Principal Rotation Representations of
Proper NxN Orthogonal Matrices

Hanspeter Schaub, Panagiotis Tsiotras and John L. Junkins

Simulated Reprint from

International Journal of Engineering Science

Vol. 33, No. 15, 1995, Pages 2277-2295

A publication of the
Elsevier Science Ltd.
Pergamon Press plc
Headington Hill Hall
Oxford, OX3 0BW
Great Britain



Principal Rotation Representations
of Proper NxN Orthogonal Matrices

Hanspeter Schaub
Panagiotis Tsiotras
John L. Junkins

Abstract

Three and four parameter representations of 3x3 orthogonal matrices are extended
to the general case of proper NxN orthogonal matrices. These developments gener-
alize the classical Rodrigues parameters, the Euler parameters, and the recently
introduced modified Rodrigues parameters to higher dimensional spaces. The de-
vel opments presented are motivated by, and significantly generalize and extend the
classical result known asthe Cayley transformation.

Introduction

It iswell known in rigid body dynamics, and many other areas of Euclidean analysis, that the
rotational coordinates associated with Euler’s Principal Rotation Theorem [1,2,3] lead to espe-
cialy attractive descriptions of rotational motion. These parameterizations of proper orthogonal
3x3 matrices include the four-parameter set known widely as the Euler (quaternion) parameters
[1,2,3], aswell asthe classical three-parameter set known as the Rodrigues parameters or Gibbs
vector [1,2,3,4]. Alsoincluded isa recently introduced three parameter description known asthe
modified Rodrigues parameters [4,5,6]. Aswe review briefly below, these parameterizations are
of fundamental significance in the geometry and kinematics of three-dimensional motion.
Briefly, their advantages are asfollows:

Euler Parameters. Thisonce redundant four-parameter description of three-dimensional rota-
tional motion maps all possible motionsinto arcs on a four-dimensional unit sphere. Thisaccom-
plishes a regularization and the representation is universally nonsingular. The kinematic differen-
tial equations contain no transcendental functions and are bi-linear without approximation.

Classical Rodrigues Parameters: This three parameter set, also referred to as the Gibbs vec-
tor, is proportional to Euler’s principa rotation vector. The magnitude is tan(@/2), with @ being
the principal rotation angle. These parameters are singular at ¢ = 1t and have elegant, quadrati-
cally nonlinear differential kinematic equations.

Modified Rodrigues Parameters. Thisthree parameter set isalso proportional to Euler’'s prin-
cipal rotation vector, but with a magnitude of tan(@/4). The singular orientation is at ¢ = £2T1,



doubling the principal rotation range over the classical Rodrigues parameters. They also have a
guadratic nonlinearity in their differential kinematic equations.

The question naturally arises; can these elegant principal rotation parameterizations be ex-
tended to orthogonal projections in higher dimensional spaces? Cayley partially answered this
guestion in the affirmative; his* Cayley Transform” fully extends the classical Rodrigues parame-
tersto higher dimensional spaces[1,2,7]. A proper NxN orthogonal matrix can be generaly para-
meterized by a vector with dimension M = %2N(N-1). Only for the 3x3 caseisN equal to M. Any
proper orthogonal matrix has a determinant of +1 and can be interpreted as analogous to a rigid
body rotation representation. This paper extendsthe classical Cayley transform to parameterize a
proper NxN orthogonal matrix into a set of M-dimensional modified Rodrigues parameters. Fur-
ther, a method is shown to parameterize the NxN matrix into a once-redundant set of
(M+1)-dimensional Euler parameters.

The first section will review the Euler, Rodrigues and the modified Rodrigues parameters for
the 3x3 case, generalized later in this paper to parameterize the proper NxN orthogonal matrices.
The second section will review the classical Cayley transform resulting with the representation of
a proper orthogonal matrix using the Rodrigues parameters, followed by the new representation
of the NxN orthogonal matrices using an M-dimensiona set of modified Rodrigues parameters,
and finally, a new representation of the NxN orthogonal matrices using an (M+1)-dimensional
Euler parameters.

Review of Three-Dimensional Rigid Body Rotation Parameterizations

TheDirection Cosine Matrix

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro-
tation. The matrix elements are bounded between +1 and possess no singularities. The famous
Poisson kinematic differential equation for the direction cosine matrix is:

C=-[®]C (1)
where thetilde matrix isdefined as
. 0 - wp
[ = ws 0 -y (2
—Wy W 0

The direction cosine matrix C isorthogonal, therefore it satisfies the following constraint.

c'c=ccC’ =1 (3)

This constraint causes the direction cosine matrix representation to be highly redundant. In-
stead of considering all nine matrix elements, it usually sufficesto parameterize the matrix into a
set of three or four parameters. However, any minimal set of three parameterswill contain singu-
lar orientations.

The constraint in equation (3) showsthat besides being orthogonal, the direction cosine matrix



isalso normal [8]. Consequently it hasthe spectral decomposition
C = UAU" (4)

where U isa unitary matrix containing the orthonormal eigenvectorsof C,and A isadiagonal
matrix whose entries are the eigenvalues of C. The * symbol stands for the adjoint operator,
which takes the complex conjugate transpose of a matrix. Since C represents a rigid body rota-
tion, it always hasa determinant of +1.

ThePrincipal Rotation Vector

Euler’s principal rotation theorem statesthat in athree-dimensional space, arigid body (refer-
ence frame) can be brought from an arbitrary initial orientation to an arbitrary final orientation by
asingle principal rotation (¢) about a principal line é[3].
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Fig. 1. Euler'sPrincipal Rotation Theorem.

With reference to Fig. 1, the body axis by components of the principal line & are identical to
the spatial components projected onto 1; .

