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Abstract

Three and four parameter representations of 3x3 orthogonal matrices are extended 
to the general case of proper NxN orthogonal matrices.  These developments gener- 
alize the classical Rodrigues parameters, the Euler parameters, and the recently 
introduced modified Rodrigues parameters to higher dimensional spaces.  The de- 
velopments presented are motivated by, and significantly generalize and extend the 
classical result known as the Cayley transformation.

Introduction

It is well known in rigid body dynamics, and many other areas of Euclidean analysis, that the 
rotational coordinates associated with Euler’s Principal Rotation Theorem [1,2,3] lead to espe- 
cially attractive descriptions of rotational motion.  These parameterizations of proper orthogonal 
3x3 matrices include the four-parameter set known widely as the Euler (quaternion) parameters 
[1,2,3], as well as the classical three-parameter set known as the Rodrigues parameters or Gibbs 
vector [1,2,3,4].  Also included is a recently introduced three parameter description known as the 
modified Rodrigues parameters [4,5,6].  As we review briefly below, these parameterizations are 
of fundamental significance in the geometry and kinematics of three-dimensional motion.  
Briefly, their advantages are as follows:

Euler Parameters:  This once redundant four-parameter description of three-dimensional rota- 
tional motion maps all possible motions into arcs on a four-dimensional unit sphere.  This accom- 
plishes a regularization and the representation is universally nonsingular.  The kinematic differen- 
tial equations contain no transcendental functions and are bi-linear without approximation.

Classical Rodrigues Parameters:  This three parameter set, also referred to as the Gibbs vec- 
tor, is proportional to Euler’s principal rotation vector.  The magnitude is tan(φ/2), with φ being 
the principal rotation angle.  These parameters are singular at φ = ±π and have elegant, quadrati- 
cally nonlinear differential kinematic equations.

Modified Rodrigues Parameters:  This three parameter set is also proportional to Euler’s prin- 
cipal rotation vector, but with a magnitude of tan(φ/4).  The singular orientation is at φ = ±2π,
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doubling the principal rotation range over the classical Rodrigues parameters.  They also have a 
quadratic nonlinearity in their differential kinematic equations.

The question naturally arises; can these elegant principal rotation parameterizations be ex- 
tended to orthogonal projections in higher dimensional spaces?  Cayley partially answered this 
question in the affirmative; his “Cayley Transform” fully extends the classical Rodrigues parame- 
ters to higher dimensional spaces [1,2,7].  A proper NxN orthogonal matrix can be generally para- 
meterized by a vector with dimension M = ½N(N-1).  Only for the 3x3 case is N equal to M.  Any 
proper orthogonal matrix has a determinant of +1 and can be interpreted as analogous to a rigid 
body rotation representation.  This paper extends the classical Cayley transform to parameterize a 
proper NxN orthogonal matrix into a set of M-dimensional modified Rodrigues parameters.  Fur- 
ther, a method is shown to parameterize the NxN matrix into a once-redundant set of 
(M+1)-dimensional Euler parameters.

The first section will review the Euler, Rodrigues and the modified Rodrigues parameters for 
the 3x3 case, generalized later in this paper to parameterize the proper NxN orthogonal matrices.  
The second section will review the classical Cayley transform resulting with the representation of 
a proper orthogonal matrix using the Rodrigues parameters, followed by the new representation 
of the NxN orthogonal matrices using an M-dimensional set of modified Rodrigues parameters, 
and finally, a new representation of the NxN orthogonal matrices using an (M+1)-dimensional 
Euler parameters.

Review of Three-Dimensional Rigid Body Rotation Parameterizations

The Direction Cosine Matrix

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro- 
tation.  The matrix elements are bounded between ±1 and possess no singularities.  The famous 
Poisson kinematic differential equation for the direction cosine matrix is:

[ ]CC ˜˙ ω−=  (1)

where the tilde matrix is defined as

[ ] [ ]ωω−
ω−ω

ωω−
=ω

0
0

0
˜

12
13

23
 (2)

The direction cosine matrix C is orthogonal, therefore it satisfies the following constraint.

ICCCC TT ==  (3)

This constraint causes the direction cosine matrix representation to be highly redundant.  In- 
stead of considering all nine matrix elements, it usually suffices to parameterize the matrix into a 
set of three or four parameters.  However, any minimal set of three parameters will contain singu- 
lar orientations.

The constraint in equation (3) shows that besides being orthogonal, the direction cosine matrix
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is also normal [8].  Consequently it has the spectral decomposition

UUC Λ= ∗  (4)

where U is a unitary matrix containing the orthonormal eigenvectors of C, and Λ is a diagonal 
matrix whose entries are the eigenvalues of C.  The * symbol stands for the adjoint operator, 
which takes the complex conjugate transpose of a matrix.  Since C represents a rigid body rota- 
tion, it always has a determinant of +1.

The Principal Rotation Vector

Euler’s principal rotation theorem states that in a three-dimensional space, a rigid body (refer- 
ence frame) can be brought from an arbitrary initial orientation to an arbitrary final orientation by 
a single principal rotation (φ) about a principal line ê [3].
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Fig. 1:  Euler’s Principal Rotation Theorem.

With reference to Fig. 1, the body axis b̂i   components of the principal line ê are identical to 
the spatial components projected onto n̂i  .

{ } ⋅== êCê
e
e
e

3
2
1

 (5)

Therefore ê must be an eigenvector of the 3x3 C matrix with a corresponding eigenvalue of 
+1.  In this case the det(C) would be +1.  The principal rotation vector γ  is defined as:

φ=γ ê (6)

Let us now consider the case where a rigid body performs a pure single-axis rotation about the 
fixed  ê.  This rotation axis is identical to Euler’s principal line of rotation ê.  Let the rotation angle 
be φ.  The angular velocity vector for this case becomes:
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φ=ω ˆ˙e  (7)

or in matrix form:

[ ] [ ]φ=ω ˜˙˜ e  (8)

Substituting equation (8) into (1), one obtains the following development.

[ ]Ce
td

d
td
Cd φ−= ˜

[ ]Ce
d
Cd −=
φ

˜

[ ]eC = φ− ẽ  (9)

The last step follows since the [ ]ẽ   matrix is constant during this single axis maneuver.  Due 
to Euler’s principal rotation theorem, however, any arbitrary rotation can always be described in- 
stantaneously by the equivalent single-axis principal rotation.  Hence equation (9) will hold at any 
instant for an arbitrary time-varying direction cosine matrix C.  However, φ  and ê  must be con- 
sidered time-varying functions.  Using the following substitution

[ ] [ ]φ=γ ˜˜ e  (10)

equation (9) can be rewritten as [2]

[ ]
�

[ ]( )
n

eC γ−==
=

∞
γ−

0

˜ n

n

˜
!

