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Abstract

The dynamics and stability of a charged two craft formation with nominal fixed
separation distance (Coulomb tethers) is studied where the cluster is aligned with
either the along-track or orbit normal direction. Unlike the charged two-craft forma-
tion scenario aligned along the orbit radial direction, a feedback control law using
inter-spacecraft electrostatic Coulomb forces and the differential gravitational ac-
celerations is not sufficient to stabilize the Coulomb tether length and the formation
attitude. Therefore, a hybrid feedback control law is presented which combines con-
ventional thrusters and Coulomb forces. The Coulomb force feedback requires mea-
surements of separation distance error and error rate, while the thruster feedback
is in terms of Euler angles and their rates. This hybrid feedback control is designed
to asymptotically stabilize the satellite formation shape and attitude while avoiding
plume impingement issues. The effects of differential solar drag on the formation
and the ability of the controller to withstand this disturbance is also studied.

Key words: Formation Flying, Coulomb Tethers

1 Introduction

Using inter-vehicle electrostatic Coulomb forces for satellite formation flying
is a relatively new and emerging concept. Pioneering work in developing this
Coulomb formation flying concept is presented in References [7,8,17]. Coulomb
formation flying works on the principle that by controlling the charge of the
spacecraft the inter-craft Coulomb forces can be changed, which in turn can
be used to control the relative motion of the spacecraft. With high Isp fuel
efficiencies [7,8] ranging between 108− 1013 seconds and low Watt-level power

Preprint submitted to Elsevier 6 July 2009



requirements, this method of propulsion is considered to be virtually pro-
pellantless. The other advantage of this method over conventional thrusters
includes clean propulsion without thruster plume contamination issues with
neighboring satellites. However, the Coulomb propulsion method also has cer-
tain inherent limitations. The Coulomb forces are formation internal forces
that can not be used to reorient the satellite formation as such. Secondly, The
Coulomb electrostatic force magnitude is inversely proportional to the square
of the separation distance, resulting in the increase of the nonlinear coupling of
spacecraft equations of motion. Additionally, the Coulomb force effectiveness
is diminished in a space plasma environment due to the presence of charged
plasma particles. The electric field strength drops off exponentially with in-
creasing separation distance. The severity of this drop is characterized using
the Debye length[13,4]. For low earth orbits (LEO), the Debye length is of
the order of millimeters to centimeters, making the Coulomb formation flying
concept impractical at these low orbit altitudes.[15] At high to geostationary
orbit (GEO) altitudes the plasma environment is hotter and less dense. As
a result the Debye length is much larger and varies between 100-1000 meters
depending on the solar activity cycles. Further, the electrostatic charging data
of the SCATHA spacecraft[10] confirms that spacecraft can charge at least to
kilovolt levels in GEO environments, and that the spacecraft charge can be
actively controlled through charge emission devices. Thus, Coulomb formation
flying concept appears to be feasible at GEO. The currently flying CLUSTER
spacecraft also use active charge control.[18] However, the charge emission is
applied to zero out the spacecraft potential and not to control relative motion.

References [11] and [12] introduce the concept of a Coulomb tether. Here a
conventional mechanical tether cable connecting two crafts is replaced by an
electrostatic force which acts as a virtual tether. Conventional tethers are
limited to tensile forces whereas Coulomb tethers allow both tensile and com-
pressive forces. However, while traditional spacecraft tether missions consider
very large separation distances of multiple kilometers, the Coulomb tether con-
cept is only viable for separation distances up to about 100 meters because of
the electrical field strength drop off. Reference [11] studies the stabilization of
the simple nadir-aligned static 2-craft Coulomb tether structure. Compared to
the previous works on static Coulomb structures,[8,1,2,17] Reference [11] is the
first study to introduce a charge feedback law to stabilize a charged spacecraft
cluster to a specific shape and orientation. Coulomb forces are inter-spacecraft
forces and cannot control the inertial angular momentum of the formation.
Hence, stability characteristics of orbital rigid body motion under a differen-
tial gravity field are applied to a Coulomb tethered two-spacecraft system to
develop an active charge feedback control. With this control the spacecraft
separation distance is maintained at a fixed value, while the coupled forma-
tion gravity gradient torque is exploited to stabilize the tether attitude about
the orbit radial direction. Further, Reference [12] investigates the reconfigur-
ing of a nadir-aligned 2-craft Coulomb tether formation by forcing the craft
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Fig. 1. Static Coulomb Tether Formation Aligned with Along-Track Direction.