[§}=é=C[é (5)

Therefore € must be an eigenvector of the 3x3 C matrix with a corresponding eigenval ue of
+1. Inthiscasethe det(C) would be +1. The principal rotation vector y isdefined as:

y=¢e (6)
Let usnow consider the case where arigid body performs a pure single-axis rotation about the

fixed é Thisrotation axisisidentical to Euler’sprincipal line of rotation é. Let the rotation angle
be @. The angular velocity vector for this case becomes:



0= @8 (7)
or in matrix form:
[©] = g[&] )
Substituting equation (8) into (1), one obtains the following devel opment.
dC _ do .
o eIc
dac .
d_(p =-[€]C
Cc=¢e¥d 9)

The last step follows since the [&] matrix is constant during this single axis maneuver. Due
to Euler’s principal rotation theorem, however, any arbitrary rotation can always be described in-
stantaneously by the equivalent single-axis principal rotation. Hence equation (9) will hold at any
instant for an arbitrary time-varying direction cosine matrix C. However, ¢ and & must be con-
sidered time-varying functions. Using the following substitution

[V] = ol€] (10)
equation (9) can berewritten as[2]
I I
c=glVl :ngoﬁ(_[y]) (11)

Instead of using an infinite matrix power series expansion of equation (11) to find C, the ele-
gant finite transformation shown below can be used [2]. That is, the evaluation of e doesnot
require the spectral decomposition of [y] , but can be written directly interm of y itself. Unfor-
tunately, this transformation only holds for the 3x3 case. A genera transformation for the NxN
caseisunknown at thispoint, at least asfar asthe authors know.

eVl = Icosp- [&]sing - &&T (cosp- 1) (12)
o=yl é=v/o

To find the inverse transformation from the direction cosine matrix C to [y] , the matrix loga-
rithm can be taken of equation (11) to obtain

[7]=-logC= Y~ (1-C)" (13
n=1

Using the spectral decomposition of C given in equation (4), the above equation can be rewrit-
ten as

[¥] = - log(UAU") = - U(logA)U" (14)



where calculating the matrix logarithm of a diagonal matrix becomestrivial. Since all eigen-
values of an orthogonal matrix have unit norm, the matrix logarithm in equation (14) is defined
everywhere except when an eigenvalue is -1. Generally, equation (14) will return a [y] which
corresponds to a principal rotation angle @ in (-180°,+180°). Note however, that when C has ei-
genvalues of -1, equation (14) does not return a skew-symmetric matrix. The transformation
breaks down here for this singular event. The geometric interpretation is that a 180° rotation has
been performed about one axis (leading to one positive and two negative eigenvalues of C), which
isthe only rotation not covered by the domain of equation (14).

The principal vector representation of C isnot unique. Adding or subtracting 2rtfrom the prin-
cipal rotation angle ¢ describes the same rotation. As expected, equation (11) will always yield
the same C matrix for the different principal rotation angles, since all angles correspond to the
same physical orientation. However, the inverse transformation given in equation (14) yields only
the principal rotation angle which lies between -180° and +180°.

Asdo al minimal parameter sets, the principal rotation vector parameterization has a singular
orientation. The vector isnot uniquely defined for a zero rotation from the reference frame. The
principal rotation vector parameterization will be found convenient, however, to derive useful rela-
tionships.

TheEuler (Quaternion) Parameters

The Euler parameters are a once-redundant set of rotation parameters. They are defined in
termsof the principal rotation angle ¢ and the principal line componentse asfollows:

Bo:cosc—zp, Bi :eisin(—zp =123 (15)
They satisfy the holonomic constraint:
BE+RI+B5+p5=1 (16)

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface
of afour-dimensional unit hypersphere. This behavior bounds the parameters to values between
+1. However, the Euler parameters are not unique. The mirror image trajectories 3(t) and -B(t)
both describe the identical physical orientation histories. Given a 3x3 orthogonal matrix, there
will be two corresponding sets of Euler parameters which differ by a sign. The Euler parameters
are the only set of rotation parameters which have a bi-linear system of kinematic differential
equations[1], other than the direction cosine matrix itself, asfollows

Bod  Po —B1 —B2 —Bs
0 1B By B BpCHOE
o0 20 B Bo —PLit2r 0
P2 [] 2 Pz Po 1%‘2[
MB,0 Bs B2 B Bo

It isalso of significance that the above 4x4 matrix is orthogonal, so “transportation” between
coi’sand B, ‘sis“painless’. Thedirection cosine matrix interm of the Euler parametersis[1,3]



Elﬁ-’% +B2-B2-PB3 2(B1B2 +BoBs) 2(B1Bs +PoB2)
[C] = QZ(Blﬁz ~BoBs) BZ—BZ+P3-PB5 2(B2Bs +PRoP1)
02(B1Bs —BoB2)  2(B2Bs —PoB1) B —BF - P35 +PB3

(18)

nrrr

The Euler parameters have several advantages over all minimal sets of rotation parameters.
Namely, they are bounded between 1, never encounter a singularity, and have linear kinematic
differential equationsif the w,(t) are considered known. All of these advantages are slightly offset
by the cost of having one extra parameter.

TheClassical Rodrigues Parameters

The classical Rodrigues parameter vector g can be interpreted as the coordinates resulting
from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a
three-dimensional hyperplane [6], with the projection point at the origin and the stereographic
mapping hyperplane at Bo =+1. Asdiscussedin[6], it followsthat they have their singular orien-
tation at a principal rotation angle of ¢ = £180° from the reference. Their transformation from
the Euler parametersis

di :& =123 (19)

Unlike the Euler parameters, the Rodrigues parameters are unique. The g uniquely define a
rotation on the open range of (-180°,+180°) [6]; asis evident in equation (19), reversing the sign
of the Euler parameters has no effect on the q- Using equation (15), the classical Rodrigues pa-
rameters can also be defined directly in terms of the principal rotation angle and the principal axis
components as

Gi = eltan(—zp =123 (20)

It is apparent that q has the same direction as the principal rotation and the magnitude is
tan(@/2) . The singular condition of ¢ = £180° is evident by inspection of equation (20). The
kinematic differential equation for the Rodrigues parameters contain a quadratic nonlinear depen-
dence onthe q;- They can be verified from equations (17,20) to be [1-4]

fh (016 GGG GG+,
2 0= 5 (201 + 03 1+05 %%‘%é@] (21)

