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Abstract
The reconfiguring of a two craft Coulomb tether, aligned along the orbit radial direction, is stud-

ied. The linearized out-of-plane equation of motion is decoupled and not influenced by Coulomb
forces. Previous research assumes this out-of-plane motion is controlled with conventional thrust-
ing to keep it within a specified bound. An analytical solution is developed for the linearized
charged out-of-plane relative motion using Bessel functions for the special reconfiguration case
where the prescribed expansion or contraction rate is constant. Bounds on the initial out-of-plane
oscillation are deduced such that the final oscillation will remain within the prescribed limits.
These analytical results assist Coulomb tether reconfiguration maneuvers in determining when
conventional thrusting must be employed to damp out-of-plane motion. Further, an improved re-
configuration strategy is analyzed where the on/off switches of the constant rate reconfiguration
expansion are smoothed to reduce transient oscillations. This modification is shown to have mini-
mal impact on the predicted out-of-plane motion.

Introduction
Formation flying of spacecraft using Coulomb forces is a new and emerging field of

study. The electrostatic (Coulomb) charge of the spacecraft is varied by active emission
of either negative electric charges (electrons) or positive electric charges (ions). The re-
sulting changes in inter-spacecraft Coulomb forces are used to control the relative motion
of the spacecraft. Due to the drop off of the electrostatic force with distance, close prox-
imity flying missions are considered with separation distances ranging up to 100 meters.
Coulomb thrusting requires essentially no consumables (fuel efficiencies ranging up to
1013 seconds), requires very little electric power to operate (often less than 1 Watt), and
can be controlled with a high bandwidth (zero to maximum charge transition times are of
the order of milli-seconds).1 Also, by using this method the thruster exhaust plume con-
tamination issues with neighbouring satellites, commonly encountered with ion engines,
can be avoided.

While electrostatic charge has not been applied so far to perform relative motion con-
trol, the possibility of active charge control in a craft has been demonstrated by several
missions like SCATHA2 and ATS missions.3 A more recent example is the CLUSTER
mission4, 5, 6 consisting of 4 craft, where an active charge control is used to nullify the
relative potential between the spacecraft and plasma environment.
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A simplified case of Coulomb formation flying is a Coulomb tether formation, which
consists of 2 spacecraft capable of controlling their electrostatic charge. In such a for-
mation, a line-of-sight electrostatic force replaces a conventional physical tether. The
resulting equations of motion are very similar to a regular 2-craft physical tether sys-
tem with the following differences. The Coulomb tether is capable of producing both
attractive and repulsive forces, compared to the tension only forces of the physical tether.
Further, the latter can introduce additional complicated flexing dynamics, while the for-
mer allows for the equivalent tether stiffness to be tuned through feedback gains. While
a regular physical tether mission typically envisions kilometer size tethers, the Coulomb
tether concept is only practical for relatively short separation distances ranging up to 100
meters. Sample applications include the deployment of a small sensor from a mother
craft to provide an external monitor, or performing controlled proximity and docking
approach maneuvers.

The concept of formation flying using electrostatic propulsion is introduced in Ref-
erences 1, 7 and 8. These pioneering works discussed the static Coulomb satellite for-
mations and the associated equilibrium charges, but did not address the active stabiliza-
tion of these formations. The NIAC (NASA Institute for Advanced Concepts) report
by King et al.1 develops analytical solutions for Hill-frame invariant Coulomb forma-
tions. Here spacecraft are placed at specific locations in the rotating Hill frame with
constant electrostatic charges. As a result, the Coulomb forces perfectly cancel all Ke-
plerian relative orbit accelerations, thus causing the satellites to remain fixed or static
as seen by the constantly rotating Hill frame. The analytical solutions were found for
simple geometries involving 3 to 7 satellites using formation symmetry. In all these
formations one satellite is located at the center of mass of the satellite formation. The
equations of motion representing these Coulomb formations in the Hill frame are highly
coupled, non-linear equations. With multiple craft, complex static formations other than
the simple symmetric formations found in Reference 8, are also possible. However, these
complex static formations are non-intuitive and a numerical approach is often needed to
find the constant Hill frame position and charge that result in a static formation. One
such numerical approach using a genetic algorithm is given in Reference 9. In Refer-
ence 9, Coulomb formation shapes involving up to 9 craft are discussed. The necessary
conditions for achieving such static Coulomb formations are determined in Reference 10
using a Hamiltonian formulation of the Coulomb formation dynamics. These Hamilto-
nian formulations are analogous to the study of equilibrium conditions of rigid bodies
in orbit. The analytical solution for the static charge and their feasibility for different
shapes in two-craft and three-craft formations are discussed in detail in Reference 11.
Romanelli et al.12 showed that Coulomb forces can be used to cancel the differential
drag due to solar radiation, J2 effects and atmospheric drag, experienced by craft in a
static formation. Note that the charge is held constant in the above mentioned open-loop
static Coulomb formations studies. All these open-loop static Coulomb formations are
found to be unstable without feedback.