to move apart or come closer using the Coulomb force and again using the
gravity gradient to stabilize the formation orientation relative to the orbit
radial direction. Gravity gradient rigid satellites or conventional tethers have
only bounded stability along the orbit radial direction.[16] Similarly, mechan-
ical tether deployment studies in References [19] and [9] develop length rate
laws that guarantee only bounded stability for attitudes. In comparison, the
feedback control laws for the Coulomb tether regulation problem in Refer-
ence [11] and reconfiguration problem in Reference [12] guarantee asymptotic
stability for separation distance and in-plane angle. This asymptotic stability
is achieved by exploiting the charged relative motion of the spacecraft and
varying the separation distance (virtual tether length).

Similar to the study of rigid axially symmetric body under the influence of the
gravity gradient torque, we know that there are two other relative equilibriums
of the charged two-craft problem other than the orbit radial or nadir direction.
These equilibriums are along the orbit normal and the along-track direction[2]
shown in Figure 1. In particular, zero tension is required between the two-
craft aligned with the along-track direction to maintain the static unperturbed
formation. On the other hand, repulsive forces are required to maintaining
the cluster along the orbit normal direction. It is worth noting that both zero
tension and compression cases considered are not possible with conventional
cable tethers.

This paper studies the stability of a two craft formation about along-track
and orbit-normal relative equilibrium configurations. A feedback control law
is introduced to asymptotically stabilize both the shape and orientation of
this cluster. While the charged two-craft formation aligned along the orbit
radial direction could stabilize the cluster using only Coulomb forces, this
study investigates a hybrid feedback control strategy where both conven-
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Fig. 2. (3-1) Euler Angles Describing the Coulomb Tether Orientation for the Along–
Track Relative Equilibria

tional thrusters and Coulomb forces are used. The References [6] and [14]
have introduced a similar hybrid actuation system using conventional propul-
sion and Coulomb actuation, for navigating satellites in a cluster and for the
self assembly of large structures in a formation. The control laws developed
in these papers effectively use Coulomb forces for maneuvers that require in-
ternal forces. This results in significant reduction in fuel consumption. The
goal of the present study is to use the thrusters as little as possible and make
the Coulomb forces provide the bulk of the actuation requirement. However,
to employ small-force thrusters like ion-engines in close proximity to other
spacecraft, great care must be taken that the thruster exhaust plume does not
impinge on the neighboring craft. These plumes can be very caustic and cause
damage to on-board sensors. The control strategy must be designed such that
the thruster is never directed at the 2nd craft.

The formation is studied at GEO where the Debye lengths are large enough
to consider Coulomb spacecraft missions. Reference [15] establishes that the
differential solar drag is the largest disturbance acting on a Coulomb formation
at GEO. Therefore, the effects of differential solar drag on the formation and
the ability of the controller to withstand this disturbance are also studied.
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2 Charged Relative Equations of Motion

2.1 Along-Track Configuration

This section derives the equations of motion of a two-craft Coulomb tether
that is nominally aligned with the along-track direction ôθ of the orbit or Hill
frame O : {ôr, ôθ, ôh, } shown in Figure 1. This derivation closely follows the
derivation of the equations of motion for crafts aligned along the orbit radial
direction that is given in detail in Reference [11]. Figure 1 illustrates a static
two-craft formation in the orbit velocity direction with a separation distance
of Lref. Let Q = q1q2 be the charge product of the spacecraft charges qi. The
reference charge product Qref required to maintain this static formation can
be computed using the Clohessy-Wiltshire-Hill’s equations[16,3,5] for charged
spacecraft. The analytical expression of Qref for the along-track equilibrium is
written as[1]

Qref = 0 (1)

The required relative equilibrium charge is zero because this Coulomb tether
configuration is equivalent to a lead-follower spacecraft formation. As a con-
sequence the necessary Coulomb tether tension is zero. However, this static
equilibrium is unstable, similar to a rigid rod being unstable if aligned with
ôθ[16]. The separation distance instability can be stabilized by continuously
varying the charges and generating positive or negative tension within the
Coulomb tether.

