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Thedynamics of a rigid spacecraftwith nonlinear delayedmultiactuator feedback control are studied in this paper.

It is assumed that the time delay occurs in one of the actuators, whereas the other actuator has a negligible time delay.

Therefore, a nonlinear feedback controller using both delayed and nondelayed states is sought for the controlled

system to have the desired linear delayed closed-loop dynamics using an inverse dynamics approach. The closed-loop

stability is shown to be approximated by a second-order linear delay differential equation for themodifiedRodriguez

parameter attitude coordinates for which the Hsu–Bhatt–Vyshnegradskii stability chart can be used to choose the

control gains that result in a stable closed-loop response. An analytical derivation of the boundaries of this chart for

the case of no derivative feedback control is shown, whereas a numerical method is used to obtain the stability chart

for the general case.Then, to achieve a specifiedperformance, the criteria for a critically damped closed-loop response

are studied. Further, an integral feedback control is also implemented,which is capable of eliminating the steady-state

attitude error caused by any unmodeled external torque.

Nomenclature

A = infinitesimal generator of the solution operator
D = Chebyshev spectral differentiation matrix
J = inertia matrix in principal coordinates
K = proportional control gain
Ki = integral control gain
L = true external torque
L� = modeled external torque
P = derivative control gain
R = delay control gain
u = feedback control law
V = Lyapunov candidate
x, y = assembled state-space vectors
z = assembled state-space vector for the transformed delayed

equations
ΔL = unmodeled external torque
σ = modified Rodriguez parameter set
τ = time delay, s
ω = angular velocity vector, rad∕s

I. Introduction

T HE NONLINEAR control of spacecraft attitude dynamics with
time-delayed feedback is considered in this study. Time delays

arise due to communication delays, including delays in the
measurement, or processing delays, including delays that occur in
the actuators. The latter case is studied in this paper, and in particular,

the case of multiactuator control with nonnegligible time delays in
one of the actuators is addressed.
The attitude modeling problem depends on the choice of attitude

parameters (coordinates) to represent the orientation of a rigid body
relative to an inertial frame. There are several different attitude
parameterizations, which can be used to obtain the governing
spacecraft equations. Minimal three-coordinate sets include Euler
angles, classical Rodriguez parameters, and modified Rodriguez
parameters (MRPs). MRPs are used for the attitude parameterization
in this paper.
The simultaneous use of multiple types of actuators, including

maneuvers involving the simultaneous use of reaction wheels (RWs)
or control moment gyros (CMGs) and reaction control thrusters
(RCTs), has a variety of applications, including developing tracking
control laws [1,2], achieving RWorCMGdesaturation, and using the
null motion to reorient CMG clusters to avoid singularities [3].
For instance, three types of multiactuator controllers were used by
Hall et al. [1] to globally asymptotically stabilize the closed-loop
dynamics of spacecraft. Two of the controllers use thrusters for bang-
bang control and RWs to provide the necessary corrections, whereas
the third one uses linear feedback for theRWs andnonlinear feedback
for the thrusters. Amethod was developed by Paielli and Bach [4] for
controlling the spacecraft attitude by implementing a rigorous
nonlinear control that results in linear closed-loop dynamics and thus
retains almost global nonlinear stability. This inverse dynamics
approach contrasts sharply from developing linearized closed-loop
dynamics, which are only valid in a local neighborhood, and is a
general technique common in other disciplines such as robotics.
Although the controller in [4] used Euler parameters (see also [3]),
Schaub et al. [5] proposed an adaptive attitude control law in
conjunction with an inverse dynamics approach usingMRPs to track
the desired linear performance in the presence of unknown external
disturbance without requiring prior information about the inertia. It
was shown (see also [3]) that the MRP feedback control necessary to
obtain linear closed-loop dynamics is only slightly more complicated
than the corresponding control using Euler parameters but results in
globally asymptotically stable motion.
The stability analysis of time-delayed systems or delay differential