Reference 7 discusses static Coulomb satellite formations and a nonlinear control law
which is capable of bounding the relative motion between two close craft by controlling
the semi-major axis difference. This charge feedback control can also be used to con-
trol general orbit element differences with guaranteed stability, but not necessarily with
asymptotic convergence. Reference 13 presents an open loop stable spinning two craft
Coulomb tether. The reconfiguration of this spinning Coulomb tether in deep space is
also discussed, but orbital motion is not considered. A Lyapunov-based control law for
stabilizing a 1D-restricted three-craft Coulomb structure is shown in Reference 14. The
Lyapunov-based control law identifies the required charge products. Real implementable
charge values for each craft are extracted by studying the null space of the charge product
matrix. A control law for avoiding collision between spacecraft in a cluster in free space
is proposed in Reference 15. This control law requires only the separation distance be-
tween the craft and its rate for determining the charge feedback. The control law ensured
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that no two craft were within each other’s safety spherical zones of fixed radius.
Studies pertaining to tethered spacecraft formation flying using Coulomb forces in-

clude 16, 17 and 18. Reference 16 investigates the regulation of a specific shape and
orientation of a static two-craft Coulomb tether formation aligned along the orbit radial
direction. Charge feedback control laws for asymptotically stabilizing the formation are
developed, leading to the first stable virtual Coulomb structure. Reference 17 studies
the reconfiguration of the 2-craft Coulomb tether formation by forcing the craft to move
apart or come closer. An active charge feedback law is introduced and the linear stability
of the coupled separation distance and attitude is evaluated for this time-variant system.
Based on this analysis, stability regions for expanding and contracting the two-craft for-
mation are established. The present work is a continuation of this investigation of the
nadir-aligned two-craft Coulomb tether. Two specific aspects in the context of recon-
figuration are dealt with. One pertains to variation of out-of-plane angle and the other
pertains to curtailment of separation distance oscillation. Reference 18 discusses the
reconfiguration problem of a Coulomb tether aligned along the orbit-normal and along-
track directions. For the orbit-normal configuration the linearized shape dynamics are
found to be passively stable, while both in-plane and out-of-plane orientations decou-
pled from the charge control and were unstable. The along-track configuration has the
out-of-plane motion decoupled similar to the orbit-nadir aligned case, and requires a
hybrid Coulomb and conventional thrusting control strategy to stabilize the shape.

The present paper focuses solely on the charged relative motion for the orbit nadir
aligned configuration. Analytical solutions to the out-of-plane motion are explored for
cases of constant rate of change in the length of the Coulomb tether. This, for example,
is a typical scenario where a sensor is desired to be deployed to a specified distance, and
the reference separation distance is varied at a fixed rate. The analytical solutions are
compared with the actual nonlinear response using numeric simulations. Considering
the emphasis of the paper on the utility of the analytical solution, the measurement errors
and white noises are being ignored in the numerical simulation. Adding them would
make the comparison difficult to interpret.

Employing a fixed separation rate maneuver requires infinite acceleration at the be-
ginning and end of the maneuver due to the impulsive change in the desired separation
rate. In Reference 17 this causes noticeable transient tracking errors at the maneuver end
points. The feedback control is able to stabilize these. However, this paper investigates,
in addition, smoothed reference separation rate strategies with the goal of reducing the
resulting tracking error transients.

This paper is organized as follows. First, the analytical solution for the linearized out-
of-plane angle equation of motion (EOM) is derived and this is followed by establishing
the bounds on the initial out-of-plane angle. Next a smooth transition function is de-
fined, followed by adapting this function for the reference length rate problem. Finally,
numerical simulations illustrate the results.

Problem Statement

The notation and variables of References 16 and 17 are used in this study. The basic
Coulomb tether structure used is shown in Figure 1. The separation distance L between
the craft is written as

L = Lref + δL (1)

where Lref is the ideal reference length and δL is the small deviation (error) from it.
Note, the reference length Lref may be constant (as in regulation problem) or varying
with time (as in reconfiguration problem). Assuming small angular deviations of ψ and
θ, the linearized equations of motion describing the dynamics of two-craft Coulomb
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Figure 1. Coulomb tethered two satellite formation with the satellites aligned along
the orbit nadir direction

tether reconfiguration are:17

θ̈ +
2L̇ref

Lref
θ̇ + 4Ω2θ = 0 (2a)

ψ̈ +
2L̇ref

Lref
ψ̇ +

2Ω
Lref

δL̇− 2L̇ref

L2
ref

ΩδL+
2L̇ref

Lref
Ω + 3Ω2ψ = 0 (2b)

δL̈+ L̈ref − 2ΩLrefψ̇ − 9Ω2δL− kc
m1

δQ
1
L2

ref

m1 +m2

m2
= 0 (2c)

where the in-plane angle ψ and the out-of-plane angle θ describe the attitude of the
formation, δL is the error in the separation distance between the two crafts. The constant
chief orbital rate is given by Ω =