Of interest are the coupled separation distance dynamics and the orientation of
the Coulomb tether. Consider the perturbed satellite 1 position (x1, y1, z1) rel-
ative to the equilibrium position. The Coulomb tether is only a 1-dimensional
structure and thus only requires the (3 − 1) Euler angles (ψ, φ) to define its
orientation relative to the orbit frame O. The virtual Coulomb structure body
frame B : {b̂1, b̂2, b̂3, } is defined such that B = O for zero ψ and φ angles,
while b̂2 tracks the tether heading. Rotations about b̂2 (θ) can be neglected
with point mass assumption of the crafts. The Euler angles are illustrated
in Figure 2. Following the same steps as in Reference [11], the differential
equation of motion for the charged separation distance is given by

L̈ = 2Ωψ̇L +
kc

m1
Q

1

L2

m1 + m2

m2
(2)

Next the separation distance equations of motion are linearized about small
variations in length δL and small variations in the product charge term δQ.
The fixed reference separation length Lref is determined by the mission require-
ment. The reference charge product term for this along-track configuration is
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known to be zero from Eq. (1). The separation distance L and charge product
Q are given by

L = Lref + δL (3a)

Q = Qref + δQ (3b)

Note that these developments treat the required changes in the charge product
δQ as the control variable. Substituting these definitions of L and Q into
Eq. (2) and linearizing leads to

δL̈ = (2ΩLref)ψ̇ +

(
kc

m1

1

L2
ref

m1 + m2

m2

)

δQ (4)

Note that this relationship is coupled to the angular in-orbit-plane rate ψ̇. In
order to obtain an expression for this rate, a stability analysis using the gravity
gradient is employed. The derivation of the expression for angular perturbation
closely follows the derivation given in Reference [11] for the orbit radially
aligned Coulomb tether. The linearized attitude dynamics of the Coulomb
tether body frame are written along with the separation distance equation as:

φ̈ + Ω2φ = 0 (5a)

ψ̈ + 2
Ω

Lref
δL̇− 3Ω2ψ = 0 (5b)

δL̈− (2ΩLref)ψ̇ −
(

kc

m1

1

L2
ref

m1 + m2

m2

)

δQ = 0 (5c)

Note that for the linearized system the out-of-plane angle φ is decoupled from
the separation distance error δL and in-plane angle ψ. Further, the linearized
φ motion is that of a marginally stable linear oscillator.

2.2 Orbit Normal Configuration

The derivation of the equations of motion for a two-craft Coulomb tether
along orbit normal direction follows the same steps as those of the along-track
equilibrium. The analytical expression for the orbit normal relative equilibria
charge product Qref is written as[1]

Qref = q1q2 = Ω2L3
ref

kc

m1m2

m1 + m2
(6)

Note that Qref > 0, which requires a repulsive Coulomb force to establish this
charged equilibrium. A physical structure in this orientation must compensate
for compressive forces, a task conventional tethers are incapable of achieving.
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Fig. 3. (2-1) Euler Angles Describing the Coulomb Tether Orientation for the Orbit
Normal Relative Equilibria

Again, consider small deviations about the equilibrium position and let the
(2 − 1) Euler angles (θ, φ) represent the tether body frame B attitude with
respect to the orbit frame O. Here the axis b̂3 tracks the orientation of the
orbit-normal tether configuration. The Euler angles are illustrated in Figure 3.
Note these angle definitions reflect rotations about the same body axes b̂i as in
the along-track description. However, their zero values are offset by 90 degrees
to reflect the different nominal tether orientation.

The differential equation for the separation distance is given by

L̈ = −Ω2L +
kc

m1
Q

1

L2

m1 + m2

m2
(7)

We can observe that the separation distance differential equation in Eq. (7) is
decoupled from both the orientation angles θ and φ. The above equation can
be further linearized using Eqs. (3) and the Qref definition in Eq. (6) to

δL̈ = −(3Ω2)δL +

(
kc

m1

1

L2
ref

m1 + m2

m2

)

δQ (8)

The differential equation for Euler angles can be obtained similar to the along-
track development. The linearized attitude dynamics of the Coulomb tether
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are written along with the separation distance equation as:

φ̈− Ω2φ− 2Ωθ̇ = 0 (9a)

θ̈ − 4Ω2θ + 2Ωφ̇ = 0 (9b)

δL̈ + (3Ω2)δL−
(

m1 + m2

m1m2

kc

L2
ref

)

δQ = 0 (9c)

Note both the out-of-plane angles θ and φ are coupled, while the charged
separation distance error dynamics is uncoupled in this linearized formulation.
Also, one can observe from Eq. (9c) that the separation distance error (δL)
is already marginally stable even without any feedback control through the
charge product error term (δQ).