equations (DDEs) is important in many fields. Two general strategies
for obtaining stability conditions include the frequency-based ap-
proach,which determines spectral stability conditions for linear time-
invariant DDEs, and the Lyapunov-based time domain approach,
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which can be applied to a wider range of DDEs, including those with
nonlinearities and time-varying coefficients. In the latter class, the
Lyapunov–Krasovskii (L–K) functional and Lyapunov–Razumikhin
function are two major methods used to obtain stability conditions in
the framework of Lyapunov’s direct method. Recently, new
constructions of the L–K functionals have been developed for the
analysis of stability and region of attraction for nonlinear systems
with time delays. A modified L–K functional was developed, in
particular, by Chunodkar and Akella [6] to obtain the region of
attraction for spacecraft attitude stabilization with unknown but
bounded delay in the linear feedback control. Exponential stability is
obtained for all values of the time delay within the appropriate
bounds. Avelocity-free controller was designed byAilon et al. [7] for
delayed attitude regulation of a rigid spacecraft. Sufficient conditions
for exponential stability of the controlled response were established.
In this paper, the MRP-based inverse dynamics control used in

[3,5] is extended to address the multiactuator delayed feedback
attitude control of a rigid spacecraft in which one actuator is
nondelayed, whereas the other one has a nonnegligible time delay.
This strategy could possibly be extended to desaturation maneuvers
that involve the simultaneous use of two different actuators (e.g.,
RWs and RCTs), although the current form does not take internal
momentummanagement into account because the design is based on
rigid-body rotational dynamics. We also consider the strategy of
delay stabilization by intentionally increasing either the gain of the
delayed actuator or the time delay itself in order to stabilize an
otherwise unstable closed-loop dynamics without delay. The closed-
loop stability is shown to be approximated by a second-order linear
DDE for the MRP attitude coordinates for which the Hsu–Bhatt–
Vyshnegradskii stability chart can be used to choose the control gains
that result in a stable closed-loop response. An analytical derivation
of the boundaries of this chart for the case of no derivative feedback
control is shown, whereas a numerical method is used to obtain the
stability chart for the general case. Then, to achieve a specified
performance, the criteria for a critically damped closed-loop response
are studied. Further, an integral feedback control is also implemented,
which is capable of eliminating the steady-state attitude error caused
by any unmodeled torque.

II. Attitude Dynamics Model

In terms of the principal rotation elements, the MRP attitude
parameterization σ ∈ R3 is defined as

σ � tan
Φ
4
ê (1)

where Φ is the principal rotation angle about the principal rotation
axis ê.Whenusedwith the constraint that kσk ≤ 1 by switching to the
shadow set [3] when Φ � 180 deg, the MRPs are a singularity-free
unique global attitude description.
Euler’s equations for controlled rigid-body rotation can be written

as

J _ω� ~ωJω � L� � ΔL� u�t� (2)

where ω�t� ∈ R3 represents the angular velocity of the body frame
with respect to the inertial frame, and J ∈ R3×3 is the inertia matrix
calculated about the center of mass. L� is a modeled external torque,
ΔL represents an unmodeled torque, and u�t� is the applied control
torque. Note that �∼

_
�∶ R3 → so�3� is the skew-symmetric mapping

given by

~Ψ �
"

0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0

#
(3)

where the space of 3 × 3 real skew-symmetric matrices is denoted by
so�3�, the Lie algebra of theLie groupSO�3�. Equation (2) alongwith
the kinematic differential equations in terms of the MRPs,

_σ � 1

4
B�σ�ω; B�σ� � ��1 − σTσ�I3 � 2 ~σ � 2σσT � (4)

specify the governing dynamical equations of the system, where I3 is
the three-dimensional identity matrix. The current state of the system
at time t is given by �σT�t�ωT�t��T, whereas the delayed state is
�σT�t − τ�ωT�t − τ��T , where τ is the time delay.