1
 (11)

Instead of using an infinite matrix power series expansion of equation (11) to find C, the ele- 
gant finite transformation shown below can be used [2].  That is, the evaluation of [ ]e γ− ˜   does not 
require the spectral decomposition of [ ]γ̃  , but can be written directly in term of γ  itself.  Unfor- 
tunately, this transformation only holds for the 3x3 case.  A general transformation for the NxN 
case is unknown at this point, at least as far as the authors know.

[ ] [ ] ( )
| || | e

eeeIe γ− ˜

φγ=γ=φ
−φ−φ−φ=

ˆ,
1cosˆˆsin˜cos T

 (12)

To find the inverse transformation from the direction cosine matrix C to [ ]γ̃   , the matrix loga- 
rithm can be taken of equation (11) to obtain

[ ]
�

( )−=−=γ 1
log˜ CI

n
C

=

∞
n

n 1

 (13)

Using the spectral decomposition of C given in equation (4), the above equation can be rewrit- 
ten as

[ ] ( ) ( )Λ−=Λ−=γ loglog˜ UUUU ∗∗  (14)
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where calculating the matrix logarithm of a diagonal matrix becomes trivial.  Since all eigen- 
values of an orthogonal matrix have unit norm, the matrix logarithm in equation (14) is defined 
everywhere except when an eigenvalue is -1.  Generally, equation (14) will return a [ ]γ̃   which 
corresponds to a principal rotation angle φ in (-180°,+180°).  Note however, that when C has ei- 
genvalues of -1, equation (14) does not return a skew-symmetric matrix.  The transformation 
breaks down here for this singular event.  The geometric interpretation is that a 180° rotation has 
been performed about one axis (leading to one positive and two negative eigenvalues of C), which 
is the only rotation not covered by the domain of equation (14). 

The principal vector representation of C is not unique. Adding or subtracting 2π from the prin- 
cipal rotation angle φ describes the same rotation.  As expected, equation (11) will always yield 
the same C matrix for the different principal rotation angles, since all angles correspond to the 
same physical orientation.  However, the inverse transformation given in equation (14) yields only 
the principal rotation angle which lies between -180° and +180°. 

As do all minimal parameter sets, the principal rotation vector parameterization has a singular 
orientation.  The vector is not uniquely defined for a zero rotation from the reference frame.  The 
principal rotation vector parameterization will be found convenient, however, to derive useful rela- 
tionships.

The Euler (Quaternion) Parameters

The Euler parameters are a once-redundant set of rotation parameters.  They are defined in 
terms of the principal rotation angle φ and the principal line components e i  as follows:

=φ=βφ=β0 3,2,1
2

sin,
2

cos ii ie  (15)

They satisfy the holonomic constraint:

=β+β+β+β 3
2

2
2

1
2

0
2 1 (16)

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface 
of a four-dimensional unit hypersphere.  This behavior bounds the parameters to values between 
±1.  However, the Euler parameters are not unique.  The mirror image trajectories β(t) and -β(t) 
both describe the identical physical orientation histories.  Given a 3x3 orthogonal matrix, there 
will be two corresponding sets of Euler parameters which differ by a sign.  The Euler parameters 
are the only set of rotation parameters which have a bi-linear system of kinematic differential 
equations [1], other than the direction cosine matrix itself, as follows





î







































î











ω
ω
ω

βββ−β
β−βββ
ββ−ββ
β−β−β−β

=

β
β
β
β

0

2
1

˙

˙

˙

˙

3
2
1

0123

1032

2301

3210

3

2

1

0

 (17)

It is also of significance that the above 4x4 matrix is orthogonal, so “transportation" between 
ω i ’s and β̇i  ‘s is “painless".  The direction cosine matrix in term of the Euler parameters is [1,3]
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[ ]
( ) ( )

( ) ( )
( ) ( )
















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=C

3
2

2
2

1
2

0
2

10322031

10323
2

2
2

1
2

0
2

3021

203130213
2

2
2

1
2

0
2

22

22

22

 (18)

The Euler parameters have several advantages over all minimal sets of rotation parameters.  
Namely, they are bounded between ±1, never encounter a singularity, and have linear kinematic 
differential equations if the ω i (t) are considered known.  All of these advantages are slightly offset 
by the cost of having one extra parameter.

The Classical Rodrigues Parameters

The classical Rodrigues parameter vector q  can be interpreted as the coordinates resulting 
from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a 
three-dimensional hyperplane [6], with the projection point at the origin and the stereographic 
mapping hyperplane at β 0  = +1 .  As discussed in [6], it follows that they have their singular orien- 
tation at a principal rotation angle of φ = ±180° from the reference.  Their transformation from 
the Euler parameters is

iq i
i =

β
β=

0
3,2,1  (19)

Unlike the Euler parameters, the Rodrigues parameters are unique.  The qi  uniquely define a 
rotation on the open range of (-180°,+180°) [6]; as is evident in equation (19), reversing the sign 
of the Euler parameters has no effect on the q i .  Using equation (15), the classical Rodrigues pa- 
rameters can also be defined directly in terms of the principal rotation angle and the principal axis 
components as

ieq ii =φ= 3,2,1
2

tan  (20)

It is apparent that q  has the same direction as the principal rotation and the magnitude is 
( )nat φ 2  .  The singular condition of φ = ±180° is evident by inspection of equation (20).  The 

kinematic differential equation for the Rodrigues parameters contain a quadratic nonlinear depen- 
dence on the qi .  They can be verified from equations (17,20) to be [1-4]





î

























 { }ω

ω
ω

++−
−++
+−+

=
qqqqqqq

qqqqqqq

qqqqqqq

q
q
q

1

1

1

2
1

˙
˙
˙

3
2
1

3
2

123213

1322
2

312

2313211
2

3

2

1
 (21)

Notice that the above coefficient matrix is not orthogonal, although the inverse is well be- 
haved everywhere except at φ = ±180° where | | ∞→q  .  The direction cosine matrix in terms of 
the Rodrigues parameters is [1-4]:

( )
( ) ( )