3 Hybrid Feedback Control Development

3.1 Along-Track Configuration

In this section, one investigates the stability of the linearized along-track equa-
tions of motion given by Eq. (5) and develop a hybrid feedback control law
that stabilizes the system. Reading Eq. (5) it is clear that the out-of-plane
angle φ is fully decoupled from the in-plane angle ψ and separation distance
error δL. The equation of motion for the out-of-plane angle φ represents a
stable simple harmonic oscillator. Next, consider the coupled in-plane angle
ψ and separation distance error δL equations of motion given in Eqs. (5b)–
(5c). The charges on the craft can be used to control the separation distance
since they cause an electrostatic force along the relative position vector. The
charge product variation δQ is treated as the control variable and the feedback
control law is defined as

δQ =
m1m2L2

ref

(m1 + m2)kc
(−C1δL− C2δL̇) (10)

Here C1 and C2 are the position and velocity gains, respectively. Thus, the
closed loop equations of motion for the coupled ψ and δL system are written
as

ψ̈ + 2
Ω

Lref
δL̇− 3Ω2ψ = 0 (11a)

δL̈− (2ΩLref)ψ̇ + C1δL + C2δL̇ = 0 (11b)

The in-plane angle ψ is coupled with the δL in the form of a driving force
(2 Ω

Lref
δL̇). Hence we select the gains C1 and C2 using the Routh-Hurwitz sta-

bility criterion to asymptotically stabilize both δL and ψ. The characteristic
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equation for the equations given in Eq. (11) is

λ4 + C2λ
3 + (C1 + Ω2)λ2 + (−3C2Ω

2)λ + (−3C1Ω
2) = 0 (12)

In order to ensure asymptotic stability, the real parts of the roots of this char-
acteristic polynomial should be negative definite. The constraints on the gains
that will guarantee negative definite roots can be identified by constructing a
Routh table and are found to be

C2 > 0 (13a)

C1 + 4Ω2 > 0 (13b)

−12C2Ω4

C1 + 4Ω2
> 0 (13c)

There are no real values for gain C1 and C2 that will satisfy all three conditions
given in Eq. (13). Hence, the coupled system can not be stabilized with only the
Coulomb forces. In addition to the Coulomb forces, we require some thrust
forces acting on both satellites along the b̂1 axis that stabilize the in-plane
angle ψ. These thrust forces can be modeled as equal and opposite forces with
magnitude F1. The thrust force magnitude is the second control variable with
in-plane angle ψ feedback and it is defined as

F1 =
m1m2

m1 + m2
Lref(K1ψ) (14)

where K1 is the in-plane angle feedback gain. These forces introduce a net
torque in the ψ equation and the modified coupled equations of motion are
written as

ψ̈ + 2
Ω

Lref
δL̇ + (K1 − 3Ω2)ψ = 0 (15a)

δL̈− (2ΩLref)ψ̇ + C1δL + C2δL̇ = 0 (15b)

The characteristic equation for the equations given in Eq. (15) is

λ4 + C2λ
3 + (C1 + K1 + Ω2)λ2 + (C2K1 − 3C2Ω

2)λ

+ (C1K1 − 3C1Ω
2) = 0 (16)

The constraints on the gains to ensure asymptotic stability are found using
the Routh table to be

C2 > 0 (17a)

C1 > −4Ω2 (17b)

K1 > 3Ω2 (17c)

The constraints given in Eq. (17) guarantee asymptotic stability for the lin-
earized system, but we need other criteria for fixing their values to yield a
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satisfactory performance. One way of looking at the problem is to consider
the δL equation without the ψ̇ term. For ease of discussion, let us rewrite the
position and velocity gains in terms of scaling factors n1 and α1 as

C1 = n1Ω
2 > −4Ω2 (18)

C2 = α1
√

n1Ω (19)

