion produced through
δi), δg = 0.1 degrees and δl = -0.1 degrees. Assume the relative orbit
geometry requires a δi of 0.01 degrees to achieve roughly 1 km of out-
of-plane motion. However, we are no longer able to use both matching
conditions in Eqs. (28) and (25) since the tan i term will result in
impractical large changes in eccentricity. Therefore we abandon the
hope to be able to compensate for the δh drifts. For near polar orbits,
even though the various ḣ rates are relatively small, the differences of
these rates between neighboring orbits with different inclination angles
are large. However, we are still able to use Eq. (28) to match latitude
drift rates. Therefore we are left with one unused degree of freedom
and choose a δe of 0.0001 to exaggerate the in-plane relative orbit.

As the illustrations in Figures 5 and 6 show, the J2 induced drift
can still be reduced by simply setting up the relative geometry in mean
element space. Figure 5.A illustrates the motion resulting from setting
up the desired orbit element differences in osculating orbit space. The
relative orbits pull apart substantially in three days. Figure 5.B shows
the reduced amount of drift that occurs if the same orbit element differ-
ences are setup in mean element space. Note that Eq. (28) has not been
utilized here to compensate for the latitude difference drift. The relative
orbit is thus seen to drift in the negative along track direction. In
Figure 6.A the semi-major axis a is adjusted using Eq. (28) to attempt
to equalize the latitude rates θ̇. The required δa is -0.24157 meters.
While there is still some drift in the relative orbits due to the different
ḣ rates, the orbits no longer pull apart due to different latitude rates.
Figure 6.B shows how the relative orbit may become excessively large
if we attempt to cancel all relative orbit drift for near-polar orbits. To
achieve a desired δi of 0.01 degrees, the other two momenta elements
differences must be δe = 0.020648 and δa = -27.2122 meters. While
the resulting near-polar relative orbit has essentially no drift as seen in
this scale, the relative orbit radius grows from a few kilometers to over
100 kilometers. Note that the desired ±1 km out-of-plane motion isn’t
even visible on the scale shown.

The differences in ascending node and latitude angles for the cases
where the relative orbit geometry is setup in the osculating space and
where it is setup in the mean element space with semi-major axis
adjustment are shown in Figures 7 and 8. As predicted, the ascending
node drift δh is the same for both cases since we are no longer trying
to compensate for this. Over a year, the ∆v required to compensate for
this drift is roughly 56.8 m/s. However, where the osculating element
setup results in a substantial latitude drift δθ, setting up the orbits
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Figure 7. A) Difference in ascending node h for osculating element space setup for
a near-polar master orbit. B) Difference in latitude angle θ for osculating element
space setup for a near-polar master orbit.
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Figure 8. A) Difference in ascending node h for mean element space setup for a
near-polar master orbit. B) Difference in latitude angle θ for mean element space
setup for a near-polar master orbit.

in mean element space and compensating through a corresponding δa
results in a substantially reduced latitude drift. The ∆v requirement
to compensate for the δθ is approximately 112 m/s for the osculating
setup. This∆v drops to 14.1 m/s if the orbit elements are setup in mean
element space. The ∆v requirement per year is then further reduced to
approximately 1.45 m/s if the δa adjustment is made to equalize the
averaged latitude rates.

While this method is not able to compensate for the δh drift encoun-
tered with near-polar orbits, it is possible to establish an approximate
solution that greatly reduces the J2 induced relative orbit drift. Note
that prescribing differences to h, g and l is always possible, even for
polar master orbits. Problems may arise when trying to match a, e and
i for a prescribed difference in one of the quantities.

5. Conclusion

A method is presented to establish J2 invariant relative orbits for space-
craft formation flying applications. The desired relative orbit geometry
is designed using differences in mean orbit elements. Two constraints on
the three momenta element differences δa, δe and δi are derived. These
leave a total of four degrees of freedom to design the relative orbit. As
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the inclination angle i approaches a polar orbit, the corrections required
in eccentricity and semi-major axis to compensate for the J2 effect
become too large to be of practical value. Working with near-polar
orbits, setting up the relative orbit geometry in mean elements and
canceling the latitude rate difference still provides a substantial drift
and associated fuel savings. A particular limitation of the presented
method is that the mapping between mean and osculating elements
goes singular for circular orbits. The momenta element differences con-
straints still hold for circular orbits, but the mapping from mean to
osculating elements has mathematical problems whenever e approaches
zero. This can be rectified by using non-singular elements.

Appendix

For completeness, this appendix illustrates the transformation between
osculating and mean orbit elements. This is accomplished through two
transformations. The first transformation maps osculating elements to
intermediate or long period elements, while the second transformation
maps long period elements to mean elements. Using Brouwer’s nota-
tion, the long period elements are denoted with a single prime, while
the mean elements are denoted with a double prime. The generating
function W sp

1 , which establishes the osculating to long period elements
transformation, is given in terms of non-dimensional Delaunay variables
as

W sp
1 =

1
4G3

((
−1 + 3

H2

G2

)
(f − l + e sin f)+

3
2

(
1 − H2

G2

)(
sin(2f + 2g) + e sin(f + 2g) +

e

3
sin(3f + 2g)

))
(35)

The notation W sp
1 says that this is a first order transformation which

removes the short period (sp) component. Coffey [5] accomplishes this
with two transformations. The generating function W lp

1 , which estab-
lishes the long period to mean elements transformation, is given by

W lp
1 = − 1

32G3

(
1 − G2

L2

)(
1 − 5

H2

G2

)−1 (
1 − 16

H2

G2
+ 15

H4

G4

)
sin 2g

(36)

The transformation between long period and osculating elements is
achieved through

L′ = L − ε(L,W sp
1 ) = L + ε

∂W sp
1

∂l
(37)

MeanElemKluv2.tex; 15/09/2004; 15:37; p.18



J2 Invariant Relative Orbits 19

l′ = l − ε(l,W sp
1 ) = l − ε

∂W sp
1

∂L
(38)

with analogous transformations for the other momenta and angle orbit
elements. The expression (L,W sp

1 ) is the Poisson bracket of L and W sp
1 .