( ) ( )
( ) ( )

















qqqqqqqqq

qqqqqqqqq

qqqqqqqqq

qqq
qC

+−−−+
+−+−−
−+−−+

+++
=

122

212

221

1

1

3
2

2
2

1
2

123213

1323
2

2
2

1
2

312

2313213
2

2
2

1
2

3
2

2
2

1
2  (22)
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The Modified Rodrigues Parameters

The modified Rodrigues parameter vector σ  is also a set of stereographic parameters, closely 
related to the classical Rodrigues parameters [2,4-6].  The modified Rodrigues parameters have 
the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at β 0  = 0.  This projec- 
tion results in a set of parameters which do not encounter a singularity until a principal rotation 
from the reference frame of ±360° has been performed.  Therefore they are able to describe any 
rotation except a complete revolution ±360°.  Their transformation from the Euler parameters is

=
β+

β=σ i
i 3,2,1

1 0
i  (23)

While the classical Rodrigues parameters have a singularity at β 0 =0 (φ = ±180°), the modified 
Rodrigues parameters have moved the singularity out to a single point at β 0 =-1 (φ = ±360°).  Fig- 
ure 2 below illustrates these two singular conditions.  Since the classical Rodrigues parameters are 
only defined for °+<φ<°− 081081  , they can only describe rotations on the upper hemisphere 
of the four-dimensional unit hyper-sphere where β 0 >0.  However, the modified Rodrigues parame- 
ters can describe any rotation on this hypersphere except the point β 0 =-1.  Therefore the modified 
Rodrigues parameters have twice the nonsingular range as the classical Rodrigues parameters.

β0 = −1 
(Modified Rodrigues 
Parameter singularity point) 

β0 = +1 

β0 = 0  
(Rodrigues Parameter 
singularity surface) 

β0−
axis 

4D Unit Hyper-Sphere 
with β0+β1+β2+β3=1 

origin 

2 2 2 2 

 

Fig. 2.:  Illustration of the Singular Conditions of the Classical and

the Modified Rodrigues Parameters.

Like the Euler parameters, the modified Rodrigues parameters are not unique.  They have an 
associated “shadow” set found by using -β(t) instead of β(t) in equation (23) [5,6].  The transfor- 
mation from the original set to the “shadow” set is [2,5,6]

=
σσ

σ−=σ T
i

i
S i 3,2,1  (24)

The “shadow” points are denoted with a superscript S merely to differentiate them from σi  .  
Keep in mind that both σ and σS  describe the same physical orientation, similar and related to 
the case of the two possible sets of Euler parameter and the principal rotation vector.  It turns out 
that the modified Rodrigues “shadow” vector ( )σS t   has the opposite singular behavior to the
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original vector ( )σ t  .  The original parameters have differential kinematic equations which are 
very linear near a zero rotation and are singular at a ±360° rotation.  On the other hand, the “shad- 
ow”  parameters have differential kinematic equations which are linear near the ±360° rotation and 
singular at the zero rotation. [6]  Using equation (15), the definition for the modified Rodrigues pa- 
rameters in equation (23) can be rewritten as [4]

Φ=σ ii e
4

tan  (25)

Equation (25) is very similar to equation (20), except for the scaling factor of the principal ro- 
tation angle.  The singularity at ±360° is evident in equation (25), and small rotations behave like 
quarter angles.  All three parameter representations must possess a singularity.  This set max- 
imizes the nonsingular principal rotation range to ±360°.  The following differential kinematic 
equations display a similar degree of quadratic nonlinearity as do the corresponding equations in 
terms of the classical Rodrigues parameters [4-6]

( ) ( )
( ) ( )
( ) ( )















 { }ω

ω
ω

σ+σ−σ−σ+σσσ−σσ
σ−σσσ−σ+σ−σ+σσ
σ+σσσ−σσσ−σ−σ+

=σ
122

212

221

4
1˙

3
2
1

3
2

2
2

1
2

123213

1323
2

2
2

1
2

312

2313213
2

2
2

1
2

 (26)

Note that the coefficient matrix of the differential kinematic equation is not orthogonal, but al- 
most.  Multiplying it with its transpose yields a scalar ( )σσ+1 T 2

 /16 times the identity matrix.  
As far as we know, this is the only three parameter representation possessing this elegant property; 
further attesting to the uniqueness and importance of the modified Rodrigues parameterization.  
This almost orthogonal behavior allows for a simple transformation between the ωi   and the σ̇i  

( )
( )

( )
( )

( )















C

σσ−=Σ
Σ+σ+σ−σ−Σσ−σσΣσ+σσ

Σσ+σσΣ+σ−σ+σ−Σσ−σσ
Σσ−σσΣσ+σσΣ+σ−σ−σ

σσ+
=σ

1

44848

48448

48484

1

1

T

T
2

3
2

2
2

1
2

123213

132
2

3
2

2
2

1
2

312

231321
2

3
2

2
2

1
2

2  (27)

The direction cosine matrix is shown above [6,9].  It has a slightly higher degree of nonlinear- 
ity than the corresponding direction cosine matrix in terms of the classical Rodrigues parameters.

Parameterization of Proper NxN Orthogonal Matrices

A proper orthogonal matrix is an orthogonal matrix whose determinant is +1.  Some aspects 
of parameterizing proper NxN orthogonal matrices into M-dimensional Rodrigues parameters 
have been studied recently by Junkins and Kim [1] and Shuster [2].  Keep in mind that M = 
½N(N-1).  These classical developments, generalizing the Rodrigues parameters to NxN proper 
rotation matrices, date from the work of Cayley [7] and are included below for comparative pur- 
poses with the new representations.

Any NxN orthogonal matrix abides by the constraint given in equation (3). This equation is an 
exact integral of equation (1), as can be verified by differentiation of equation (3) to obtain
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CCCC 0˙˙ TT =+  (28)

The Ċ   matrix defined in equation (1) can be shown to satisfy this condition exactly.  Substi- 
tute equation (1) into (27) and expand as follows

[ ]( ) [ ]( ) =ω−+ω− 0˜˜ CCCC TT

[ ]( ) [ ] =ω−ω− CCCC TTT 0˜˜

[ ] [ ]( )CC TT =ω−ω− 0˜˜

The above statement is obviously satisfied if [ ]ω̃   is a skew-symmetric matrix, e.g. 
[ ] [ ]ω−=ω ˜˜ T  .  Consequently equation (1) will generate an NxN orthogonal matrix, as long as 
[ ]ω̃   is skew-symmetric and the initial condition C(t=0) is orthogonal.  This observation allows 
for the evolution of NxN orthogonal matrices to be viewed as higher dimensional direction cosine 
matrices, somewhat analogous to the motion generated by a “higher dimensional rigid body rota- 
tion,” and also suggests parameterization of of higher dimensional rigid body-motivated rotation 
parameters.