The δL equation without the ψ̇ term is critically damped with α1 = 2. The
value of α1 needs to be altered for achieving near critical damping for the com-
plete δL equation with the ψ̇ term. The in-plane angle gain is also rewritten
in terms of a scaling factor n2 as

K1 = n2Ω
2 > 3Ω2 (20)

The natural frequency of the ψ and δL equations are
√

n2 − 3Ω and
√

n1Ω,
respectively. If n1 and n2 are chosen in such a way that these frequencies
match, then the δL̇ term in the ψ equation will act as a defacto damping
term, and the ψ̇ will damp the δL equation. The value of n2 is chosen as 6 as
this results in a setting time of about 1 day (1 cycle). For this fixed value of
n2, the root locus for the coupled δL and ψ equations is studied for a range
of α1 values in the vicinity of α1 = 2, with n1 varying from 0.1 to 20. Based
on visual observation of the root locus plots the scaling factors are chosen to
be α1 = 2.3 and n1 = 2.97. Figure 4 shows the root locus plot for n2 = 6 and
α1 = 2.3, with n1 varying from 0.1 to 20.
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n = 0.1

n = 10

Fig. 4. Root Locus Plot for Along-Track Configuration with n2 = 6 and α1 = 2.3.

As discussed earlier the equation of motion for the out-of-plane angle φ rep-
resents a simple harmonic oscillator. This out-of-plane angle can be asymp-
totically stabilized by using an equal and opposite thrust force on both the
satellites along the b̂3 axis. The thrust force magnitude F3 is the third control
variable with φ̇ feedback and it is defined as

F3 =
m1m2

m1 + m2
Lref(K2φ̇) (21)
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Fig. 5. Figure Illustrating the Thrusters Along b̂1 and b̂3 Axes for Along-Track
Configuration.

where K2 is the out-of-plane angle feedback gain. These forces introduce a net
torque in the φ equation and the modified equation of motion are written as

φ̈ + Ω2φ + K2φ̇ = 0 (22)

Critical damping is achieved with K2 = 2Ω. Figure 5 illustrates the thrusters in
action along the b̂1 and b̂3 axes for the along-track configuration. The thrusting
force F1 is acting along the positive b̂1 direction and force F3 is acting along
the negative b̂3 direction for satellite 1. The direction of these forces are in
reverse for the satellite 2. Note all thruster forces are directed in orthogonal
directions to cluster line of sight vector (b̂2) and thereby avoids any potential
plume exhaust impingement issues.

3.2 Orbit Normal Configuration

Unlike the along-track configuration, the equation of motion of the separation
distance error δL are decoupled from the angles in the orbit normal config-
uration. The equations of motion of the two out-of-plane angles θ and φ are
coupled instead. Therefore, the linearized Coulomb forces can be used to sta-
bilize only the separation distance and some thrust force is needed to stabilize
the angles. From Eq. (9c), it is clear that without the charge product vari-
ation (δQ) term the δL equation of motion about the charged orbit-normal
equilibrium represents a stable simple harmonic oscillator. In order to make
the δL equation of motion asymptotically stable a separation distance error
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rate (δL̇) feedback through the control variable δQ is sufficient. In addition
we also introduce a separation distance error (δL) feedback which enables us
to control the natural frequency and thereby the settling time. The feedback
control law is given as

δQ =
m1m2L2

ref

(m1 + m2)kc
(−C1δL− C2δL̇) (23)

where C1 > −3Ω2 and C2 > 0 are the position and velocity feedback gain,
respectively. Now, the closed loop separation distance error equation is written
as

δL̈ + (3Ω2 + C1)δL + C2δL̇ = 0 (24)

Fixing C2 = 2
√

3Ω2 + C1 makes the separation distance equation critically
damped.

The coupled out-of-plane angles can be stabilized by using thrust forces on
both the satellites. One set of equal and opposite forces with magnitude F1

acts along the b̂1 axis. The other set of forces with magnitude F2 acts along the
b̂2 axis. The feedback control laws for the thrust force magnitudes are defined
as

F1 =
m1m2

m1 + m2
Lref(K2θ) (25)

F2 =
m1m2

m1 + m2
Lref(K1φ + K3φ̇) (26)

where K1 and K3 are the angle and angle rate gains for φ, and K2 is the
angle gain for θ. It should be noted that the thrust forces F1 and F2 stabilize
the out-of-plane angles θ and φ, respectively. Further, these forces too only
act orthogonal to the line of sight vector of the 2 craft, thus avoiding plume
impingement issues. These forces introduce torque into the angular equations
of motion and the augmented coupled closed loop equations are