√
µ/r3

c , where µ is the gravitational coefficient and
rc is center of mass position vector. The parameter kc = 8.99 · 109 Nm2/C2 is the
Coulomb constant. Let qi be the individual spacecraft charges, then Q = q1q2 is the
charge product of the 2 craft. The prescribed reference length and its rate are given by
Lref and L̇ref. Finally, the constants m1 and m2 are the masses of the two craft. The
feedback control law is introduced through the charge product variation term δQ and is
written as

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (3)

where C1 and C2 are the position and velocity gains and the actual commanded charge
product is:

Q = Qref + δQ (4)

The reference charge product for a nadir aligned 2 charged craft equilibrium is11, 16

Qref = −3Ω2L
3
ref

kc

m1m2

m1 +m2
(5)
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The linearized closed-loop equations in Eqs. (2) are the result of this charge feedback
control law. These EOM reveal that the out-of-plane angle (θ) is decoupled from the
in-plane angle (ψ) and the separation distance error (δL). Hence, the out-of-plane an-
gle can not be actively controlled by the Coulomb force. For the regulation problem the
out-of-plane angle EOM is a time-invariant second order differential equation that results
in a stable simple harmonic oscillation motion for θ. Whereas, for the reconfiguration
problem the EOM is a second order differential equation with time dependent terms that
involve the prescribed reference length (Lref) and reference length rate (L̇ref). Depending
on whether one is expanding (positive L̇ref) or contracting (negative L̇ref) the Coulomb
tether formation, the initial out-of-plane angle oscillations will decrease or increase re-
spectively. The contracting operation is of particular interest in that it has potential ap-
plications in space structure docking operations. These docking operations might require
the final angular oscillations to be within prescribed limits to satisfy mechanical mating
tolerances. The in-plane angle can be asymptotically controlled by using the Coulomb
force. This now leaves the out-of-plane angle and we are interested in developing certain
bounds on the initial out-of-plane oscillation such that the finial oscillation is within the
prescribed limits. This paper investigates analytical solutions for the out-of-plane angle
EOM when the reference length rate (L̇ref) is a constant. For the reconfiguration problem,
the user is free to prescribe an appropriate rate of change for the reference length (L̇ref)
within the stable regions discussed in Reference 17.

Analytical Solution for Out-of-Plane Motion
The linearized equation of motion for the charged spacecraft out-of-plane angular mo-

tion is given in Eq. (2a) as

θ̈ + 2
L̇ref

Lref
θ̇ + 4Ω2θ = 0 (6)

Note that the spacecraft charges qi do not enter this linearized equation. Only with large
out-of-plane motion does the spacecraft charge begin to have an influence. For a constant
reference length rate (L̇ref), the reference length is written as

Lref(t) = L0 + L̇ref t (7)

where L0 is the initial reference separation distance and t is the time. Substituting Eq. (7)
back into the out-of-plane equation of motion given in Eq. (6) results in

θ̈ + 2
L̇ref

L0 + L̇ref t
θ̇ + 4Ω2θ = 0 (8)

An analytical solution for the equation of motion given in Eq. (8) is obtained by trans-
forming the equation to the Bessel equation.19 The detailed derivation of the analytical
solution using Bessel functions is presented in the appendix. The analytical solution to
the out-of-plane differential equation in (6) is given by

θ(t) =
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(9)

The arbitrary constants A and B can be evaluated using the initial conditions. Let the
initial conditions (i.e. at t = 0) of out-of-plane angle (θ) and its rate (θ̇) be

θ(0) = θ0 (10)

θ̇(0) = θ̇0 (11)
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From Eq. (9), the expression for θ at t = 0 can be written as

θ(0) =
1
L0

(
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

))
(12)

Comparing Eq. (10) and Eq. (12) leads to

A sin
(

2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)
= L0θ0 (13)

Taking the time derivative of Eq. (9), the expression for angle rate (θ̇) is written as

θ̇(t) =
−L̇ref

(L0 + L̇ref t)2

[
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

)]
+

2Ω
L0 + L̇ref t

[
A cos

(
2ΩL0

L̇ref
+ 2Ωt

)
−B sin

(
2ΩL0

L̇ref
+ 2Ωt

)]
(14)

The expression for θ̇(t) at t = 0 is derived from Eq. (14) as

θ̇(0) =
−L̇ref

L2
0

[
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)]
+

2Ω
L0

[
A cos

(
2ΩL0

L̇ref

)
−B sin

(
2ΩL0

L̇ref

)]
(15)

Again, by comparing Eq. (15) and the initial condition given in Eq. (11), we find

A

[
−L̇ref

L2
0

sin
(

2ΩL0

L̇ref

)
+

2Ω
L0

cos
(

2ΩL0

L̇ref

)]
+B

[
−L̇ref

L2
0

cos
(

2ΩL0

L̇ref

)
− 2Ω
L0

sin
(

2ΩL0

L̇ref

)]
= θ̇0

(16)