Higher Dimensional Classical Rodrigues Parameters

Cayley’s transformation [7] parameterizes a proper orthogonal matrix C as a function of a 
skew-symmetric matrix Q; these elegant transformations are

( )( ) ( ) ( )QIQIQIQIC −+=+−= −− 11  (29a)

( )( ) ( ) ( )CICICICIQ −+=+−= −− 11  (29b)

The Cayley’s transformation is one-to-one and onto from the set of skew-symmetric matrices 
to the set of proper orthogonal matrices with no eigenvalues at -1.  Notice the remarkable truth 
that the forward and inverse transformations are identical.  The transformation in equation (29b) 
fails if any of the eigenvalues of C are -1, because the I+C matrix becomes singular and is thus 
not invertible.  The Cayley transformation in equation (29a) produces only proper orthogonal ma- 
trices C with det(C)=+1.  This can be verified by examining the determinant of C as shown below.  
Using equation (29a), det(C) can be expressed as

( ) ( ) ( )( ) ( )
( )det

det
detdetdet

+
−=+−=

QI
QI

QIQIC −1  

Since the Q matrix is skew-symmetric, it has purely imaginary complex conjugate pairs of ei- 
genvalues of the form ±iλ i .  Let R be the corresponding complex eigenvector matrix to Q.  Multi- 
plying and dividing the above equation by det(R) yields

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )detdetdet

detdetdet
detdetdet
detdetdet

det
+
−

=
+
−=

RQIR

RQIR

RQIR
RQIR

C −

−

1

1
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( )
( )( )
( )( )

( )
( )det

det

det

det
det

+
−

=
+
−

=
RQRI

RQRI

RQIR

RQIR
C −

−

−

−

1

1

1

1

 

where the RQR −1   term is a diagonal matrix containing the eigenvalues of the Q matrix.  
Since the determinant of a matrix is the product of all the eigenvalues, the above can be written as

( )

�
( )( )

�
( )( )

� ( )
� ( ) 1

1

1

11

11
det +=

λ+
λ+

=
λ−λ+
λ+λ−

= d.e.q
ii

ii
C

jj
p

jj
p

jjj
p

jjj
p

=

=

=

=
2

1

2
1

1

1  

where p is the number of nonzero (imaginary) eigenvalues of Q.  The above statement proves 
that all C matrices formed with equation (29a) are indeed proper matrices. 

To proof that the classical Cayley transform is a map from the skew-symmetric matrices onto 
the set of proper orthogonal matrices with no eigenvalue at -1,let us decompose the orthogonal C 
matrix into real matrices T and D

TDTC = T  

where T is orthogonal and D is block diagonal of the form

�
�
�

� � ���




















A

A
A

D

+

=

0000
0
000
000
0001

2

1

k

 

If the NxN C matrix is of even dimension, then the +1 term is omitted.  The A x
j ℜ∈ 22   block 

entries are of the form

[ ]A
jj

jj
j θθ−

θθ
=

cossin
sincos

 

where, in fact, -180°<θ j <+180°.  Using the above real decomposition of C in equation (29b), 
the Cayley transformation can be rewritten as

( )( ) TDTTDIDITQ =+−= −1 TT ˆ  

Since D is block-diagonal, the D̂  matrix will also be block-diagonal and of the form

�
�

� ���
















B

B
D

000
0
00
000

ˆ = 1

k

 

where B x
j ℜ∈ 22   is found to be

( )[ ]B j
j

−θ
=

01
10

2
tan  
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Note that the B j  matrix is not defined for θ j  = ±180°, meaning that the orthogonal C matrix 
cannot contain any eigenvalues of -1 and must therefore be proper.  Clearly, since DD ˆˆ −= T

 then 
Q is skew-symmetric and the mapping from skew-symmetric matrices to proper orthogonal ma- 
trices is onto. 

For the 3x3 case, let the Q matrix be defined as the following skew-symmetric matrix:

[ ]
















qq
qq

qq
qQ

−
−

−
==

0
0

0
˜

12

13

23
 (30)

After substituting equation (30) into (29a), it can be verified that resulting C matrix is indeed 
equal to equation (22).  Cayley’s transformation (29) is a generalization of the classical Rodrigues 
parameter representation for NxN proper orthogonal matrices [1,2], while the Q matrix gener- 
alizes the Gibbs vector in higher dimensions [2,10].

Using the [ ]γ̃   matrix defined in equation (14) the Q matrix can be expressed as follows [2]:

[ ]( ) [ ] [ ]( ) [ ] [ ]( )eeeeQ +−−=γ−=
2
˜

tanh
γγγγ
2
˜

2
˜

2
˜

2
˜ −−− 1

 (31)

The above transformation can be verified by performing a matrix power series expansion of 
equation (31) and substituting it into a matrix power series expansion of equation (29a).  The re- 
sult is a matrix power series expansion for the matrix exponential function as expected from equa- 
tion (11).  However, equation (12) cannot be used to calculate the matrix exponentials, since this 
equations only holds for the 3x3 case.  Note the similarity between equation (31) and (20).  Both 
calculate the Rodrigues parameters in terms of half the principal rotation angle!

The differential kinematic equations of the C matrix were shown in equation (1), where the 
skew-symmetric matrix [ ]ω̃   is related to Q and Q̇ via the kinematic relationship [1]

[ ] ( ) ( )−+=ω ˙2˜ QIQQI −− 11  (32)

or conversely, Q̇  can be written as

( )[ ] ( )QIQIQ ˜
2
1˙ −ω+=  (33)

The equations (32-33) are proven to hold for the higher dimensional case in reference 1.  For 
NxN orthogonal matrices, [ ] [ ]ω−=ω ˜˜ T   represents an analogous “angular velocity” matrix.

Higher Dimensional Modified Rodrigues Parameters

As is evident above, the modified Rodrigues parameters have twice the principal rotation 
range as the classical Rodrigues parameters.  It can be shown that the higher dimensional mod- 
ified Rodrigues parameters also have twice the nonsingular domain as the higher dimensional 
classical Rodrigues parameters.  