φ̈− 2Ωθ̇ + (K1 − Ω2)φ + K3φ̇ = 0 (27a)

θ̈ + (K2 − 4Ω2)θ + 2Ωφ̇ = 0 (27b)

The characteristic equation of the coupled equations of motion given in Eq. (27)
is

λ4 + K3λ
3 + (K1 + K2 − Ω2)λ2 + (K2K3 − 4K3Ω

2)λ

+ (K1K2 − 4K1Ω
2 −K2Ω

2 + 4Ω2) = 0 (28)

The characteristic equation should have roots with negative real parts to guar-
antee asymptotic stability. The Routh-Hurwitz criterion can be used to estab-
lish the constraints on the gains that will result in the characteristic equation
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given in Eq. (28) to have negative definite roots. The constraints on the gains
are

K1 > Ω2 (29a)

K2 > 4Ω2 (29b)

K3 > 0 (29c)

Before we proceed to establish the value of the gains, it is important to note
that with out the φ̇ feedback the characteristic equation would have been

λ4 + (K1 + K2 − 2Ω2)λ2 + (K1K2 − 4K1Ω
2

−K2Ω
2 + 4Ω2) = 0 (30)

and one can come up with gains that will only guarantee marginal stability,
but not convergence. This justifies the use of angle rate (φ̇ ) feedback for
achieving asymptotic stability.

The gains values are fixed in such a way that they guarantee near critical
damping. The gains K1 and K3 are rewritten in terms of scaling factors n and
α as

K1 = nΩ2 > Ω2 (31)

K3 = α
√

(n− 1)Ω (32)

In the φ equation of motion, α = 2 guarantees critical damping if one ignores
the θ̇ term. For fixed values of K2 > 4Ω2, the root locus for the coupled θ and
φ equations is studied for a range of α values in the vicinity of α = 2 with n
varying from 1.1 to 10. Based on visual observation of the root locus plots the
gain K2 is chosen to be 5Ω2 and the scaling factors are chosen to be α = 2.5
and n = 2.7. Figure. 6 shows the root locus plot for K2 = 5Ω2 and α = 2.5,
with n varying from 1.1 to 10.
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Fig. 6. Root Locus Plot for Orbit Normal Configuration with K2 = 5Ω2 and α = 2.5
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4 Numerical Simulation

This section presents numerical simulations of the along-track and orbit nor-
mal Coulomb tether formations to illustrate the performance and stability of
the presented hybrid feedback control strategy. The Coulomb tether perfor-
mance is simulated in two different manners. First the linearized spherical co-
ordinate differential equations are integrated. This simulation illustrates the
linear performance of the charge control. Second, the linearized results are
compared with those obtained from the exact nonlinear equation of motion of
the deputy satellites given by

r̈1 +
µ

r3
1

r1 =
kc

m1

Q

L3
(r1 − r2) (33a)

r̈2 +
µ

r3
2

r2 =
kc

m2

Q

L3
(r2 − r1) (33b)

where r1 = rc +ρ1 and r2 = rc +ρ2 are the inertial position vectors of the the

masses m1 and m2, while L =
√

(r2 − r1) · (r2 − r1). The gravitational coef-
ficient µ is defined as µ ≈ GMe. After integrating the motion using inertial
Cartesian coordinates, the separation distance L, as well as the corresponding
angles are computed in post-processing using the exact kinematic transforma-
tion. Finally, the robustness of the control laws is illustrated in the presence
of differential solar perturbation. For all cases the cluster center of mass is
assumed to be a GEO orbit.

4.1 Along-Track Configuration

The along-track Coulomb tether with a separation distance of 25 meter is
simulated first. The input parameters are given in Table 1. The initial sepa-
ration distance error (δL) is set to 0.5 meter and the Euler angles are set to
ψ = 0.1 radians and φ = 0.1 radians. All initial rates are set to zero through
ψ̇ = δL̇ = φ̇ = 0. As discussed in the previous section, the gain values are cho-
sen based on studying the root locus plot to be C1 = 2.97Ω2, C2 = 3.9637Ω,
K1 = 6Ω2 and K2 = 2Ω.