DU “ Mg - ez +an  1+¢2

Notice that the above coefficient matrix is not orthogonal, although the inverse is well be-
haved everywhere except at @ = +180° where |g| — o . The direction cosine matrix in terms of
the Rodrigues parametersis[1-4]:

g+ﬁ—%—% 2 +d3) 23~ Gr) C
5 02(or —0s) 1-0f+03-05 2(0203 +01) C (22)

C(q) =
+2 O
% 02(gh +G2)  2(Gsz — 1) 1-02 -3 +03C

1+0f +03



TheModified Rodrigues Parameters

The modified Rodrigues parameter vector 6 isalso a set of stereographic parameters, closely
related to the classical Rodrigues parameters [2,4-6]. The modified Rodrigues parameters have
the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at Bo =0. Thisprojec-
tion resultsin a set of parameters which do not encounter a singularity until a principal rotation
from the reference frame of +360° has been performed. Therefore they are able to describe any
rotation except a complete revolution £360°. Their transformation from the Euler parametersis

_ B L _
Oj _—1"‘[30 1=1,2,3 (23)

While the classical Rodrigues parameters have a singularity at BO:O (p=%180°), the modified
Rodrigues parameters have moved the singularity out to a single point at [30=-1 (p=+360°). Fig-
ure 2 below illustrates these two singular conditions. Since the classical Rodrigues parameters are
only defined for —180° < @< +180° , they can only describe rotations on the upper hemisphere
of the four-dimensional unit hyper-sphere where [30>0. However, the modified Rodrigues parame-
ters can describe any rotation on this hypersphere except the point BO:-l. Therefore the modified
Rodrigues parameters have twice the nonsingular range asthe classical Rodrigues parameters.

4D Unit Hyper-Sphere
with B%+B%+B%+B23:1 BO =+1

-

m
X

\ \origin

7 -

Bp=-1
(Modified Rodrigues (Rodrigues Parameter
Parameter singularity point) singularity surface)

Fig. 2.: lllustration of the Singular Conditions of the Classical and
the Modified Rodrigues Parameters.

Like the Euler parameters, the modified Rodrigues parameters are not unique. They have an
associated “shadow” set found by using -f3(t) instead of ((t) in equation (23) [5,6]. The transfor-
mation from the original set to the “ shadow” setis[2,5,6]

-G .
S= -1 =123 (24)

(0}
TG

(o]}

The “shadow” points are denoted with a superscript S merely to differentiate them from o; .
Keep in mind that both & and 6° describe the same physical orientation, similar and related to
the case of the two possible sets of Euler parameter and the principal rotation vector. It turns out
that the modified Rodrigues “shadow” vector G°(t) has the opposite singular behavior to the



original vector o(t) . The origina parameters have differential kinematic equations which are
very linear near a zero rotation and are singular at a +360° rotation. On the other hand, the “ shad-
ow” parameters have differential kinematic equationswhich are linear near the +360° rotation and
singular at the zero rotation. [6] Using equation (15), the definition for the modified Rodrigues pa-
rameters in equation (23) can be rewritten as[4]

oj = atan9 (25)
4

Equation (25) isvery similar to equation (20), except for the scaling factor of the principal ro-
tation angle. The singularity at +360° is evident in equation (25), and small rotations behave like
quarter angles. All three parameter representations must possess a singularity. This set max-
imizes the nonsingular principal rotation range to +360°. The following differential kinematic
equations display a similar degree of quadratic nonlinearity as do the corresponding equationsin
termsof the classical Rodrigues parameters|[4-6]

6 =70 2(0201 +03) 1- 0f +03 -05 2(0203-01) (26)
[

02(0301-02) 2(0302+01) 1-0%-05+0%

AN

. l+0s-05-05 2(0102-03) 2(0103+03) éwl
o

Note that the coefficient matrix of the differential kinematic equation isnot orthogonal, but al-
most. Multiplying it with its transpose yields a scalar (1+67 6)2 /16 times the identity matrix.
Asfar aswe know, thisisthe only three parameter representation possessing this elegant property;
further attesting to the uniqueness and importance of the modified Rodrigues parameterization.
Thisalmost orthogonal behavior allowsfor a simple transformation between the w; and the G;

1 [4(0% B G% - G%) +2? 80102 +4032 80,03 —405% C
N [} c
C(o) T (116762 D0 80,01 —403%  4(-0%2+0%3-03)+3% 80,03 +401% C27)
( o) 0) O 80301 +4022 8030, —401% 4(_ 0% _0% .,_0%) +320
5=1-6'6

The direction cosine matrix is shown above [6,9]. It hasadlightly higher degree of nonlinear-
ity than the corresponding direction cosine matrix in termsof the classical Rodrigues parameters.

Parameterization of Proper NxN Orthogonal Matrices

A proper orthogonal matrix is an orthogona matrix whose determinant is +1. Some aspects
of parameterizing proper NxN orthogonal matrices into M-dimensional Rodrigues parameters
have been studied recently by Junkins and Kim [1] and Shuster [2]. Keep in mind that M =
%IN(N-1). These classical developments, generalizing the Rodrigues parameters to NxN proper
rotation matrices, date from the work of Cayley [7] and are included below for comparative pur-
poses with the new representations.

Any NxN orthogona matrix abides by the constraint given in equation (3). Thisequation isan
exact integral of equation (1), as can be verified by differentiation of equation (3) to obtain



c'c+C’c=0 (28)

The C matrix defined in equation (1) can be shown to satisfy this condition exactly. Substi-
tute equation (1) into (27) and expand asfollows

(-[®]C)TC+CT(-[&]C) =0
(-cT[&@")c-CcTi@c=0
CT(-[@]" -[&@])c=0

The above statement is obviously satisfied if [@] is a skew-symmetric matrix, e.g.
[@] =-[&]" . Consequently equation (1) will generate an NxN orthogonal matrix, as long as
[@] isskew-symmetric and the initial condition C(t=0) is orthogonal. This observation allows
for the evolution of NxN orthogonal matricesto be viewed as higher dimensional direction cosine
matrices, somewhat analogous to the motion generated by a “higher dimensional rigid body rota-
tion,” and also suggests parameterization of of higher dimensional rigid body-motivated rotation
parameters.