III. Inverse Dynamics Approach for Feedback
Control Law

Figure 1 shows the block diagram of the system with a time delay
in one of the actuators (as opposed to the case in which a time delay
exists in the measurements [8]), in which the output can be any of the
state vectors of the system or a combination of them. By introducing
the systemwith two actuators as shown in the block diagram in Fig. 1,
in which the nondelayed actuator 1 with gains P and K feeds back
the current state [σ�t�, ω�t�], whereas the delayed actuator 2 with
gain R feeds back the delayed attitude σ�t − τ� only, we consider
the problem of multiactuator control, which has applications in
desaturation maneuvers, for instance. Thus, for linear feedback
control (which is not used in this paper), the control force for actuator
1 would be u1�t� � −Pω�t� − Kσ�t�, whereas that for the delayed
actuator 2 would be u2�t� � −Rσ�t − τ�. A related problem is the
concept of delay stabilization by intentionally increasing either the
gain of the delayed actuator or the time delay itself in order to stabilize
an otherwise unstable closed-loop dynamics.
There are different approaches for controlling the attitude

dynamics of a rigid body. One method is to assume a linear control
law, which results in a nonlinear model for the closed-loop dynamics
of the system [7,8]. Another method is to assume a nonlinear control
law, which results in a linear model for the closed-loop dynamics of
the system [3]. This second approach will be used here. In particular,
an inverse dynamics approach common in robotics open-loop path-
planning problems is used here, in which the desired closed-loop
response is approximated by a set of second-order delay differential
equations. This approach (without time delay) has been used in the
attitude control problem using both quaternions [4] and MRPs [3].
Based on the desired linear closed-loop dynamics for the

nondelayed case of MRP-based attitude control [3], for the delayed
system, we choose the desired closed-loop system to be the linear
system of second-order DDEs given by

�σ�t� � P_σ�t� � Kσ�t� � Rσ�t − τ� (5)

In the general case, P, K, and R could be full 3 × 3 matrices.
However, in this paper, we chooseP,K, andR to be scalars such that
Eq. (5) decouples into three identical scalar second-orderDDEs.As is
explained in the preceding section, τ is the time delay in actuator 2 of
Fig. 1. The justification for Eq. (5) is as follows. First, as mentioned
previously, this is similar to the inverse dynamics strategies used in
[3–5], which used the same closed-loop dynamics as Eq. (5) except
with R � 0 and in which good attitude tracking performances
were obtained for globally or almost globally asymptotically stable
behavior. Next, because one actuator has an unavoidable time delay,
the resulting closed-loop system will be a DDE. Here, we choose the
DDE to be linear. Further, no system properties such as inertia are
included, a property beneficial in adaptive control strategies. Finally,
since the three components of Eq. (5) decouple, the stability
properties of each of the resulting scalar DDEs can be obtained,
analytically or numerically, in terms of P,K, R, and τ. Especially for

Fig. 1 Block diagram of the controlled system using the control law
given in Eq. (31) with the time delay in one of the actuators.
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the case in which P � 0, the analytical stability conditions are well
known [9,10].
We now present the main theoretical result that will enable a

nonlinear control law to be designed such that the resulting closed-
loop system is approximated to order τ by Eq. (5).
Lemma: The body angular acceleration vector corresponding to

Eq. (5) can be simplified to

_ω � −Pω −
�
ωωT �

�
4K

1� kσk2 −
kωk2
2

�
I3

�
σ

� 4B−1�σ�Rσ�t − τ� (6)

Proof: Differentiating both sides of the kinematic differential
equations given in Eq. (4) and substituting the result back into Eq. (5)
yields

�σ � P_σ �Kσ � 1

4
B�σ�� _ω� Pω� B−1�σ�� _B�σ�ω� 4Kσ��

� Rσ�t − τ� (7)

Because B−1�σ� always exists for kσk < 1, Eq. (7) becomes [3]

_ω� Pω� B−1�σ�� _B�σ�ω� 4Kσ� � 4B−1�σ�Rσ�t − τ� (8)

Taking the time derivative of matrix B�σ� in Eq. (4),

_B�σ� � �− _σTσ − σT _σ�I3 � 2_~σ � 2_σσT � 2σ _σT (9)

_σT � 1

4
ωT ��1 − kσk2�I3 − 2 ~σ � 2σσT � (10)

On the other hand,

~σ2 � σσT − kσk2I3 � σσT − σTσI3 (11)

Taking the time derivative of both sides of Eq. (11), we obtain

~σ _~σ�_~σ ~σ � _σσT � σ _σT − � _σTσ � σT _σ�I3 � E (12)

Now, defining

F ≜ ~σ _~σ; FT ≜ _~σ ~σ (13)