To find a transformation from the NxN proper orthogonal matrix C to the modified Rodrigues 
parameters, let us first examine what happens when taking the matrix square root of C.  Let the
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square root matrix W be defined by the necessary, but not sufficient condition

CWW =  (34)

Obviously, for the general NxN case, there will be many W matrices that satisfy equation (34).  
Using the spectral decomposition of C given in equation (4), the spectral decomposition of W can 
be written as

�
UUW Λ= ∗  (35)

Since the C matrix is orthogonal, all the eigenvalues in Λ   must have unit magnitude.  Keep in 
mind that the Λ matrix in equation (35) is diagonal and that the matrix square root is trivial to cal- 
culate.  Since taking the square root of an eigenvalue with unit magnitude results in another ex- 
pression with unit magnitude, the W matrix itself is unitary, or orthogonal if all entries are real.  It 
turns out that W is always real and orthogonal, as long as no eigenvalue of C is -1.  If an eigen- 
value of C is -1, then W has complex values and is a unitary matrix.  The product of all eigenval- 
ues of C is the determinant of C and must be +1 since C is proper.  For even dimensions of C, the 
eigenvalues must all be complex conjugate pairs for the det(C) to be +1.  For odd dimensions, the 
extra eigenvalue must be real and +1 in order for the matrix to be proper.  

Each time a square root is calculated, there are two possible solutions.  If the eigenvalue in 
question is one of the complex conjugate pairs, then the sign does not matter for W to be a proper 
matrix.  If the matrix dimension is odd, then the root of the extra eigenvalue must be +1 for W to 
be proper.  In the 3x3 case there is only one complex conjugate pair of eigenvalues.  Hence only 
two W matrices satisfy the above conditions.  This is to be expected, since any three-dimensional 
rotation can be described by two principal rotation angles which differ by 2π, one of which is pos- 
itive and the other is negative.  To make the choice of W unique, let us select all the roots of the 
complex conjugate pairs to have a positive real part.

Since the W matrix is orthogonal, with one exception, it has a principal line and angle asso- 
ciated with it.  If the C matrix had an eigenvalue of -1, the same numerical problems arise as we 
encountered with finding the principal rotation vector.  Multiplying W with itself in equation (34) 
simply doubles the principal angle, but leaves the principal line unchanged.  Therefore W repre- 
sents a rotation about the same principal line as C, but with half the principal angle.  This pro- 
vides conceptually elegant interpretations of the square root of C as defined above..

For three-dimensional rotations, the simple restriction on the square roots of the eigenvalues 
can be shown to restrict the principal rotation angle to satisfy °+<φ<°− 081081  .  This choice 
is consistent with many numerical matrix manipulation packages and their computation of a 
square root of a matrix.  Let the j-th complex conjugate eigenvalue of C be denoted as e θ±i j  , 
where the the phase is °+≤θ≤°− 081081 j  .  If the dimension N is an odd number, W has the 
structure
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�

�
� � �



















U

e

e

e

e

UW ⋅

+

⋅= ∗

−

+

−

+

i

i

i

i

−θ

−θ

θ

θ

2
1

2
1

2
1

2
1

100000
00000

00000

000
0000

0000

N

N
 (36)

If the dimension N is even, then W is

�
�

� � �



















U

e

e

e

e

UW ⋅⋅= ∗

−

+

−

+

i

i

i

i

θ

θ

θ

θ

2

2

2
1

2
1

0000
0000
00
000
000

N

N

 (37)

Using the parameterization given in equation (11), the matrix W can also be written directly in 
terms of the principal rotation matrix [ ]γ̃   as follows

[ ]
eW =

γ− ˜

2  (38)

This solution for W can be verified by substituting it into equation (34).  Comparing equation 
(38) with equation (11) it becomes obvious that the W matrix has indeed the same principle rota- 
tion direction as C, with half the principle angle.  Since, for three-dimensional rotations, there are 
two possible principal angles for a given attitude, there are two possible solutions for equation 
(38).  Again, by keeping |φ| < 180°, the same W matrix is obtained as with the matrix square root 
method discussed above. 

Remember that the modified Rodrigues parameters have a nonsingular  range corresponding 
to | | °<φ 063  .  Since W is the direction cosine matrix corresponding to half of the principal rota- 
tion angle of C, the resulting nonsingular range of the W matrix has been reduced to | | °<φ 081  .  
This is the same nonsingular range as the classical Rodrigues parameters.  Therefore the Cayley 
transformations, defined in equations (29a,b), can be applied to W.  Let S be the skew-symmetric 
matrix composed of the modified Rodrigues parameters, similar to the construction of the Q ma- 
trix in equation (30).  Then the transformation from W to S and its inverse are given as:

( )( ) ( ) ( )SISISISIW −+=+−= −− 11  (39a)

( )( ) ( ) ( )WIWIWIWIS −+=+−= −− 11  (39b)

Using equation (39a) and (34), a direct transformation from S to C is found.

( ) ( ) ( ) ( )SISISISIC −+=+−= 2222 −−  (40)

This direct transformation is very similar to the classical Cayley transform, but no elegant di- 
rect inverse exists (i.e. we lose the elegance of equation (29b); no analogous equation can be writ-
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ten for S as a function of C).  This is due to the overlapping principal rotation angle range of 
±360° causing the transformation in equation (40) not to be injective (one-to-one).  Since the clas- 
sical Rodrigues parameters are for principal rotations between (-180°,+180°), they have a unique 
representation and the Cayley transform has the well known elegant inverse.  

However, an alternate way to obtain the S matrix from the C matrix is available through the 
skew-symmetric matrix [ ]γ̃   defined in equation (14).

[ ]( ) [ ] [ ]( ) [ ] [ ]( )eeeeS +−−=γ−=
4
˜

tanh
γγγγ
4
˜

4
˜

4
˜

4
˜ −−− 1

 (41)

The transformations given in equation (41) can be verified by performing a matrix power se- 
ries expansion and back-substituting it into equation (40).  Note again the similarity between equa- 
tion (41) and equation (25).  The principal rotation angle is divided by four in both cases.

Either the W or the [ ]γ̃   matrix can be solved from the proper NxN orthogonal C matrix to ob- 
tain the corresponding S matrix.  Neither method is as elegant, however, as equation (29b) of the 
Cayley transformation.  The method using the [ ]γ̃   matrix has the advantage that [ ]γ̃   is found by 
taking the matrix logarithm of the eigenvalues of the C matrix as shown in equation (14).  The 
uniqueness questions do not arise here as in the matrix square root method because solutions are 
implicitly restricted to proper rotations with | | °<φ 081  .  Both methods produce the same results 
using, for example, the matrix exponential and matrix square root algorithms available as MAT- 
LAB or MATHEMATICA operators.  Note that both the classical and the “updated" Cayley trans- 
form have numerical problems when transforming a proper orthogonal matrix C into a 
skew-symmetric matrix if C has eigenvalues of -1. 