Higher Dimensional Classical Rodrigues Parameters

Cayley’s transformation [7] parameterizes a proper orthogonal matrix C as a function of a
skew-symmetric matrix Q); these elegant transformations are

C=(1-QU+Q'=(1+Q(1-Q) (299)
Q=(-C)(1+C)t=@+C)t(1-0) (29b)

The Cayley’s transformation is one-to-one and onto from the set of skew-symmetric matrices
to the set of proper orthogonal matrices with no eigenvalues at -1. Notice the remarkable truth
that the forward and inverse transformations are identical. The transformation in equation (29b)
failsif any of the eigenvalues of C are -1, because the |+C matrix becomes singular and is thus
not invertible. The Cayley transformation in equation (29a) produces only proper orthogona ma-
trices C with det(C)=+1. Thiscan be verified by examining the determinant of C as shown below.
Using equation (29a), det(C) can be expressed as

_ det(1 -Q)

det(C) = det(1 - Q)det((1 + Q™) = G0y

Since the Q matrix is skew-symmetric, it has purely imaginary complex conjugate pairs of ei-
genvaues of the form +iA.. Let R be the corresponding complex eigenvector matrix to Q. Mullti-
plying and dividing the above equation by det(R) yields

det(R)det(l - Q)/det(R) _ det(R)det(l - Q)det(R™!)
det(R)det(l +Q)/det(R) ~ det(R)det(l + Q)det(R™?)

det(C) =
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_det(R(I -Q)R™Y) _ det(I -RQR™?)
aer(C) = det(R(I +Q)R™1) ~ det(l + RQR 1)

where the RQR™? term is a diagonal matrix containing the eigenvalues of the Q matrix.
Since the determinant of amatrix isthe product of all the eigenvalues, the above can be written as

T (-iy)(a+in) T (1+A7)
ITo (T +in)(1-in)  TT%(1+27)

det(C) =+1 ged

where p isthe number of nonzero (imaginary) eigenvalues of Q. The above statement proves
that all C matricesformed with equation (29a) are indeed proper matrices.

To proof that the classical Cayley transform isa map from the skew-symmetric matrices onto
the set of proper orthogonal matrices with no eigenvalue at -1,let us decompose the orthogonal C
matrix into real matrices T and D

C=TDT'

where T isorthogona and D isblock diagonal of theform

£10 0 -~ 0
50 AL 0 - OF
D=0 0 A --- O
0: : & oC
00 0 0 0 AL

If the NxN C matrix isof even dimension, then the +1 term isomitted. The A; 0 022 block
entriesare of theform

costj sing;
—sing; cos;

Aj:

where, in fact, -180°<6.<+180°. Using the above real decomposition of C in equation (29b),
the Cayley transformation can be rewritten as

Q=T(-D)(I1+D)1TT =TDTT

Since D isblock-diagonal, the D matrix will also be block-diagonal and of theform

0 - 0

B=pp ot OF
[ : OE
0 0 0 BcL

where B; 0 0?2 isfound to be
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Note that the B. matrix is not defined for 8. = +180°, meaning that the orthogonal C matrix
cannot contain any eigenvalues of -1 and must therefore be proper. Clearly, since D = - D' then
Q is skew-symmetric and the mapping from skew-symmetric matrices to proper orthogonal ma-
tricesisonto.

For the 3x3 case, let the Q matrix be defined as the foll owing skew-symmetric matrix:

N DO -0 Q2 C
Q=[dl=gas 0 -air (30)
g2 qg¢ OL

After substituting equation (30) into (29a), it can be verified that resulting C matrix isindeed
equal to equation (22). Cayley’stransformation (29) isa generalization of the classical Rodrigues
parameter representation for NxN proper orthogona matrices [1,2], while the Q matrix gener-
alizes the Gibbsvector in higher dimensions[2,10].

Using the [y] matrix defined in equation (14) the Q matrix can be expressed asfollows|[2]:

Q=- tanh(%) =- (e% - e'%)(e% + e'%)_1 (31

The above transformation can be verified by performing a matrix power series expansion of
eguation (31) and substituting it into a matrix power series expansion of equation (29a). The re-
sult isamatrix power seriesexpansion for the matrix exponential function as expected from equa-
tion (11). However, equation (12) cannot be used to calculate the matrix exponentias, since this
equations only holds for the 3x3 case. Note the similarity between equation (31) and (20). Both
calculate the Rodrigues parametersin termsof half the principal rotation angle!

The differential kinematic equations of the C matrix were shown in equation (1), where the
skew-symmetric matrix [®] isrelated to Q and Q viathe kinematic relationship [1]

[6] =2(1+Q)~Q(I -Q)™ (32)

or conversely, Q can bewritten as
2= 21+ Q)a(1-Q) 3
The equations (32-33) are proven to hold for the higher dimensional case in reference 1. For

NxN orthogonal matrices, [®] = - [(I)]T represents an analogous “ angular velocity” matrix.

Higher Dimensional Modified Rodrigues Parameters

As is evident above, the modified Rodrigues parameters have twice the principal rotation
range as the classical Rodrigues parameters. It can be shown that the higher dimensional mod-
ified Rodrigues parameters aso have twice the nonsingular domain as the higher dimensional
classical Rodrigues parameters.

To find a transformation from the NxN proper orthogonal matrix C to the modified Rodrigues
parameters, let us first examine what happens when taking the matrix square root of C. Let the
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sguare root matrix W be defined by the necessary, but not sufficient condition

WW=C (34)

Obvioudly, for the general NxN case, there will be many W matricesthat satisfy equation (34).
Using the spectral decomposition of C given in equation (4), the spectral decomposition of W can
be written as

W= Uy/A UM (35)

Since the C matrix is orthogonal, al the eigenvaluesin A must have unit magnitude. Keepin
mind that the A matrix in equation (35) isdiagonal and that the matrix square root istrivia to cal-
culate. Since taking the square root of an eigenvalue with unit magnitude results in another ex-
pression with unit magnitude, the W matrix itself isunitary, or orthogonal if al entriesarereal. It
turns out that W is always real and orthogonal, as long as no eigenvalue of Cis-1. If an eigen-
value of Cis-1, then W has complex values and is a unitary matrix. The product of all eigenval-
ues of C isthe determinant of C and must be +1 since C isproper. For even dimensionsof C, the
eigenvalues must all be complex conjugate pairs for the det(C) to be +1. For odd dimensions, the
extra eigenvalue must be real and +1 in order for the matrix to be proper.