Solving equations Eq. (13) and Eq. (16) for A and B yields

[
A
B

]
=

 sin
(

2ΩL0

L̇ref

)
cos
(

2ΩL0

L̇ref

)
−L̇ref
L2

0
sin
(

2ΩL0

L̇ref

)
+ 2Ω

L0
cos
(

2ΩL0

L̇ref

)
−L̇ref
L2

0
cos
(

2ΩL0

L̇ref

)
− 2Ω

L0
sin
(

2ΩL0

L̇ref

)−1[
L0θ0

θ̇0

]
(17)

which leads to the following solutions for A and B:

A =

(
L̇refθ0 + L0θ̇0

2Ω

)
cos
(

2ΩL0

L̇ref

)
+ L0θ0 sin

(
2ΩL0

L̇ref

)
(18)

B = −

(
L̇refθ0 + L0θ̇0

2Ω

)
sin
(

2ΩL0

L̇ref

)
+ L0θ0 cos

(
2ΩL0

L̇ref

)
(19)

Thus, Eq. (18) and Eq. (19) give the expressions for the constants of integration A and
B.

The analytical solution given in Eq. (9) can be further simplified into a single trigono-
metric function with a phase angle and amplitude. Recall the trigonometric identity

X sin θ + Y cos θ =
√
X2 + Y 2 cos

(
θ − tan−1

(
X

Y

))
(20)
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Now, using this trigonometric identity, the analytical expression for θ(t) given in Eq. (9)
is rewritten as

θ(t) =
1

L0 + L̇ref t

√
A2 +B2 cos

(
2ΩL0

L̇ref
+ 2Ωt− tan−1

(
A

B

))
(21)

Therefore, Eq. (21) provides the final form of the analytical solution with constants A
and B defined in Eq. (18) and Eq. (19).

Bounds on Initial Out-Of-Plane Angle
This section investigates analytical bounds on how much out-of-plane motion will be

present at the end of the Coulomb tether constant expansion or contraction maneuver.
With such results it is possible to predict if conventional thrusting must be employed
to reduce the current out-of-plane motion before engaging the maneuver. By studying
Eq. (21), the time varying amplitude of the out-of-plane angle θ is written as

[θ(t)]amp =
1

L0 + L̇ref t

√
A2 +B2 (22)

The amplitude expression in Eq. (22) is further simplified by substituting the expressions
for A and B from Eq. (18) and Eq. (19). The simplified amplitude expression in terms
of initial out-of-plane angle θ0 and initial rate θ̇0 is given by

[θ(t)]amp =
1

L0 + L̇ref t

( L̇refθ0 + L0θ̇0

2Ω

)2

+ (L0θ0)2

 1
2

(23)

The analytical solution using Bessel functions and the time-varying amplitude expression
holds for both expansion and contraction of the separation distance between the two
satellites. Reference 17 discusses that during expansion the out-of-plane oscillations are
reduced due to angular momentum conservation. Therefore, regardless of the initial out-
of-plane angle at the beginning of the expansion, one is guaranteed to have a smaller
out-of-plane oscillation at the end of an expansion operation. The converse is true for
contracting the 2-craft Coulomb tether. The initial out-of-plane oscillation will increase
as the satellites are brought closer. We are interested in establishing a bound on the
initial oscillation such that the final oscillations at the end of the contraction will be with
in a prescribed limit. Let the maximum initial out-of-plane oscillation be θ0max while the
initial angular rate is zero. The amplitude expression in Eq. (23) is then rewritten as

[θ(t)]amp =
θ0max

L0 + L̇ref t

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(24)

For the given initial and final separation distances, and the constant rate of change of
separation distance (L̇ref), the total time involved for the contraction operation can be
determined. Let this time be given by tmax. The desired bound on the out-of-plane
oscillation amplitude at the end of the time tmax is given by [θ(tmax)]amp. Inserting these
values in Eq. (24) results in

[θ(tmax)]amp >
θ0max

L0 + L̇ref tmax

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(25)
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Rearranging Eq. (25) for θ0max gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2

+ (L0)2

(26)

The inequality given in Eq. (26) establishes the bounds on the initial out-of-plane angle
. Satisfying this inequality leads to a final out-of-plane oscillation that is less than the
permissible value of [θ(tmax)]amp. If out-of-plane thrusting is only to be employed if the
final out-of-plane motion is larger than a prescribed amount, then Eq. (26) provides a
convenient and simple check.