Equation (12) can be written as

F� FT � E (14)

Furthermore,

F − FT �

0
@ 0 σ2 _σ1 − σ1 _σ2 _σ1σ3 − σ1 _σ3

_σ2σ1 − σ2 _σ1 0 _σ2σ3 − _σ3σ2
_σ3σ1 − σ3 _σ1 _σ3σ2 − σ3 _σ2 0

1
A

� _σσT − σ _σT � G (15)

Equations (14) and (15) can be solved for F and FT as

~σ _~σ � F � 1

2
�E�G� � _σσT −

1

2
� _σTσ � σT _σ�I3;

_~σ ~σ � FT � σ _σT −
1

2
�σT _σ � _σTσ�I3 (16)

Also, note that

BT�σ� � �1� kσk2�2B−1�σ� (17)

As shown in Eq. (9), _B�σ�ω has a term _~σω. But, Eq. (10) implies that

ω � 4B−1�σ� _σ � 4BT�σ�
�1� kσk2�2 _σ (18)

Hence,

_~σω � _~σ
4BT�σ�
�1� kσk2�2 _σ

� 4

�1� kσk2�2 ��1 − kσk
2� _~σ _σ −2_~σ ~σ _σ�2_~σσσT _σ� (19)

where the first term inside the brackets is zero. According to Eq. (11),
the last term inside the brackets can be expressed as

2_~σ�σσT� _σ � 2_~σ� ~σ2 � σTσI3� _σ � 2� _~σσ�� ~σ _σ� � 2�σTσ�� _~σ _σ�

� 2� _~σ ~σ�� ~σ _σ� (20)

After some manipulation, Eq. (19) can therefore be written as

_~σω � 4

�1� kσk2�2 �−2
_~σ ~σ _σ�2_~σ ~σ ~σ _σ� � 8_~σ ~σ

�1� kσk2�2 �−I3 � ~σ� _σ

� −
2_~σ ~σ

1� kσk2 �I3 � ~σ�ω (21)

where Eqs. (4) and (11) are used to obtain the simplified formgiven in
Eq. (21) for _~σω.
However, by substituting for _~σ ~σ from Eq. (16) into Eq. (21), we

obtain

_~σω � −
2

1� kσk2
�
σ _σT −

1

2
�σT _σ � _σTσ�I3

�
�I3 � ~σ�ω

� 2

1� kσk2 �−σ _σ
T � σT _σI3��I3 � ~σ�ω

� 2

1� kσk2
�
−
σωT

4
��1 − kσk2�I3 − 2 ~σ � 2σσT �

� σT

4
��1 − kσk2�I3 � 2 ~σ � 2σσT �ωI3

�
�I3 � ~σ�ω

� 1

2�1� kσk2� f−�1 − kσk
2�σωT � 2σωT ~σ − 2σωTσσT

� ��1 − kσk2�σT � 2σT ~σ � 2σTσσT �ωI3g�I3 � ~σ�ω

� 1

2�1� kσk2� f−�1 − kσk
2�σkωk2 − 2σωT ~ωσ − 2�σTω�2σ

� �1 − kσk2��σTω�ω� 2kσk2�σTω�ω
� �1 − kσk2�σωT ~ωσ � 2σωT�σσT − kσk2I3�ω
− 2σωTσσT ~σ ~ω−�1 − kσk2��σTω�� ~ωσ� − 2kσk2�σTω� ~ωσg

� 1

2�1� kσk2� f�kσk
2 − 1�kωk2σ � �1� kσk2��σTω�ω

− 2�kσk2kωk2�σ − �1� kσk2��σTω� ~ωσg (22)

Other terms in Eq. (9) can be simplified as

_σTσ � σT _σ � 1

4
σTB�σ�ω � 1

4
�1� kσk2��σTω� (23)

2_σ�σTω� � 1

2
��1 − kσk2�I3 � 2 ~σ � 2σσT ��σTω�ω

� 1

2
�1 − kσk2��σTω�ω − �σTω� ~ωσ � �σTω�2σ (24)
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and