Each time a square root is calculated, there are two possible solutions. If the eigenvalue in
guestion isone of the complex conjugate pairs, then the sign does not matter for W to be a proper
matrix. If the matrix dimension is odd, then the root of the extra eigenvalue must be +1 for W to
be proper. In the 3x3 case there is only one complex conjugate pair of eigenvalues. Hence only
two W matrices satisfy the above conditions. Thisisto be expected, since any three-dimensional
rotation can be described by two principal rotation angleswhich differ by 21, one of which ispos-
itive and the other is negative. To make the choice of W unique, let us select all the roots of the
complex conjugate pairsto have a positive real part.

Since the W matrix is orthogonal, with one exception, it has a principal line and angle asso-
ciated with it. If the C matrix had an eigenvalue of -1, the same numerical problems arise aswe
encountered with finding the principal rotation vector. Multiplying W with itself in equation (34)
simply doubles the principal angle, but leaves the principal line unchanged. Therefore W repre-
sents a rotation about the same principal line as C, but with half the principal angle. This pro-
vides conceptually elegant interpretations of the square root of C asdefined above..

For three-dimensional rotations, the simple restriction on the square roots of the eigenvalues
can be shown to restrict the principal rotation angle to satisfy —180° < @ <+ 180° . Thischoice
is consistent with many numerical matrix manipulation packages and their computation of a
square root of a matrix. Let the j-th complex conjugate eigenvalue of C be denoted as €9 |
where the the phase is —180° < 6; < +180° . If the dimension N is an odd number, W has the
structure
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.0
H7 0 o o0
.0
Do N 0 0 OD
W=U o, 9 OpmF (36)
0 0e' 2> o0 0
Do 0 0 o0 &% oD
0o 0 0 O o +10
If thedimension N iseven,then Wis
®i* 0 .. 0 0 O
0;
[Jo e ... 0 o0 []
w=Uup: : . o o p” (37)
.9,
[Jo 0 o0e'2 o0 []
Oo 0 0 0 g0

Using the parameterization given in equation (11), the matrix W can also be written directly in
terms of the principal rotation matrix [y] asfollows

—[yl

W=e 2 (38)

This solution for W can be verified by substituting it into equation (34). Comparing equation
(38) with equation (11) it becomes obvious that the W matrix has indeed the same principle rota-
tion direction as C, with half the principle angle. Since, for three-dimensional rotations, there are
two possible principal angles for a given attitude, there are two possible solutions for equation
(38). Again, by keeping |¢| < 180°, the same W matrix is obtained as with the matrix square root
method discussed above.

Remember that the modified Rodrigues parameters have a nonsingular range corresponding
to || <360° . Since W isthe direction cosine matrix corresponding to half of the principal rota-
tion angle of C, the resulting nonsingular range of the W matrix has been reduced to |¢| < 180° .
This is the same nonsingular range as the classical Rodrigues parameters. Therefore the Cayley
transformations, defined in equations (29a,b), can be applied to W. Let S be the skew-symmetric
matrix composed of the modified Rodrigues parameters, similar to the construction of the Q ma-
trix in equation (30). Then the transformation from Wto Sand itsinverse are given as:

W=(1-91+9t=(1+971(1-9 (39a)
S=(1-W)(I +W)™ L= (1 +W) 11 -wW) (39b)

Using equation (39a) and (34), adirect transformation from Sto C isfound.
C=(1-9%(1+972=(1+9)7%(1-9)? (40)

This direct transformation is very similar to the classical Cayley transform, but no elegant di-
rect inverse exists (i.e. we lose the elegance of equation (29b); no anal ogous equation can be writ-
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ten for S as a function of C). This is due to the overlapping principal rotation angle range of
+360° causing the transformation in equation (40) not to be injective (one-to-one). Since the clas-
sical Rodrigues parameters are for principal rotations between (-180°,+180°), they have a unique
representation and the Cayley transform has the well known elegant inverse.

However, an alternate way to obtain the S matrix from the C matrix is available through the
skew-symmetric matrix [y] defined in equation (14).

S= —tanh(%) =- (e% - e'[;] )(e% + e'%)_l (41)

The transformations given in equation (41) can be verified by performing a matrix power se-
ries expansion and back-substituting it into equation (40). Note again the similarity between equa-
tion (41) and equation (25). The principal rotation angle isdivided by four in both cases.

Either theW or the [y] matrix can be solved from the proper NxN orthogonal C matrix to ob-
tain the corresponding S matrix. Neither method is as elegant, however, as equation (29b) of the
Cayley transformation. The method using the [y] matrix hasthe advantage that [y] isfound by
taking the matrix logarithm of the eigenvalues of the C matrix as shown in equation (14). The
unigueness questions do not arise here asin the matrix square root method because solutions are
implicitly restricted to proper rotationswith || < 180° . Both methods produce the same results
using, for example, the matrix exponential and matrix square root algorithms available as MAT-
LAB or MATHEMATICA operators. Note that both the classical and the “updated” Cayley trans-
form have numerical problems when transforming a proper orthogonal matrix C into a
skew-symmetric matrix if C haseigenvaluesof -1.