Smoothed Reconfiguration Rates
Reference 17 presents a charge feedback strategy to reconfigure a nadir-aligned 2-craft

Coulomb tether. Let us first review this reconfiguration control strategy. Recall that the
parameter Q = q1q2 is the charge product of the two spacecraft. The charge feedback
strategy in Reference 17 is given by

Q(t) = Qref(t) + δQ(t) (27)

where the reference charge is computed using the equilibrium charge condition for a
constant reference length Lref using:16, 11

Qref = −3Ω2L
3
ref

kc

m1m2

m1 +m2
(28)

and the charge feedback component δQ is determined through

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (29)

Only the separation distance between the 2 craft needs to be measured for the feedback.
This could be accomplished, for example, using a laser range finder or time coded radio
signals. To perform a constant rate nadir-aligned Coulomb tether expansion or contrac-
tion, the reference length rate L̇ref is switched instantaneously from 0 to non-zero at time
t0, and back to zero at the end of the reference maneuver. The system cannot produce
these required infinite accelerations with finite charges, and thus some transient error mo-
tion results which the charge feedback strategy must stabilize. This section investigates
how to smooth this on/off transition to minimize transient effect.

The function F (t) jumps smoothly from zero to one at the point t = t0 as illustrated
in Figure 2. This function is based on the hyperbolic tangent function tanh (x). To
represent a value jumping up at t = t0, use

F (t) =
1
2

+
1
2

tanh
(
t− t0
σ

)
(30)

The hyperbolic tangent function used in Eq. (30) is a monotonically increasing with
the value approaching −1 as t → −∞ and approaching +1 as t → ∞. Because of the
finite precision involved in computing, the value of hyperbolic tangent function will get
rounded off to a constant value of +1 for all values of t beyond (t0 +16σ), and to−1 for
all values of t below (t0 − 16σ). Thus, the value of the function F (t) goes to 0 and 1 at
t = (t0− 16σ) and t = (t0 + 16σ), respectively. A plot of the function F (t) is shown in
Figure 2 illustrating the symmetry about the point t = t0. An examination of the figure
also illustrates that the change in the value of the function F (t) essentially occurs while
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1

t0 − 16σ t0 + 16σt0
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Figure 2. Time history of the smooth transition function F (t).

t lies in a small interval around t0. The smoothing time interval can be made as small as
desired by choosing an appropriate value of σ. Moreover, t = t0 is a point of inflection
with the value of the function equal to 1/2 . To smooth the drop to zero commanded rate
at the end of the maneuver the function

Fe(t) = 1.0− F (t) (31)

can be used.

The function F (t) is infinitely smooth and differentiable to any order. Note that the
derivatives of all orders will approach to zero near at (t0 ± 16σ). This closely matches
the ideal characteristics of the constant rate function before and after the jump. The time
derivative of function F (t) is obtained using the identity sech2(x) = 1.0− tanh2 (x), as

Ḟ (t) =
1

2σ
sech2

(
t− t0
σ

)
(32)

The derivative of F (t) given in Eq. (32) is plotted in Figure 3. It can be seen from the
plot that the Ḟ (t) reaches its maximum value at t = t0.

The commanded length rate L̇ref around the initial time t0 is now modified to be

L̇ref(t) = F (t) · L̇des (33)

where L̇des is the desired constant expansion or contraction rate. The smoothed reference
length acceleration at any given point of time is given by

L̈ref(t) =
L̇des

2σ
sech2

(
t− t0
σ

)
(34)
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1/(2σ)sech2((t− t0)/σ)
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Ḟ (t)

Figure 3. Time history of the time derivative of the smooth transition function (Ḟ (t)).

The maximum acceleration occurs at t = t0 and is written as

L̈ref(t0) =
L̇des

2σ
(35)

The change in reference length during this smooth transition is determined by integrating
Eq. (33) over the time period (t0 − 16σ) to (t0 + 16σ). The expression for this change
in reference length is given as

Lref = L̇des

[
1
2
t+

1
2

ln
(

cosh
(
t− t0
σ

))]t0+16σ

t0−16σ

(36)

Next, the time period over which this transition should take place must be determined.
In other words, the value of σ must be determined. The limiting factor for sigma is the
maximum available charge that a spacecraft can safely produce. Consider the nonlinear
separation distance equation of motion given below

L̈ = (2nψ̇ + 3Ω2)L+
kc
m1

Q
1
L2

m1 +m2

m2
(37)

For an ideal equilibrium case, the in-plane angle rate (ψ̇) is zero and the separation dis-
tance L will track Lref. Implementing this ideal one-dimensionally constrained scenario
in Eq. (37) results in

L̈ref = 3Ω2Lref +
kc
m1

Q
1
L2

ref

m1 +m2

m2
(38)

Substituting the maximum reference length acceleration from Eq. (35) in to Eq. (38) and
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approximating Lref as initial separation length L0 yields

L̇des

2σ
= 3Ω2L0 +

kc
m1

Q
1
L2

0

m1 +m2

m2
(39)

Note, the reference length (Lref(t0)) at maximum reference acceleration (t = t0) is ide-
ally found by integrating the reference length rate (L̇ref). To avoid the complex integral
during the computation of σ, we are using the initial separation distance L0 with mini-
mal impact on the resulting maximum acceleration prediction. Similarly, while finding
the σ needed at the end of the maneuver, the final separation distance (Lf ) will be used
as an approximation. Let the maximum available charge product be Qmax. Using this
information in Eq. (39) and rearranging the equation gives the minimum σ required as

σmin =
L̇des

6Ω2L0 + 2 kc

m1
Qmax

1
L2

0

m1+m2
m2

(40)

In all following numerical simulations, we will use at least twice this minimum σ, so that
our charge requirement is well with in the limit at any given time.