Since each set of modified Rodrigues parameters has its associated “shadow” set [6], it is usu- 
ally not important which S parameterization one obtains, as long as at least one valid S matrix is 
found.  Once a parameter set is found, either the original ones or the “shadow” set, it is trivial to 
remain with this set during the forward integration of the differential equations governing the evo- 
lution of S.

The differential kinematic equations for S are not written directly from C as they were with 
the classical Cayley transform.  Instead W is used to describe the kinematics of the NxN system.  
The relationship between W and S is the same as between C and Q.  Therefore the same equations 
can be used.  The differential kinematic equation for W is:

[ ]WW ˜˙ Ω−=  (42)

where the skew-symmetric matrix [ ]Ω̃   is:

[ ] ( ) ( )−+=Ω ˙2˜ SISSI −− 11  (43)

or conversely Ṡ   could be defined as:

( )[ ] ( )SISIS ˜
2
1˙ −Ω+=  (44)
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Equation (34) can be used during the forward integration to obtain C(t).  The time evolution of 
C in terms of W and [ ]Ω̃   is:

[ ] [ ] [ ] [ ]WWCWWWWC ˜˜˜˜˙ Ω−Ω−=Ω−Ω−=  (45)

Equating equation (45) and (1), the direct transformation from [ ]Ω̃   to [ ]ω̃   is:

[ ] [ ] [ ]Ω+Ω=ω ˜˜˜ WW T  (46)

To verify that equation (46) yields a skew-symmetric matrix [ ]ω̃  , the definition of a 
skew-symmetric matrix is used:

[ ] [ ] [ ] [ ]( )Ω+Ω−=ω−=ω ˜˜˜˜
TTT WW

[ ] [ ] ( ) [ ]Ω−Ω−=ω ˜˜˜ TTTTT
WW

[ ] [ ] [ ]Ω+Ω=ω ˜˜˜ .d.e.qWW T  

Although this new parameterization  is somewhat more complicated than the classical parame- 
terization into M-dimensional Rodrigues parameters, the complications arise only when setting up 
the parameterization in terms of S.  Once an S matrix and a corresponding W matrix have been 
found, this method is no different from the classical method.  The important improvement is that 
the range of possible principle rotations has been doubled over the classical M-dimensional Ro- 
drigues parameters.  

A Preliminary Investigation of Higher Dimensional Euler Parameters

The classical Euler parameters stood apart from the other parameterizations, because they 
were bounded, universally nonsingular and had an easy-to-solve bi-linear differential kinematic 
equations.  All of these attractive features were only slightly affected by the cost of increasing the 
dimension of the parameter vector by one.  These classical Euler parameters are extended below 
to higher dimensions, where they will retain some, but not all, of the above desirable features.

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa- 
tion (19).  They are identical except for the scaling term of β 0 .  The classical Rodrigues parame- 
ters have been shown to expand to the higher dimensional case where they parameterize a NxN or- 
thogonal matrix C [1].  Analogous to equation (19), they can always be described as the ratio of a 
once-redundant set of parameters.

( )NN
M...iq i

i
−==

β
β=

0 2
1

,,3,2,1  (47)

The skew-symmetric matrix Q in equation (29a) can be written as:

BQ
β

= 1

0
 (48)

where B is a NxN skew-symmetric matrix containing the numerators βi   of Q.  For the three
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dimensional case, this matrix is the “vector" part of the classical Euler parameters β 1 , β 2 , β 3 , and 
has the familiar structure

















B
ββ−

β−β
ββ−

=
0

0
0

12

13

23

 (49)

Substituting the transformation relating Q to {β 0 ,β 1 ,...,β M }, as   given in equation (48) the Cay- 
ley transform of equation (29a) results in the following

( )( )BIBIC +β−β= −1
00  

( ) ( )BIBIC −β=+β 00

( ) ( ) =+−β− BCICI 0 0 (50)

Equation (50) represents an NxN system of linear equations in {β 0 ,β 1 ,...,β Μ }.  Let the 
[N 2 x(M+1)]  matrix A represent the linear relationship between the β i . 

�
















A =

β

β
β

⋅ 1

0

M

0 (51)

Clearly the set of all possible higher dimensional Euler parameters spans the kernel of A.  We 
know that the M Rodrigues parameters are a minimal set to parameterize the orthogonal NxN ma- 
trix C.  By adding the scaling factor β 0 , a once redundant set of parameters  has been generated.  
Even though there are N 2  linear equations in equation (50), the dimension of the range of A is 
only M.  The problem is still under determined.  The dimension of the kernel of A must be one, 
since only one additional term was added to a minimal set of rotation parameters.  The solution 
space is a multi-dimensional line through the origin.

Multi-Dimensional 
Unit Sphere 

Origin 

Kern
el(

A) 

β(t) 

-β(t) 

 

Fig. 3:  Solution of the Higher Dimensional Euler Parameters.

After finding the kernel base vector, an infinite number of solutions still exist.  Another con- 
straint is needed.  Let us set the norm of the higher dimensional Euler parameter vector to be
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unity.  This concept is illustrated in Fig. 3 above.

� =β++β+β 2
1
2

0
2

M 1 (52)

Equation (52) is the higher dimensional equivalent of the holonomic constraint of the classi- 
cal Euler parameters introduced in equation (16).

Two solutions are found scaling the base vector of the kernel of A to unit length.  Just as with 
the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de- 
scribes the same physical orientation as its antipodal pole.  Therefore the higher order Euler pa- 
rameters are not unique, but contain a duality.  This is exactly analogous to the classical case.  
This duality does not pose any practical problems, except under one circumstance discussed 
below.