Since each set of modified Rodrigues parameters has its associated “ shadow” set [6], it iSusu-
ally not important which S parameterization one obtains, aslong as at least one valid Smatrix is
found. Once a parameter set isfound, either the original ones or the “shadow” set, it istrivial to
remain with this set during the forward integration of the differential equations governing the evo-
lution of S

The differential kinematic equations for S are not written directly from C as they were with
the classical Cayley transform. Instead W is used to describe the kinematics of the NxN system.
The relationship between W and Sisthe same as between C and Q. Therefore the same equations
can beused. Thedifferential kinematic equation for Wis:

W=-[Q]w (42)
where the skew-symmetric matrix [Q] is:
[Q] =2(1+9)71S(1-9) (43)
or conversely S could be defined as:

':%(|+5)[ﬁ](|—5) (44)
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Equation (34) can be used during the forward integration to obtain C(t). The time evolution of
Cintermsof Wand [Q] is:

C=-[Q]ww-wWQ]w=-[Q]c-WQ]w (45)

Equating equation (45) and (1), the direct transformation from [Q] to [&@)] is:
[&] =[Q] +W[Q]WT (46)

To verify that egquation (46) yields a skew-symmetric matrix [®] , the definition of a
skew-symmetric matrix isused:

[&] =-[&]" =- ([Q] + W QwT)"
(@] =-[Q]" - (W) [Q] W
(@] =[Q] +W[Q]WT ged.

Although thisnew parameterization issomewhat more complicated than the classical parame-
terization into M-dimensional Rodrigues parameters, the complications arise only when setting up
the parameterization in terms of S. Once an S matrix and a corresponding W matrix have been
found, this method is no different from the classical method. The important improvement is that
the range of possible principle rotations has been doubled over the classical M-dimensional Ro-
drigues parameters.

A Preliminary I nvestigation of Higher Dimensional Euler Parameters

The classical Euler parameters stood apart from the other parameterizations, because they
were bounded, universally nonsingular and had an easy-to-solve bi-linear differential kinematic
equations. All of these attractive featureswere only slightly affected by the cost of increasing the
dimension of the parameter vector by one. These classical Euler parameters are extended below
to higher dimensions, where they will retain some, but not all, of the above desirable features.

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa-
tion (19). They are identical except for the scaling term of BO. The classical Rodrigues parame-
ters have been shown to expand to the higher dimensional case where they parameterize a NxN or-
thogonal matrix C [1]. Analogous to equation (19), they can aways be described astheratio of a
once-redundant set of parameters.

qi:& i:1,2,3,...,M:M (47
Bo 2
The skew-symmetric matrix Q in equation (29a) can be written as:
1
Q=--B (48)

Bo

where B isa NxN skew-symmetric matrix containing the numerators 3; of Q. For the three
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dimensional case, thismatrix isthe “vector" part of the classical Euler parameters Bl, [32, [53, and
hasthe familiar structure

00 -Bs P
B=[Bs 0 -PBif (49)
0B, Br OCLC

Substituting the transformation relating Q to { BO,Bl,...,BM} , @sgiven in equation (48) the Cay-
ley transform of equation (29a) resultsin the following

C=(Bol -B)(RBol +B) "
C(Bol +B) = (Bol —B)
(I-C)Bo-(1+C)B=0 (50)

Equatlon (50) represents an NxN system of linear equations in {BOB - ,BM}. Let the
[N x(M+1)] matrix A represent the linear relationship between the 3,.

[ﬁom

A D%Sl A=0 (51)
O

EIBMD

Clearly the set of al possible higher dimensional Euler parameters spansthe kernel of A. We
know that the M Rodrigues parameters are a minimal set to parameterize the orthogonal NxN ma-
trix C. By adding the scaling factor [30, a once redundant set of parameters has been generated.
Even though there are N linear equations in equation (50), the dimension of the range of A is
only M. The problem is still under determined. The dimension of the kernel of A must be one,
since only one additional term was added to a minimal set of rotation parameters. The solution
gpace isa multi-dimensional line through the origin.

Multi-Dimensional
Unit Sphere

Fig. 3: Solution of the Higher Dimensional Euler Parameters.

After finding the kernel base vector, an infinite number of solutions still exist. Another con-
straint is needed. Let us set the norm of the higher dimensional Euler parameter vector to be
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unity. Thisconcept isillustrated in Fig. 3 above.
BE +Bi+ - +By =1 (52)

Equation (52) is the higher dimensional equivaent of the holonomic constraint of the classi-
cal Euler parametersintroduced in equation (16).

Two solutions are found scaling the base vector of the kernel of A to unit length. Just aswith
the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de-
scribes the same physical orientation as its antipodal pole. Therefore the higher order Euler pa-
rameters are not unique, but contain a duality. This is exactly analogous to the classical case.
This duality does not pose any practical problems, except under one circumstance discussed
bel ow.

C = (Bol —B)(Bol +B)™* = (Bol +B) *(Bol - B) (53)

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is
found by using Q from equation (48) in the classical Cayley transform. The result is shown in
equation (53). Using a B, as shown in equation (49) for the three-dimensional case, in equation
(53) results in the same transformation as given in equation (18). Observe that the inverse trans-
formation has a singularity when (g iszero. Thissingularity isa mathematical singularity only.
Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this
orientation. After an appropriate skew-symmetric matrix B is constructed and carrying out the al-
gebrain equation (53), a closed form algebraic transformation is found

For the 2x2 case, the B matrix isgiven by

i P e

Using the B defined above in equation (53), the 2x2 direction cosine matrix C is:

_[B5—B% 2BoBo

55
- 2BoPBo B3 - B2 %)

2X2

The 2x2 C matrix contains no polynomial fractionsand iseasy to calculate. To find the direc-
tion cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53).

1 Eﬁo(ﬁ% +PB2-B5-P3) 2Bo(BiB2 +PoBs)  2Bo(B1Bs —PoB2)
Bo(B+ 2 + B2 + D) 0 2Bo(B1B2 —PoBs) Bo(BE B2 +BZ-P3) 2Bo(B2B3 +PBoP1)
0 "1 T2 T80 2Bo(BBs +BoB2)  2Bo(B2Bs —PRoB1)  Bo(BE - B2 - B3 +P2)

Caxs =

Amrrr

After making the obvious cancellations and enforcing the holonomic constraint equation, the
well known result is found which represents the 3x3 direction cosine matrix as a function of the
classical Euler parameters as given in equation (18). This classical representation contains no
polynomial fractionsand no singularities, just aswasthe case with the 2x2 system.