The reference charge product (Qref) used in this modified reconfiguration feedback
control strategy is also slightly different from the one used in Reference 17. Usually, the
reference charge product Qref is calculated by setting the left hand side of the equation
Eq. (38) to zero. That is, the reference length acceleration L̈ref is set to zero. Instead the
new reconfiguration control strategy incorporates the desired reference separation accel-
eration into the reference charge product computation. The modified reference charge
product is given as

Qref =
L2

ref

kc

m1m2

m1 +m2
(L̈ref − 3Ω2Lref) (41)

This reference charge product could not be used in Reference 17 because the reference
length acceleration (L̈ref) grows to infinity due to the Heaviside step function. The modi-
fiedQref reduces the amount of tracking errors by feed-forward canceling the L̈ref term in
the closed-loop equations in Eq. (2c). However, the reference charge product in Eq. (41)
is computed assuming the ideal scenario where the in-plan angle remains zero. Studying
the linearized in plane equations of motion in Eq. (2b) shows that a non-zero L̇ref will
cause ψ to become non-zero. Due to the closed-loop stability we are guaranteed that ψ
will remain small and stable. With only line-of sight electrostatic forces it it impossible
to perform this reconfiguration maneuver and maintain ψ zero at all time. This would
required in-plane lateral thrusting which is not available with Coulomb forces.

Numerical Simulations

In this section, the performance of the smoothed reference length rate transition func-
tion and the new reference charge product is illustrated using simulations. This is fol-
lowed by numeric simulations to illustrate the analytical solution of the out-of-plane
motion and to verify the final oscillation predictions.

The Coulomb tether performance with a smoothed reference length rate is simulated
in two different manners. First the linearized spherical coordinate differential equations
in Eqs. (2) are integrated. This simulation illustrates the expected linear performance
of the smoothed reference length rate and the new reference charge product. Second,
the linearized results are compared with those obtained from integration of the exact
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Table 1. Input parameters used in orbit-radial reconfiguration simulation with
smooth transition

Parameter Value Units

m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2/C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.0 m
ψ(0) 0.0 rad
θ(0) 0.0 rad
C1 12Ω2

C2 2.4249Ω

nonlinear equation of motion of the deputy satellites given by

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L3
(r1 − r2) (42a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L3
(r2 − r1) (42b)

where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the
masses m1 and m2, while L =

√
(r2 − r1) · (r2 − r1) and µ is the gravitational coef-

ficient. After integrating the motion using inertial Cartesian coordinates, the separation
distance L, as well as the in-plane and out-of-plane angles ψ and θ, are computed in
post-processing using the exact kinematic transformations.

The first maneuver considered expands the Coulomb tether formation from 25m to
35m in 1.8 days. The simulation parameters used are listed in Table 1. The values of
the initial attitude (ψ(0), θ(0)) and the separation length error (δL(0)), as well as all
initial rates, are set to zero. In the reconfiguration simulations in reference 17, the initial
tracking errors are due to both initial condition errors and the sudden jumps in reference
length (Lref) rate due to the Heaviside function. In order to isolate and show that the
oscillations due to the latter have been reduced, the initial conditions are all taken to be
zero.

Before running the simulation, the necessary σ values must be computed. Initially, at
the start of the reconfiguration the reference length is 25 m and the maximum available
charge on each craft is 5 µC. The minimum required σ is calculated using Eq. (40) as

σ1min = 6.1905

Similarly, the minimum σ value needed at the end of reconfiguration is calculated using
the final separation distance of 35 m as σ2min = 10.70. The following numerical results
use σ1 = 15 and σ2 = 30 which are more than twice the minimum required to avoid
charge saturation. The σi values only determine the required maximum required accel-
eration of the open-loop feed-forward control components. Using this safety factor of 2
helps avoid charge saturation when the shape error feedback control component is added.

Figure 4(a) shows the Coulomb tether motion for increasing the separation distance
from 25m to 35m in the linearized spherical coordinates (ψ, θ, δL), along with the spher-
ical coordinates deduced from the full nonlinear equations shown as dotted lines. The
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(a) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rotation angle θ for smoothed
reference length rate transition.
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(b) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rotation angle θ for reference
length rate transition using Heaviside function.