2σ _σTω � 1

2
σωT ��1 − kσk2�I3 − 2 ~σ � 2σσT �ω

� 1

2
�1 − kσk2�kωk2σ � σωT ~ωσ � �σTω�2σ �25�

Substituting Eqs. (22–25) into Eq. (9) yields

_B�σ�ω � −2�σTω� ~ωσ � 2�σTω�2σ −
1

2
�1� kσk2�kωk2σ

� �1 − kσk2��σTω�ω (26)

and substituting Eq. (26) into Eq. (8) yields

_ω � −Pω − B−1�σ�� _B�σ�ω� 4Kσ� � 4B−1�σ�Rσ�t − τ�

� −Pω −
BT�σ�

�1� kσk2�2
�
−2�σTω� ~ωσ � 2�σTω�2σ

−
1

2
�1� kσk2�kωk2σ � �1 − kσk2��σTω�ω� 4Kσ

�
� 4B−1�σ�Rσ�t − τ�

� −Pω −
1

�1� kσk2�2 ��1 − kσk
2�I3 − 2 ~σ � 2σσT �

×
�
−2�σTω� ~ωσ � 2�σTω�2σ −

1

2
�1� kσk2�kωk2σ

� �1 − kσk2��σTω�ω� 4Kσ

�
� 4B−1�σ�Rσ�t − τ�

−
1

2
�1� kσk2��1 − kσk2�kωk2σ � �1 − kσk2�2�σTω�ω

� 4K�1 − kσk2�σ � 4�σTω� ~σ ~ωσ

− 2�1 − kσk2��σTω� ~σω� 4�σTω�2kσk2σ
− �1� kσk2�kωk2kσk2σ � 2�1 − kσk2��σTω�2σ
� 8Kkσk2σ� � 4B−1�σ�Rσ�t − τ� (27)

The term 4�σTω� ~σ ~ωσ in Eq. (27) is expressed as

−4�σTω� ~σ2ω � −4�σTω��σσT − σTσI3�ω
� −4�σTω�2σ � 4�σTω�kσk2ω (28)

Finally, substituting Eq. (28) into Eq. (27) yields

_ω�t��−Pω−
1

�1�kσk2�2 ×
�
�σTω�2σ�2−2kσk2�2

−2kσk2−4�4kσk2���σTω�ω�1−2kσk2�kσk4�4kσk2�

�kωk2σ
�
−
1

2
�kσk

4

2
−kσk2−kσk4

�

�Kσ�4−4kσk2�8kσk2�
�
�4B−1�σ�Rσ�t− τ�

�−Pω−
1

�1�kσk2�2
�
ω�ωTσ��1�kσk2�2

−
1

2
�1�kσk2�2kωk2σ�4K�1�kσk2�σ

�
�4B−1�σ�Rσ�t− τ�

�−Pω�t�−
�
ω�t�ωT�t��

�
4K

1�kσ�t�k2−
kω�t�k2

2

�
I3

�
σ�t�

�4
BT�σ�t��
�1�kσ�t�k2�2Rσ�t− τ� (29)

□

Thus, by substituting Eq. (29) into Eq. (2) with ΔL � 0, it can be
seen that the nonlinear control law given by

uideal�t� � ~ω�t�Jω�t� − JPω�t�

− J
�
ω�t�ωT�t� �

�
4K

1� kσ�t�k2 −
kω�t�k2

2

�
I3

�
σ�t�

� 4J
BT�σ�t��

�1� kσ�t�k2�2 Rσ�t − τ� − L� (30)

results in the closed-loop dynamics of the form given in Eq. (5).
Because of the restriction of kσk ≤ 1, this control law can globally
asymptotically stabilize the attitude dynamics given by Eqs. (2) and
(4) in the absence of the unmodeled external torque ΔL, as shown in
[3,5] for the case when R � 0. This assumes that the scalar control
gainsP,K, andR are selected such that Eq. (5) is stable, and this will
in turn be explored in the next section.
Although uideal�t� in Eq. (30) is the ideal control law that yields the

desired closed-loop dynamics, it cannot be implemented as in Fig. 1
because it cannot be expressed as u1�σ�t�;ω�t�� � u2�σ�t − τ��.
Therefore, we consider an alternative control law that is capable of
realizing the delayed feedback u2�σ�t − τ�� in actuator 2. This
control law is formulated as