( )( ) ( ) ( )BIBIBIBIC −β+β=+β−β= −−
0

1
0

1
00  (53)

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is 
found by using Q from equation (48) in the classical Cayley transform.  The result is shown in 
equation (53).  Using a B, as shown in equation (49) for the three-dimensional case, in equation 
(53) results in the same transformation as given in equation (18).  Observe that the inverse trans- 
formation has a singularity when β0  is zero.  This singularity is a mathematical singularity only.  
Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this 
orientation.  After an appropriate skew-symmetric matrix B is constructed and carrying out the al- 
gebra in equation (53), a closed form algebraic transformation is found

For the 2x2 case, the B matrix is given by

[ ]B β
β−=
0

0

1

1  (54)

Using the B defined above in equation (53), the 2x2 direction cosine matrix C is:

[ ]C
1
2

0
2

00

001
2

0
2

22x β−βββ−
βββ−β

=
2

2
 (55)

The 2x2 C matrix contains no polynomial fractions and is easy to calculate.  To find the direc- 
tion cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53).

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

















C

3
2

2
2

1
2

0
2

01032020310

103203
2

2
2

1
2

0
2

030210

20310302103
2

2
2

1
2

0
2

0

3
2

2
2

1
2

0
2

0
33x

β+β−β−ββββ−βββββ+βββ
ββ+ββββ−β+β−ββββ−βββ
ββ−βββββ+ββββ−β−β+ββ

β+β+β+ββ
=

22

22

22
1  

After making the obvious cancellations and enforcing the holonomic constraint equation, the 
well known result is found which represents the 3x3 direction cosine matrix as a function of the 
classical Euler parameters as given in equation (18).  This classical representation contains no 
polynomial fractions and no singularities, just as was the case with the 2x2 system.

For dimensions greater than 3x3’s, however, the algebraic transformation contains polynomial
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fractions.  The nice cancelations that occur with a 2x2 and a 3x3 orthogonal matrices do not occur 
with the higher dimensions.  This might have been anticipated, because [2] it is well-known that 
quaternion algebra does not generalize fully to arbitrary higher-dimensional spaces, and the ele 
gant classical Euler parameter results are essentially manifestations of quaternion algebra.  To 
find C 44x   in terms of the higher dimensional Euler parameters, we define the 4x4 B matrix as:




















B

124

135

236

456

44x

ββ−β
β−ββ−
ββ−β
β−ββ−

=

0
0

0
0

 (56)

and substitute it into equation (53), this leads to

( ) ( )( )
( )( ) ( )
( )( ) ( )( )

( )( ) ( )( )









�

�

( )( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( )( ) ( )











htiw

C

2
0
2

526143

2
6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

632541000

632541000
2

6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

564203100465302100

362514000241635000

564203100362514000

465302100241635000

2
6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

160534200

160534200
2

6
2

5
2

4
2

3
2

2
2

1
2

0
2

0
2

44x

δ+β=∆
ββ−ββ+ββ=δ

δ−β+β+β−β+β−β−ββδβ−ββ+ββ+ββ−ββ
δβ+ββ+ββ+ββββδ−β+β−β+β−β+β−ββ
δβ+ββ−ββ−ββββδβ+ββ+ββ+ββββ
δβ+ββ−ββ−ββββδβ+ββ−ββ+ββ−ββ

δβ−ββ−ββ+ββββδβ−ββ−ββ−ββ−ββ
δβ−ββ+ββ−ββββδβ−ββ−ββ+ββββ

δ−β−β+β+β−β−β+ββδβ−ββ−ββ+ββββ
δβ+ββ+ββ+ββββδ−β−β−β−β+β+β+ββ

∆
=

2

2
22
22

22
22

2

2
1

 (57)

This denominator ∆ can vanish for several β i  configurations.  Observe, however, that when- 
ever ∆ is zero, so is the numerator.  For each singular case we can confirm that  a finite limit ex- 
ists, as was to be expected, since the original orthogonal C matrix was finite.  In all cases =β0 0  
is a prerequisite for a (0/0) condition to occur.  Finding the transformations for matrices with di- 
mensions greater than 4x4 would show the same behavior.  =β0 0  is always a indicator that a 
mathematical singularity may occur.  In none of these cases are the higher dimensional Euler pa- 
rameters themselves actually singular.  It is always a mathematical singularity of the transforma- 
tion itself.  To circumvent this problem for particular applications, the limit of the fraction can be 
found as →β0 0 .  After substituting =β0 0  into equation (57), for example, most fractions be- 
come trivial and the matrix is reduced to

















IC 4444 xx −=
−

−
−

−
=

1000
0100
0010
0001

 (58)

Substituting =β0 0  into equation (55) yields the same result.  Actually, as long as C is of 
even dimension the matrix will be -I if =β0 0 .  If the dimension is odd, as it is for the 3x3 case, 
the C matrix will be fully populated.  With this observation it is easy to circumvent the singular 
situations if the dimension is even.  If the dimension is odd a numerical limit must be found.  In ei- 
ther case the transformation will be well behaved everywhere except the =β0 0  surface.  The 
fact that the 0/0 condition can be resolved analytically to obtain finite limits should not obscure
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the frustrating fact that these 0/0 conditions would pose numerical difficulties in general numeri- 
cal algorithms.

Let us examine the uniqueness of the transformation given in equation (53).  Assuming that 
the transformation is not unique, two possible higher dimensional Euler parameter sets β́ and β̋  
are chosen, these parameterize C as

( )( )
( ) ( )BIBIC

BIBIC

−β+β=

+β−β=

˝˝˝˝

´´´´

−

−

0
1

0

1
00

Subtracting one equation from the other the following condition is obtained:

( )( ) ( ) ( )˝˝˝˝´´´´0 −β+β−+β−β=
−−

0
1

0
1

00 BIBIBIBI

( )( ) ( )( )´´˝˝´´˝˝0 +β−β−−β+β= 0000 BIBIBIBI

´˝˝´0 β−β= 00 BB

or

BB
˝

˝

´

´

β
=

β 00

 (59)

Equation (59) is the necessary condition for two higher order Euler parameter sets to yield the 
same direction cosine matrix C.  Obviously, for =β0 0  this can only occur when

k
BkB
´˝
´˝

β⋅=β
⋅=

00
 (60)

where k is a scalar.  This condition apparently yields an infinite number of solutions.  But 
since the higher dimensional Euler parameters must satisfy the holonomic constraint given in 
equation (52), only unit scaling values of k are permissible.  Therefore k must be either ±1.  The 
above uniqueness study results in exactly the same duality as is observed with the classical Euler 
parameters, except the restriction on =β0 0 .  There are always two possible sets of classical 
Euler parameters which describe an orthogonal 3x3 matrix C.  It is evident that this truth extends 
to the more general case of NxN orthogonal matrices . This duality was seen earlier when apply- 
ing the holonomic constraint to the kernel of A.