Figure 4. Coulomb tether states simulation results for expanding the spacecraft
separation distance from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 12
and C̃2 = 2.4249.

expansion is done in 1.8 days. Figure 4(b) also shows the simulation of the same ma-
neuver but, without the smoothed reference length transition function. By comparing the
two figures it can be concluded that the oscillations in the in-plane angle (ψ) and separa-
tion distance error (δL) are reduced approximately by 10% and 20%, respectively. The
in-plane angle is coupled to the separation distance error equation through the in-plane
angle rate (ψ̇), which is not modeled in to the reference charge. This is the reason for
the initial oscillation even though the initial error in the states are zero. The out-of-plane
angle (θ) is constantly zero since it is decoupled from the other two states and its initial
states are zero to begin with. Figure 5(a) shows the spacecraft control charge q1 (on craft
1) for both the linearized and full nonlinear simulation models. Both are nearly on top of
the reference value pertaining to the static equilibrium at each instant of time. The spikes
in control charge observed in the graph are due to the finite reference length accelerations
during the smooth reference length rate transition. Note that spikes are well within the 5
µC charge saturation level for this example.

In order to illustrate how well the system is tracking the prescribed reference trajec-
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(b) Time histories of separation distance for smoothed reference length rate transition.
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(c) Time histories of rate of change of separation distance for smoothed reference length rate transition.

Figure 5. Charge and tether length simulation results for expanding the spacecraft
separation distance from 25m to 35m in 1.8 days. The feedback gains are C̃1 = 12
and C̃2 = 2.4249.
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tory Lref(t), the time histories of separation distance L(t) and the time histories of rate
of change of separation distance L̇(t) are shown in Figure 5(b) and Figure 5(c) , re-
spectively. Figure 5(b) shows that the reference separation distance (Lref(t)) increases
linearly until 1.8 days before settling to a constant value and both the linear and inertial
nonlinear simulations track the reference separation distance perfectly. Figure 5(c) illus-
trates that the rate of change of the reference separation distance (L̇ref(t)) is a smoothed
representation of a discrete step change.

Amplitude Bounds
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Nonlinear Equation Simulation
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Figure 6. The time histories of the out-of-plane angular motion (θ) using the ana-
lytical solution and by simulating the full nonlinear equation. The initial θ value is
0.06 radians, resulting in the final out-of-plane angular oscillation amplitude of 0.1
radians.

Now, in order to verify and illustrate the analytical out-of-plane motion solution, a ma-
neuver is considered involving the contraction of the separation distance between the two
satellites from 25 m to 15 m in 1.8 days. When the satellite formation is expanded the
amplitude of oscillation decreases due to conservation of momentum. Whereas, while
contracting the formation, the amplitude of out-of-plane oscillation increases due to con-
servation of momentum. This increased out-of-plane oscillation has the potential to
make the charge control laws developed based on small angle linearization inaccurate
and destabilize the formation. Therefore, it is important to show that the out-of-plane
angle oscillation can be kept sufficiently small during contraction maneuver by placing
bounds on the initial oscillation. Hence, the choice of contraction maneuver for illustrat-
ing the out-of-plane analytical solution.

First, let us calculate the bound on the initial out-of-plane angle (θ) value so that the
final oscillation will be not exceed 0.1 rad. Using Eq. (23) and substituting the corre-
sponding values gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2

+ (L0)2

6 0.06 rad (43)

Therefore, the maximum initial out-of-plane angle should not exceed 0.06 rad. Assume
that while starting the contraction maneuver the out-of-plane angle is at its maximum
possible value. This results in setting the initial out-of-plane angle and angle rate as
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θ = 0.06 radians and θ̇ = 0 rad/sec, respectively. Except for the smoothing function
F (t) being turned off, all other parameters and initial values are same as the previous
simulation.

The out-of-plane angle equation of motion shown in Eq. (6) is the linearized decou-
pled equation. As in the previous simulation, we compare its performance with the full
nonlinear equation given by Eq. (42). The simulation results are illustrated in Figure 6.
The analytical solution in Eq. (9) of the linearized equation for the out-of-plane angle (θ)
closely follows the actual out-of-plane angle time history obtained by simulating the full
nonlinear equation and error is with in ±0.0017 radians. The amplitude of the oscilla-
tion found using the equation Eq. (23) is shown as the bound and the final out-of-plane
angular oscillation amplitude is 0.1 radians as expected.

Recall that the analytical solution for out-of-plane motion and the bound on the initial
oscillation is derived assuming that the reference length rate (L̇ref) is a constant. But, in
the subsequent section the smooth transition function (F (t) is used at the beginning and
end of the maneuver. The effect of this smooth transition function on the out-of-plane
angle oscillation prediction is of interest. Consider the same maneuver of expanding the
Coulomb tether formation from 25m to 35m in 1.8 days used in the first simulation. Set
the initial out-of-plane angle and rate as θ = 0.1 radians and θ̇ = 0 rad/sec, respectively.
Again, all other parameters and initial values are same as the first simulation. The out-
of-plane motion based on the analytical solution (continuous line) and the full nonlinear
equation simulation with smoothed reference length rates (dashed line) are shown in
Figure 7. There is no appreciable difference in the out-of-plane motion history from the
nonlinear simulation and the error is with in±0.0024 radians. It still very closely follows
the analytical solution results in spite of the smoothed reference length rate.
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Figure 7. The time histories of the out-of-plane angular motion (θ) using the analyti-
cal solution and by simulating the full nonlinear equation with smoothed transition
rates.