For dimensions greater than 3x3's, however, the algebraic transformation contains polynomial
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fractions. The nice cancelationsthat occur with a 2x2 and a 3x3 orthogonal matrices do not occur
with the higher dimensions. This might have been anticipated, because [2] it is well-known that
guaternion algebra does not generalize fully to arbitrary higher-dimensional spaces, and the ele
gant classical Euler parameter results are essentially manifestations of quaternion algebra. To
find Caxa intermsof the higher dimensional Euler parameters, we define the 4x4 B matrix as.

00 —-Bs Bs —Bar
_UBs 0 -Bs B,LC
Baxa = S_ Bs B, O _BlE
O B4 _|32 Bl 0LC

(56)

and substitute it into equation (53), thisleadsto

B5(B5 +B3 +PB3+P3—P5—B2—PZ) -3  2Bo(Bo(B2PBa + P3Ps + PoPs) + P19)
_1 E 2B0(Bo(B2Ba +BaPs —PBoPs) —P10)  P3(BE + BT —P5—P5+P5 +PE-P3) -8
A 2Bo(Bo(BoBs + BaBes —B1Pa) — B20) 2B0(Bo(B1B2 —BoPBs + BsPs) — Bad)

0 2Bo(Bo(— BoBa — B1Bs — B2PBs) — B3d) 2Bo(Bo(B1B3 + BoB2 — BaBe) — Bsd)
2B0(Bo(=BoBs +BsPs = B1Ba) +B28)  2Bo(Bo(BoBa = P1Bs —B2Ps) +B3d) (57)
~ 2Bo(Bo(B1P2 * PoPs + PsPe) +Pad) 2Bo(Bo(B1Bz —BoB2 — BaBs) +Bsd) [
B3(B5—B7+B5—B5+BF —B2+P3) -8  2Bo(Bo(PoPr +BaPs + P2Bs) + Psd)
2B0(Bo (= BoB1 + BaPs + P2PB3) —Psd)  B3(B5 — P2 — B3 + B3 — B3 + P2 +BE) —d*0
with & =B3B4 +B1Be — B2Bs
A=pB5+8

Caxa

This denominator A can vanish for several 3; configurations. Observe, however, that when-
ever A iszero, so isthe numerator. For each singular case we can confirm that a finite limit ex-
ists, as was to be expected, since the original orthogonal C matrix was finite. In all cases 3g =0
isa prerequisite for a (0/0) condition to occur. Finding the transformations for matrices with di-
mensions greater than 4x4 would show the same behavior. (3o =0 isaways aindicator that a
mathematical singularity may occur. In none of these cases are the higher dimensional Euler pa-
rameters themselves actually singular. It is aways a mathematical singularity of the transforma-
tion itself. To circumvent this problem for particular applications, the limit of the fraction can be
found as Bp — 0. After substituting 3o =0 into equation (57), for example, most fractions be-
come trivial and the matrix isreduced to

Coxa = == laxa (58)

mjimjim!
OO
oOoORr O
|
OO0
RLOOO
i

Substituting Bo =0 into equation (55) yields the same result. Actually, aslong as C is of
even dimension the matrix will be -1 if Bp =0 . If thedimensionisodd, asit isfor the 3x3 case,
the C matrix will be fully populated. With this observation it is easy to circumvent the singular
situationsif thedimensioniseven. If the dimension isodd anumerical limit must be found. In ei-
ther case the transformation will be well behaved everywhere except the 3o =0 surface. The
fact that the 0/0 condition can be resolved analytically to obtain finite limits should not obscure
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the frustrating fact that these 0/0 conditions would pose numerical difficultiesin general numeri-
cal algorithms.

Let us examine the uniqueness of the transformation given in equation (53). Assuming that
the transformation is not unique, two possible higher dimensional Euler parameter sets 3 and 3
are chosen, these parameterize C as

C=(Bol - B)(Bo! +B)
C= (ol +B) " (Bo! - B)

Subtracting one equation from the other the following condition is obtai ned:
0= (Bol - B)(Bol +B) ™ = (Bl +B) ™ (Bo! - B)
0= (Bol +B)(Bo! —B) - (Bo! - B) (B! +B)

0=B,B-pByB
or
B_B (59)
Bo Bo

Equation (59) isthe necessary condition for two higher order Euler parameter setsto yield the

same direction cosine matrix C. Obvioudly, for 3o # O thiscan only occur when
B=k[B
Bo =k By 0

where k is a scalar. This condition apparently yields an infinite number of solutions. But
since the higher dimensional Euler parameters must satisfy the holonomic constraint given in
eguation (52), only unit scaling values of k are permissible. Therefore k must be either £1. The
above uniqueness study results in exactly the same duality asis observed with the classical Euler
parameters, except the restriction on Bop #0 . There are always two possible sets of classical
Euler parameters which describe an orthogonal 3x3 matrix C. It isevident that this truth extends
to the more general case of NxN orthogonal matrices. This duality was seen earlier when apply-
ing the holonomic constraint to the kernel of A.

Crxn [B(D)] = Crxn [ B(D)] (61)

Based on the above, if 3o =0 nothing can be said about the transformation uniqueness. As
was seen with the 4x4 C matrix, the 3o =0 condition permits any point on the unit sphere

PISLEES

Having established the forward and backward transformations between the NxN orthogonal
matrices and the higher order Euler parameters, their kinematic equations are also of interest. To



20

describe the orthogonal matrix C as a generalized rigid body rotation, C must satisfy a differential
eguation of the form given in equation (1). After substituting equation (48) into equation (33), Q
IS

=2+ Bl - B
_2(|+Bo)[w](| Bo) (62)
After differentiating equation (48) directly, Q isfound to be
Bo

Upon substituting equation (62) into equation (63) and after making some simplifications, the
following kinematic relationship isfound.