The inverse for this transformation is achieved trivially by switching
the primed and unprimed letters and reversing the sign of the ε term.

L = L′ + ε(L′,W sp
1 ) = L − ε

∂W sp
1

∂l′
(39)

l = l′ + ε(l′,W sp
1 ) = l + ε

∂W sp
1

∂L′ (40)

The long period to osculating elements transformations are then
given by

L = L′ − ε

4L′3

[(
−1 + 3

H ′2

G′2

)(
a′3

r′3
− L′3

G′3

)

+3

(
1 − H ′2

G′2

)(
a′

r′

)3

cos(2f ′ + 2g′)

] (41a)

G = G′ − 3ε
4G′3

(
1 − H ′2

G′2

)[
cos(2f ′ + 2g′)

+e′ cos(f ′ + 2g′) +
e′

3
cos(3f ′ + 2g′)

] (41b)

H = H ′ (41c)

l = l′ +
ε

8e′L′4

(
L′

G′

)[
2

(
−1 + 3

H ′2

G′2

)(
a′2

r′2
G′2

L′2 +
a′

r′
+ 1

)
sin f ′

+ 3

(
1 − H ′2

G′2

)((
−a′2

r′2
G′2

L′2 − a′

r′
+ 1

)
sin(f ′ + 2g′)

+

(
a′2

r′2
G′2

L′2 +
a′

r′
+

1
3

)
sin(3f ′ + 2g′)

)]
(41d)
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g = g′ − ε

8e′L′4

(
L′

G′

)2
[
2

(
−1 + 3

H ′2

G′2

)(
a′2

r′2
G′2

L′2 +
a′

r′
+ 1

)
sin f ′

+ 3

(
1 − H ′2

G′2

)((
−a′2

r′2
G′2

L′2 − a′

r′
+ 1

)
sin(f ′ + 2g′)

+

(
a′2

r′2
G′2

L′2 +
a′

r′
+

1
3

)
sin(3f ′ + 2g′)

)]

− 3ε
8G′4

[
2

(
−1 + 5

H ′2

G′2

)
(f ′ − l′ + e′ sin f ′)

+

(
3 − 5

H ′2

G′2

) (
sin(2f ′ + 2g′) + e′ sin(f ′ + 2g′)

+
e′

3
sin(3f ′ + 2g′)

)]
(41e)

h = h′ +
3ε

4G′4
H ′

G′
(
2(f ′ − l′ + e′ sin f ′) − sin(2f ′ + 2g′)

−e′ sin(f ′ + 2g′) − e′

3
sin(3f ′ + 2g′)

) (41f)

The transformation between long period to mean elements is achieved
in a similar manner. For the (L′, l′) elements, they are given by

L′ = L′′ + ε(L′′,W lp
1 ) = L′′ − ε

∂W lp
1

l′′
(42)

l′ = l′′ + ε(l′′,W lp
1 ) = l′′ + ε

∂W lp
1

L′′ (43)

with the remaining transformations generated in an analogous manner.
The inverse transformation is again achieved by simply switching the
prime’s and double-prime’s and reversing the sign of the ε term. The
transformation from mean to long period elements is given by

L′ = L′′ (44a)

G′ = G′′ +
ε

16G′′3

(
1 − G′′2

L′′2

)(
1 − 16

H ′′2

G′′2 + 15
H ′′4

G′′4

)
·(

1 − 5
H ′′2

G′′2

)−1

cos 2g′′
(44b)

H ′ = H ′′ (44c)
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l′ = l′′ − ε

16G′′4

(
G′′3

L′′3

)(
1 − 16

H ′′2

G′′2 + 15
H ′′4

G′′4

)
·(

1 − 5
H ′′2

G′′2

)−1

sin 2g′′
(44d)

g′ = g′′ +
ε

32G′′4

(
1 − 5

H ′′2

G′′2

)−1 [(
3 − G′′2

L′′2

)
·(

1 − 16
H ′′2

G′′2 + 15
H ′′4

G′′4

)
− 2

H ′′2

G′′2

(
1 − G′′2

L′′2

)
·11 + 25

H ′′2

G′′2 + 200
H ′′4

G′′4

(
1 − 5

H ′′2

G′′2

)−1
 sin 2g′′

(44e)

h′ = h′′ +
ε

16G′′4

(
H ′′

G′′

)(
1 − G′′2

L′′2

)(
1 − 5

H ′′2

G′′2

)−1

·11 + 25
H ′′2

G′′2 + 200
H ′′4

G′′4

(
1 − 5

H ′′2

G′′2

)−1
 sin 2g′′

(44f)
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