Conclusion
The analytical solution for the linearized out-of-plane angle (θ) equation of motion for

the ideal constant rate reconfiguration problem is developed using the Bessel functions.
This solution is used to obtain bounds on the initial out-of-plane angle so that the final
out-of-plane angular oscillations is within the prescribed limit. Numerical simulations
of the full nonlinear motion are carried out comparing the linearized performance pre-



abcd 17

dictions to the actual nonlinear system response. Further, a smooth transition function
is used in the beginning and end of the prescribed constant reference length rate. This
eliminates the abrupt increase or decrease of the reference length rate resulting in a finite
acceleration at the points of transition. Simulation results show very good tracking with
substantially reduced transient error motion. The introduction of this smoothing function
has negligible effect on the idealized out-of-plane oscillation during the reconfiguration
maneuver considered.
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Appendix

This section translates the out-of-plane equations of motion into the form of a standard
form of the Bessel equation. Define a new variable z as follows

z = L0 + L̇ref t (44)
dz
dt

= L̇ref (45)

Substituting this new variable z given in Eq. (44) into Eq. (8), and changing the deriva-
tives with respect to t (time) to derivatives with respect to z results in

d2θ

dz2
+

2
z

dθ
dz

+ k2θ = 0 (46)

where k = 2Ω
L̇ref

is a constant parameter of this reconfiguration maneuver. The trans-
formed equation in Eq. (46) is not yet in the standard Bessel equation form and needs
one more transformation. Assume, the out-of-plane angle θ to be of the form

θ = z−
1
2 y(z) (47)

Now, the first and second derivative of θ with respect to z can be written as

dθ
dz

= z−
1
2

dy
dz
− 1

2
yz−

3
2 (48)

d2θ

dz2
= z−

1
2

d2y

dz2
− z− 3

2
dy
dz

+
3
4
yz−

5
2 (49)

Using Eq. (47), Eq. (48) and Eq. (49), the θ equation of motion given in Eq. (46) can be
transformed as

d2y

dz2
+

1
z

dy
dz

+
(
k2 − (1/2)2

z2

)
y = 0 (50)

The standard form of the Bessel equation given in Reference 19 is as follows

d2y

dz2
+

1
z

dy
dz

+
(
k2 − v2

z2

)
y = 0 (51)

and the complete solution for Eq. (51) when v is non-integral, is given by

y = AJv(kz) +BJ−v(kz) (52)

where A and B are constants whose values can be determined using initial conditions.
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The Bessel functions Jv(kz) and J−v(kz) are given by

Jv =
∞∑
r=0

(
(−1)r

(
1
2kz
)v+2r

r!Γ(v + r + 1)

)
(53)

J−v =
∞∑
r=0

(
(−1)r

(
1
2kz
)−v+2r

r!Γ(−v + r + 1)

)
(54)

where Γ(∗) is the Gamma function defined as

Γ(z) =
∫ ∞

0

e−ttz−1dt (55)

By comparing the equation of motion (EOM) given in Eq. (50) and the standard Bessel
equation given in Eq. (51), the analytical solution for the EOM can be written as

y = AJ1/2(kz) +BJ−1/2(kz) (56)

The Bessel function J1/2(kz) can be written using Eq. (53) as

J1/2(kz) =

(
1
2kz
)1/2

Γ(3/2)

{
1− (kz)2

2.3
+

(kz)4

2.3.4.5
− · · ·

}
(57)

The value of the function Γ(3/2) is calculated to be 1
2π

1
2 . Using this value and rearrang-

ing Eq. (57), one arrives at

J1/2(kz) =
(

2
πkz

)1/2{
kz − (kz)3

2.3
+

(kz)5

2.3.4.5
− · · ·

}
J1/2(kz) =

(
2
πkz

)1/2

sin(kz) (58)

Similarly, the expression for the J−1/2(kz) boils down to

J−1/2(kz) =
(

2
πkz

)1/2

cos(kz) (59)

The analytical solution for the out-of-plane angular motion θ can be written by combin-
ing Eq. (47), Eq. (56), Eq. (58) and Eq. (59) as

θ = z−
1
2

(
A

(
2
πkz

)1/2

sin(kz) +B

(
2
πkz

)1/2

cos(kz)

)
(60)

Substituting back the definitions of z and k in Eq. (60), one arrives at the expression for
θ as a function of time t, which is written as

θ(t) =

(
L̇ref

πΩ

)1/2
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(61)
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The term
(
L̇ref
πΩ

)1/2

is a constant and can be absorbed in to the arbitrary constants A and
B. Therefore, Eq. (61) can be rewritten as

θ(t) =
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(62)