Figure 7(a) shows the Coulomb tether motion in both linearized spherical
coordinates δL, ψ and φ (continuous line), and the full nonlinear spherical
coordinates (dashed lines). It shows that the nonlinear simulation closely fol-
lows the linear simulation, validating the linearizing assumptions. The charge
feedback law augmented with the thrust forces (using angle and angle rate
feedback) ensures the convergence of all states to zero. Figure 7(b) illustrates
the control charge on a single spacecraft for both linearized and full nonlin-
ear simulation models. The reference charge pertaining to static equilibrium
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Table 1
Input Parameters Used in Along-Track Simulation

Parameter Value Units

m1 150 kg

m2 150 kg

Lref 25 m

kc 8.99× 109 Nm2

C2

Qref 0 µC2

Ω 7.2915× 10−5 rad/sec

C1 2.97Ω2

C2 3.9637Ω

K1 6Ω2

K2 2Ω

δL(0) 0.5 m

ψ(0) 0.1 rad

φ(0) 0.1 rad

for along-track formation is zero and control charges are converging to this
value. Note that the deviation from the value of reference charges is small,
justifying the charge linearization assumptions used. The magnitude of the
control charges is in the order of micro-Coulomb which is easily realizable in
practice using charge emission devices. Figure 7(c) gives the thrusting force
that is required to stabilize the angles. Again, the dashed lines represent the
full nonlinear model and the continuous lines represent the linearized model.
The thrust forces can be generated using conventional thrusters. In the body
fixed coordinates, the craft are aligned along the b̂2 axis and the thrust forces
F1 and F2 are acting along the b̂1 and b̂3 directions, respectively. Thus, the
thrusting always takes place perpendicular to the craft orientation, thereby
avoiding plume impingement issues.

4.2 Orbit Normal Configuration

The orbit normal Coulomb tether is also simulated with a separation distance
of 25 meter like the along-track configuration. The same spacecraft parameters
and nominal separation distance are used as in Table 1. The initial separation
distance error, initial Euler angles and gains are given in Table 2. Figures 8(a)
, 8(b), 8(c) show the tether motion (spherical coordinates), charge on a single
craft and thrust forces, respectively. Again, the dashed lines depicting the
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Fig. 7. Simulation results for two craft aligned along the along-track direction with
a separation distance of 25m.

full nonlinear model closely follow continuous lines depicting the linearized
model. It can be observed from Figure 8(a) that the separation distance error
is critically damped and the out-of-plane angles φ and θ asymptotically go to
zero. The thrust forces F1 and F2 are acting in the b̂1 and b̂2 direction with
the Coulomb tether aligned along the b̂3 direction. Thus, plume impingement
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problems are avoided.

Table 2
Input Parameters Used in Orbit Normal Simulation

Parameter Value Units

Qref 6.9304× 10−13 µC2

C2 2
√

3Ω

K1 2.7Ω2

K3 3.2596Ω

K2 5Ω2

δL(0) 0.5 m

θ(0) 0.06 rad

φ(0) 0.04 rad

4.3 Differential Solar Perturbation

At GEO, differential solar drag is the largest unmodeled disturbance acting on
the Coulomb formation. Of interest is how this force will influence the closed-
loop performance of hybrid Coulomb tether control strategy. This section in-
vestigate analytical estimates of the resulting steady-state Coulomb tether
state tracking errors, and verifies these results with numerical simulations us-
ing the full Keplerian gravity model with differential solar drag included. The
inertial acceleration vector rs due to the effects of solar radiation pressure is
given as

rs =
−CrAF

mc

r

||r||3 (34)

where r is the position vector from the sun to the orbiting planet in AU, m is
the mass of the spacecraft in kg, A is the cross section area of the spacecraft
that is facing the sun in m2. The constant F = 1372.5398 Watts/m2 is the
solar radiation flux, c = 2.997× 108 m/s is the speed of light, and Cr = 1.3 is
the radiation pressure coefficient.