BoB - BoB = 5 (Bol +B)[33](Bol ~B) (64)

This equation can be solved for the skew-symmetric angular velocity matrix [Q] .
[@] = 2(Bol +B) ™ (BoB~BoB)(Bol ~B)™" (65)

Note that this equation contains the same mathematical singularity at 3o =0 as did equation
(53). Carrying out the algebra a closed form algebraic equation is found for the higher order an-
gular velocities.

Let us verify that equation (65) for the angular velocities does indeed generate a
skew-symmetric matrix. Thisis easily accomplished using the definition of a skew-symmetric
matrix asfollows

[@] =~ [&]" = -2((Bol +B) ™ (BoB - BoB) (Bol -B)})’
[&] = - 2(Bol ~B) ™" (BoB - BoB) " (Bol +B) ™'
[@] = - 2(Bol " - BT) (BB - BoB" ) (Bol T +BT)

Since the matrix B and its derivative are skew-symmetric matrices by definition, further ssim-
plifications are possible to obtain the following result

[&3] = - 2(Bol +B)™* (- BoB + BoB) (Bol - B) ™
[@] = 2(Bol +B) ™ (BoB - BoB)(Bol -B) ™" ged.

All higher order Euler parameter differentials must abide by the derivative of the constraint
equation (52).

2BoBo +2B4B1 + ... + 2By Bw =0 (66)



21

After using the B from equation (49) the linear differential kinematic equations of the classi-
cal Euler parameters are found. To verify that equation (65) generalizes correctly, known classi-

cal results let us verify two special cases. For the 2x2 case, a scalar differential kinematic equa-
tion resultsfrom equation (65) as

w1 =2[~B1 Polf; ‘ (67)
By
Adding the constraint in equation (66), equation (67) can be padded to make it full rank.
Bo B1][Bo
[(-01] 2 Bl Bol Bl (68)

Note that as with the 3x3 case, the matrix transforming [3 to w isorthogona for the 2x2
case. Thereforetheinverse transformation can be written as:

\ Bo - Bl] [
B, 2[R “1

It is straight forward to show that equations (65) and (66) give equation (17) for the 3x3 case.
Analogous to the 3x3 case, the above differential kinematic equation for the 2x2 case is aso
bi-linear. As with the 4x4 and greater direction cosine matrices, for proper orthogona matrices
having dimensions greater than 3x3 the higher dimensional differential kinematic equations also
contain polynomial fractions. Using the B matrix from equation (56) in equation (65) and collect-
ing all the angular velocity term, we find the differential kinematic equationsfor the 4x4 case

(69)

OB, AR, AB,
[8 0 @6(32[35 BsBa) — B (B + BE) Bo(B5 +B%) Bo(BoBs — BsPs)
[LQ;D > 5(B1Bs + BaBa) = B2(BG + BZ) — Bo(BoBs + BsPs) Bo (B3 + B2)
s O= ZEﬁ 4(B2Bs — B1Bs) — B3 (B5 +B7) Bo(BaBs +BoB2) —Bo(BoBs + BaPs) -+
ol Dﬁ;(ﬁzﬁs B1Bs) = Ba(B5 + B3) Bo(—BoBs +BsBs) — By (BoBs + BsPs)
L U 2(B1Bs + BaBa) — Bs (B +B5) Bo(BoBa—B2Bs)  Bo(BsPa +B1Ps)
(B1(B2Bs — BsBa) —Bs(B5 + B) Bo(B2Bs —BsBs)  Bo(BoBs — B1Ps) _
AR, AR, AR AR [fj.so C(70)
Bo(BaBs —BoB2)  Bo(BoBs +BsBs) —Bo(BoBas +PB2Bs) Bo(B2Bs —BsPa) P2
Bo(BoB: = BaBs)  Bo(BoBs —BsBs)  Bo(BsBas +B1Bs) _BO(BOB4+B185)[:E2_
Bo (B3 +B7) Bo(B2Bs = B1Bs)  Bo(BoBs —B2Ba)  Bo(B1Ba —BoPs) B; 0
Bo(B2Bs — B1Bs) Bo (B3 + B3) Bo(BoB1 — B2B3)  Bo(BoB2 + B:Bs3) T
—Bo(BoBs +B2Ba) —Bo(BoPs +B2Bs)  Bo(Bp +B3) Bo(BoBs = B1B2) [:Es
Bo(B1Ba +BoBs)  Bo(=BoBz +B1Bs) —By(BoBs + B1B2) Bo (B3 +B%) '65

with A = B2 + (BsBs — B2Bs + B1Bs)’

Note that this transformation matrix is no longer orthogonal as were the corresponding ma-
trices for both the 2x2 and 3x3 cases. The bi-linearity found for 2x2 and 3x3 casesisalso lost for
the higher dimensional cases. Equation (70) has the same denominator as the 4x4 direction co-
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sine matrix. Hence it contains the identical singular situations. However, if Bo =0, the above
transformation matrix issingular and cannot be inverted!

Thus the higher dimensional Euler parameters |ose some key properties as they are general -
ized to parameterize higher dimensioned proper orthogonal matrices. They retain the properties
of being bounded and mapping all rotations onto arcs on a unit hypersphere. However, the kine-
matic transformations and orthogonal matrix representations |oose the elegance of their classical
3x3 counterparts. In particular, 3o = 0 poses several unresolved issuesfor all dimensions higher
than 3x3.

Conclusion

The principal rotation parameterizations presented show great promise as an elegant means
for describing the evolution of NxN orthogonal matrices. The modified Rodrigues parameters are
only dlightly more complicated than their classical counterparts, but double the nonsingular rota-
tion domain The (M+1)-dimensional Euler parameters retain some of the desirable features of
their classical counterparts. However, for orthogonal matrices greater than 3x3 though, the or-
thogona matrix representation formulas and the corresponding differential kinematic equations
contain some mathematical singularities which require taking the limits of polynomial fractions.
The computational effort for calculating the higher dimensional Euler parameters grows rapidly
when increasing the dimension of the C matrix. For higher dimensional rotations, the modified
Rodrigues parameters show the greatest promise. The gain (increased nonsingular domain in
comparison to the classical Cayley transformation), significantly outweighs the extra computa-
tion.
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