u�t��u1�t��u2�t�

�~ω�t�Jω�t�−JPω�t�−J
�
ω�t�ωT�t��

�
4K

1�kσ�t�k2−
kω�t�k2

2

�
I3

�
σ�t�

u1�t�

�4J BT�σ�t−τ��
�1�kσ�t−τ�k2�2Rσ�t−τ�

u2�t�

−L� (31)

where the separation into the control forces for actuators 1 and 2 in
Fig. 1 is shown and themodeled external torqueL� can be included in
either actuator.
Although the stability and performance properties of the closed-

loop response are investigated from Eq. (5) [which would require the
control law in Eq. (30)], it will be shown that the responses of the
system governed by the set of Eqs. (2), (4), and (30) and the set of
Eqs. (2), (4), and (31) are almost identical. This is due to the fact that
the difference between Eqs. (30) and (31) is of order τkσkk _σk, as can
be seen by expanding about σ � 0 and τ � 0:

u�t� − uideal�t� ≈ 4Jf�1 − 2kσ�t�k2�BT�σ�t��
− �1 − 2kσ�t − τ�k2�BT�σ�t − τ��gRσ�t − τ� � h:o:t:

≈ −8J� ~σ�t� − ~σ�t − τ��Rσ�t − τ� � h:o:t:

≈ −8JR ~σ�t�σ�t − τ� � h:o:t: ≈ 8JRτ ~σ�t� _σ�t� � h:o:t: (32)

Thus, for small values of kσk, k_σk, and τ, the difference in the two
control laws also remains small, although Eq. (31) is not globally
asymptotically stabilizing as is Eq. (30).
It is interesting to compare Eq. (31) with the corresponding

Lyapunov-based control law in [3] with an additional linear feedback
of the delayed MRP set; i.e.,

uL�t� � ~ω�t�Jω�t� − Pω�t� −Kσ�t�
u1�t�

�Rσ�t − τ�
u2�t�

− L� (33)

Compared with Eq. (33), the controller defined by Eq. (31) has
additional nonlinear terms, which allow for the closed-loop behavior
to be approximated with linear control theory. This allows for the
stability of the closed-loop response to be determined in the
frequency domain (as opposed to a Lyapunov–Krasovskii analysis,
for instance) and for the feedback gains to be determined from the
theory of linear DDEs. Note that all occurrences of the attitude
[including inside BT�σ�] in u2�t� are delayed because actuator 2 can
only use the delayed signal σ�t − τ� and that, if the control gain R is
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set equal to zero, the time delay is removed from the controlled
system.

IV. Stability of Closed-Loop Dynamics

Equation (5) is a well-known decoupled DDE with a single point
delay [9], and its stability regions in the �K;R; P; τ� space can be
obtained analytically for the case in whichP � 0. In addition, for the
case in which P ≠ 0, various numerical approaches developed in
the literature [11,12]may be applied to create stability diagrams in the
K − R plane for a given P, for example.
To further analyze the closed-loop dynamics in Eq. (5), the time is

nondimensionalized as

t� � t

τ
;

d

dt
� dt�

dt

d

dt�
� 1

τ

d

dt�
;

d2

dt2
� dt�

dt

d

dt�

�
1

τ

d

dt�

�
� 1

τ2
d2

dt�2
(34)

Using the transformation given in Eq. (34) in Eq. (5), the latter
becomes

σ 0 0 � τPσ 0 � τ2Kσ � τ2Rσ�t� − 1� (35)

which, because P, K, and R are scalars, can be written as three
second-order scalar DDEs:

σ 0 0i � �Pσ 0i � �Kσi � �Rσi�t� − 1�; i � 1; 2; 3 (36)

where prime “ 0” and double prime “ 0 0” represent for the first and
second derivatives of theMRP σi with respect to t

�, respectively, and
�P � τP, �K � τ2K, and �R � τ2R. Introducing the state-space
variables

z1 � σi; z2 � σ 0i ; i � 1; 2; 3 (37)

Eq. (36) can then be written in the state-space form

z 0 � Az�t�� � Bz�t� − 1� (38)

where

z �
�
z1
z2

�
; A �

�
0 1

− �K − �P

�
; B � �R

�
0 0

1 0

�
(39)

Two methods, an analytical approach and a numerical approach, are
further implemented to study the stability of the closed-loop system
of Eq. (38). The analytical stability approach only applies to the case
of no derivative feedback control with �P � 0.