The simulation is carried out over a period of 3 days and the Sun’s position
is assumed to be fixed with respect to the Earth fixed inertial coordinates.
As shown in Figure 9, the solar rays are assumed to be making an angle of
23o27

′
with respect to the earth’s equatorial plane to account for the earth’s

axial tilt. The craft are modeled as cylinders with radius of 0.5 m, height of 1
m and mass of 150 kg. For craft 1, the cylindrical surface is constantly facing
the sun resulting in a square cross section area of 1 m2, where as for craft 2, it
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Fig. 8. Simulation results for two craft aligned along the orbit normal direction with
a separation distance of 25m.

is the circular cross section (0.25π m2)of the top of the cylinder that is facing
the sun.

Figure 10(a) shows the time histories of the spherical coordinates δL, ψ and
φ for along-track Coulomb tether formation with differential solar drag. The
coupled states δL and ψ no longer asymptotically converge to zero, but they
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are still bounded. The in-plane angle ψ oscillates with maximum amplitude of
±0.05 radians and the separation distance error δL oscillations are negligible.
The out-of-plane motion φ settles with a constant steady state offset. This
offset can be explained by looking at the linearized φ equation of motion.
The φ equation is decoupled and with a constant external torque due to the
differential solar drag, will result in a steady state offset. Let the constant
inertial acceleration vector along the ôh direction due to solar drag for satellites
one and two be rs1(3, 1) and rs2(3, 1), respectively. The total constant force
acting on the satellite formation along the ôh direction is

Fs = m1rs1(3, 1) + m2rs2(3, 1)

The resulting torque due to this force is given by

Ts =
m1

m1 + m2
L(m1rs1(3, 1))− m2

m1 + m2
L(m2rs2(3, 1)) (35)

The linearized φ equation for along track configuration (Eq. (5a)) can be
modified to incorporate the constant torque given in Eq. (35) as

φ̈ + Ω2φ =
1

m1+m2
L(m2

1rs1(3, 1)−m2
2rs2(3, 1))

m1m2
m1+m2

L2
(36)

From Eq. (36), the analytical expression for steady state offset in the presence
of differential solar drag can be written as

φ =
(m1/m2rs1(3, 1)−m2/m1rs2(3, 1))

LΩ2
(37)

For the linearized model the offset was calculated to be −0.0255 radians and it
is very close to the offset observed for the full nonlinear model. Figures 10(b)
and 10(c) give the spacecraft charge and thrust force time histories, respec-
tively.

Figure 11(a) shows the performance of orbit normal Coulomb tether in the
presence of differential solar drag. Again, it can be observed that the states are
bounded. On close observation of the figure one can come to the conclusion
that the separation distance error (δL) is oscillating about an offset at steady
state. The linearized separation distance error (δL) is decopled from the angles
and constant differential solar drag acting on the formation results in a steady
state offset for δL. The analytical expression for this steady state δL offset
can be derived for the linearized model as

δL =
(m1rs1(3, 1)−m2rs2(3, 1))

3m1Ω2
(38)

Thus, the linearized model offset for δL is −0.2125 m. The observed steady
state offset in the figure is close to this value and the oscillations can be ex-
plained due to the second order coupling of the separation distance error (δL)
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Fig. 9. Figure Illustrating the Orientation of the Cylindrical Craft and the Sun’s
Position

with the angles. The oscillations in the δL result in the oscillations of the space-
craft charge value around the reference charge value, as seen in Figures 11(b).
Figures 11(c) shows the thrust force time histories.

5 Conclusion

A 2-craft Coulomb tethered structure aligned along the orbit normal or along-
track direction cannot be stabilized with only a charge feedback law. Whereas,
both Coulomb tether configurations can be stabilized with a hybrid control of
Coulomb forces and conventional thrusters that stabilize the separation dis-
tance and orientation respectively. The control charges needed are small in
the order of micro-Coulombs and realizable in practice. The thrusting forces
required are in the order of micro-Newtons and the thrusting is always done
orthogonal to the Coulomb tether axis, thus avoiding plume exhaust impinge-
ment problems. For the along-track configuration the separation distance and
in-plan angle are coupled and unstable without feedback. An interesting result
is that for the orbit-normal configuration the separation distance is decoupled
and marginally stable even without charge feedback, while the orientation has
to be feedback stabilized. Numerical simulations of the full nonlinear motion
are carried out to illustrate the results and compare the linearized performance
predictions to the actual nonlinear system response. Finally, the robustness of
the controller to withstand differential solar drag is illustrated through simu-
lations.
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Fig. 10. Simulation results for two craft aligned along the along-track direction with
constant differential solar perturbation.
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