( )[ ] ( )[ ]tCtC NxNNxN β−=β  (61)

Based on the above, if =β0 0  nothing can be said about the transformation uniqueness.  As 
was seen with the 4x4 C matrix, the =β0 0  condition permits any point on the unit sphere �

2
1

6
ii=

=β 1 .

Having established the forward and backward transformations between the NxN orthogonal 
matrices and the higher order Euler parameters, their kinematic equations are also of interest.  To
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describe the orthogonal matrix C as a generalized rigid body rotation, C must satisfy a differential 
equation of the form given in equation (1).  After substituting equation (48) into equation (33), Q̇  
is

( )[ ] ( )B
I

B
IQ ˜

2
1˙

β
−ω

β
+=

00
 (62)

After differentiating equation (48) directly, Q̇  is found to be

BB
Q

˙˙
˙

β
β−β

=
0
2

00  (63)

Upon substituting equation (62) into equation (63) and after making some simplifications, the 
following kinematic relationship is found.

( )[ ] ( )−βω+β=β−β 0000 BIBIBB ˜
2
1˙˙  (64)

This equation can be solved for the skew-symmetric angular velocity matrix [ ]ω̃  .

[ ] ( ) ( )( )−ββ−β+β=ω ˙˙2˜ −− 1
000

1
0 BIBBBI  (65)

Note that this equation contains the same mathematical singularity at β0  =0 as did equation 
(53).  Carrying out the algebra a closed form algebraic equation is found for the higher order an- 
gular velocities.  

Let us verify that equation (65) for the angular velocities does indeed generate a 
skew-symmetric matrix.  This is easily accomplished using the definition of a skew-symmetric 
matrix as follows

[ ] [ ] ( ) ( )( )( )−ββ−β+β−=ω−=ω ˙˙2˜˜
TT −− 1

000
1

0 BIBBBI

[ ] ( ) ( ) ( )+ββ−β−β−=ω ˙˙2˜ −− 1
000

1
0 BIBBBI

TTT

[ ] ( ) ( )( )+ββ−β−β−=ω ˙˙2˜
−− 1

000
1

0 BIBBBI TTTTTT  

Since the matrix B and its derivative are skew-symmetric matrices by definition, further sim- 
plifications are possible to obtain the following result

[ ] ( ) ( )( )−ββ+β−+β−=ω ˙˙2˜ −− 1
000

1
0 BIBBBI

[ ] ( ) ( )( )−ββ−β+β=ω ˙˙2˜ −− 1
000

1
0 .d.e.qBIBBBI  

All higher order Euler parameter differentials must abide by the derivative of the constraint 
equation (52).

02 ˙2˙2˙ =ββ+…+ββ+ββ 1100 MM  (66)
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After using the B from equation (49) the linear differential kinematic equations of the classi- 
cal Euler parameters are found.  To verify that equation (65) generalizes correctly, known classi- 
cal results let us verify two special cases.  For the 2x2 case, a scalar differential kinematic equa- 
tion results from equation (65) as

[ ][ ]β
β

ββ−=ω
1

0
011 ˙

˙
2  (67)

Adding the constraint in equation (66), equation (67) can be padded to make it full rank.

[ ] [ ][ ]β
β

ββ−
ββ=ω ˙

˙
20

1

0

01

10
1

 (68)

Note that as with the 3x3 case, the matrix transforming β̇  to ω  is orthogonal for the 2x2 
case.  Therefore the inverse transformation can be written as:

[ ] [ ][ ]ωββ
β−β=

β
β 0

2
1

˙

˙

101

10

1

0  (69)

It is straight forward to show that equations (65) and (66) give equation (17) for the 3x3 case.  
Analogous to the 3x3 case, the above differential kinematic equation for the 2x2 case is also 
bi-linear.  As with the 4x4 and greater direction cosine matrices, for proper orthogonal matrices 
having dimensions greater than 3x3 the higher dimensional differential kinematic equations also 
contain polynomial fractions.  Using the B matrix from equation (56) in equation (65) and collect- 
ing all the angular velocity term, we find the differential kinematic equations for the 4x4 case
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


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





( )ββ+ββ−ββ+β=∆
β
β
β
β
β
β
β

β+ββββ+βββ−ββ+ββ−βββ+βββ
ββ−ββββ+ββββ+βββ−ββ+βββ−
ββ+βββββ−ββββ+ββββ−βββ
ββ−βββββ−βββββ−ββββ+ββ
ββ+βββ−ββ+βββββ−βββββ−βββ

ββ−βββββ+βββ−ββ+βββββ−βββ
β∆β∆β∆β∆

ββ−βββββ−ββββ+ββ−ββ−βββ
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β∆β∆β∆
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ω
ω
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ω
ω
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461523

54100206404
2

0
2

361524
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htiw

 (70)

Note that this transformation matrix is no longer orthogonal as were the corresponding ma- 
trices for both the 2x2 and 3x3 cases.  The bi-linearity found for 2x2 and 3x3 cases is also lost for 
the higher dimensional cases.  Equation (70) has the same denominator as the 4x4 direction co-
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sine matrix.  Hence it contains the identical singular situations.  However, if =β0 0 , the above 
transformation matrix is singular and cannot be inverted!

Thus the higher dimensional Euler parameters  lose some key properties as they are general- 
ized to parameterize higher dimensioned proper orthogonal matrices.  They retain the properties 
of being bounded and mapping all rotations onto arcs on a unit hypersphere.  However, the kine- 
matic transformations and orthogonal matrix representations loose the elegance of their classical 
3x3 counterparts.  In particular, =β0 0  poses several unresolved issues for all dimensions higher 
than 3x3.

Conclusion

The principal rotation parameterizations presented show great promise as an elegant means 
for describing the evolution of NxN orthogonal matrices.  The modified Rodrigues parameters are 
only slightly more complicated than their classical counterparts, but double the nonsingular rota- 
tion domain  The (M+1)-dimensional Euler parameters retain some of the desirable features of 
their classical counterparts.  However, for orthogonal matrices greater than 3x3 though, the or- 
thogonal matrix representation formulas and the corresponding differential kinematic equations 
contain some mathematical singularities which require taking the limits of polynomial fractions.  
The computational effort for calculating the higher dimensional Euler parameters grows rapidly 
when increasing the dimension of the C matrix.  For higher dimensional rotations, the modified 
Rodrigues parameters show the greatest promise.  The gain (increased nonsingular domain in 
comparison to the classical Cayley transformation), significantly outweighs the extra computa- 
tion.
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