A. Analytical Stability for No Derivative Feedback Control

Setting �P � 0 in Eq. (36), its corresponding characteristic
equation can be written as

s2 � �K − �Re−s � 0 (40)

Because unstable systems have eigenvalues with positive real parts, s
must be set equal to zero and iω to obtain stability boundaries. If one
sets s � 0, Eq. (40) yields the divergence stability boundary as

�K � �R (41)

whereas setting s � jω for ω ∈ R and separation of the real and
imaginary parts yields

−ω2 � �K − �R cos ω � 0; �R sin ω � 0 (42)

The second equation in Eq. (42) yields

sin ω � 0; or �R � 0 (43)

Solving Eqs. (42) and (43) simultaneously yields the flutter (Hopf)
stability boundaries as

D � D1 ∪ D2 (44)

where

D1 � f� �K; �R�j �R � 0; �K > 0g;
D2 � f� �K; �R�j �K − �R�−1�n � n2π2g; n � 0; 1; 2; · · ·

(45)

The corresponding stability chart in the normalized � �K; �R� plane,
which is shown in Fig. 2, is known as theHsu–Bhatt–Vyshnegradskii
stability chart in the literature [9]. The stable (S) and unstable (U)
regions are shown in Fig. 2 alongwith the numbersα of unstable roots
of Eq. (40) in each region. The divergence boundary with slope �1
through the origin corresponds to a difference of �1 between the
values of α in adjacent regions, whereas the remaining flutter (Hopf)
boundaries correspond to a difference of�2 between the values of α
in adjacent regions.
Corollary: The trivial solution of the DDE (36) is exponentially

asymptotically stable if and only if there exists an integer n1 ≥ 0 such
that either

�R > 0; �R < �K − �2n1�2π2; and �R < − �K� �2n1 � 1�2π2
(46)

or

Fig. 2 Hsu–Bhatt–Vyshnegradskii stability chart in �K − �R plane for
�P � 0 obtained analytically.

Fig. 3 Chebyshev collocation points [13].
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�R< 0; �R>− �K��2n1�1�2π2; and �R> �K− �2n1�2�2π2
(47)

Proof: Because the divergence boundary �K � �R is delay
independent [10], for the system without the time delay, Eq. (42)
becomes

s2 � �R − �K (48)

which results in the stable behavior for 0 ≤ �R < �K for the systemwith
�P � 0. Hence, the region inside the triangle ΔCDE is stable. On the
other hand, by crossing through the divergence and Hopf stability
boundaries, the number of unstable characteristic exponents, α,
increases by one and two, respectively (see Fig. 2). Because inside
ΔCDE is stable with α � 0, starting from a point inside this triangle,
if we cross through segment CD (which is the Hopf stability
boundary) toward outside of that triangle, the parameter α increases
by two, which means that we are in the unstable region. Now, if we
move from a point on this unstable region toward the inside ofΔDFG
by crossing the segment DF, α decreases by two again and becomes

zero, which implies that inside ΔDFG is also stable. The same
strategy can be followed for the other triangles. □

The first set of conditions given in the corollary (Eq. 46) gives the
stable triangles above the �R axis, whereas the second set (Eq. 47)
produces the stable triangles below that axis. Figure 2 represents
the stability chart obtained analytically in the �K − �R plane. The
intersections of the first three consequent pairs of lines given in the set
D2 in Eq. (45) are obtained analytically and represented in Fig. 2
along with the crossing points of the lines with the �K axis.

B. Numerical Stability Analysis for General Case

For the case �P ≠ 0, the characteristic equation is

s2 � �Ps� �K − �Re−s � 0 (49)

which, after setting s � jω and separating the real and imaginary
parts, yields

−ω2 � �K − �R cos ω � 0; �Pω� �R sin ω � 0 (50)

Fig. 4 Stability chart in �K − �R plane for �P � 0;1;2;3;4.

Fig. 5 Relative and absolute stability charts in �K − �R plane for �P � 1.
The spectral abscissae for the relative stability boundaries are −0.01
(solid line), −0.05 (dashed dotted line), −0.07 (dotted line), and −0.1
(dashed line).

Fig. 6 Stability chart in �K − �R plane. The dashed curves represent the
loci of the parameter sets corresponding to the critically damped cases for
different values of �P.

NAZARI, BUTCHER, AND SCHAUB 1445

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 -

 B
O

U
L

D
E

R
 o

n 
O

ct
ob

er
 1

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
82

49
 

http://arc.aiaa.org/action/showImage?doi=10.2514/1.58249&iName=master.img-003.jpg&w=239&h=452
http://arc.aiaa.org/action/showImage?doi=10.2514/1.58249&iName=master.img-004.jpg&w=235&h=188
http://arc.aiaa.org/action/showImage?doi=10.2514/1.58249&iName=master.img-005.jpg&w=239&h=186


It can be seen that the flutter stability boundaries for this case do not
remain as straight lines. However, like the case in which �P � 0, the
�K � �R line can still be seen to correspond to the divergence (fold)
instability. We now describe a numerical method called the
Chebyshev spectral continuous time approximation (CSCTA), which
is used to investigate the stability of this case.
Chebyshev collocation points can be introduced as the projections

of the equispaced points on the upper half of the unit circle onto the
horizontal axis. In the CSCTA method, the interval �x�t − τ�; x�t�� is
broken into N � m − 1 subintervals, the lengths of which are
determined based on the positions of Chebyshev collocation points,
in which m is the number of Chebyshev collocation points. The
scaling factor 2

τ is then used to project the interval �−1; 1� onto
�t − τ; t�. The Chebyshevmeshing points can be obtained by dividing
the interval �t − τ; t� into segments �tα; tα−1�, as illustrated in Fig. 3
[13], in which t0 � t and

tα � t −
τ

2

�
1 − cos

απ

N

�
; α � 1; 2; · · · ; N (51)

Note that τ � 1 after the transformation made in Eq. (34).

A Chebyshev spectral differentiation matrix D is defined as

D11 �
2N2 � 1

6
� −DN�1;N�1; Dββ � −

tβ
2�1 − t2β�

;

β � 2; · · · ; N Dαβ �
cα�−1�α�1
cβ�tα − tβ�

; α ≠ β;

α; β � 1; 2; · · · ; N � 1; cα �
�
2; α � 1; N � 1

1; otherwise

(52)

Now, if the equation of motion is written in the state-space form as in
Eq. (38), then based on the definition for the augmented vector Y

Y � � zT�t0� zT�t1� zT�t2� · · · zT�tN� �T;
α � 0; 1; · · · ; N (53)

where t0 � t and tN � t − τ from Fig. 3, the infinite-dimensional
DDE system in Eq. (38) can be approximated as a large-dimensional
set of ordinary differential equations. That is,

_Y � AY (54)

where [11,12]

A �
�
A 0 · · · 0 B

2
τ �D�q�1;mq

�
(55)

is the discretized infinitesimal generator of the solution operator
corresponding to Eq. (54), where τ � 1, q � 2, and

Table 1 Parameter values [3]

Parameter Value

J diag� 30 20 10 � kg · m2

σ�t0� �−.3 −.4 .2 �T
ω�t0� � .2 .2 .2 �T

Fig. 7 Time series for the stable (R � 8) and unstable (R � 26) spacecraft attitude parameters.
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Dmq×mq � Dm×m ⊗ Iq×q (56)

in which only rows ofD between q� 1 andmq enter in themq ×mq
matrix A. Based on the left half-plane analysis, the real parts
of the eigenvalues of the matrix A in Eq. (55) determine the
stability of the system such that, if all eigenvalues of matrix
A have negative real parts, then the system is asymptotically stable.
The results shown in Fig. 4 are obtained analytically for �P � 0 and
numerically using CSCTA for �P > 0. 85 Chebyshev collocation
points are used in CSCTA in a 50 × 50 mesh grid so that the
dimension ofA is 170 × 170. The scriptsS andU in the figure refer to
the stable and unstable regions, respectively. The enlarged view of the
region inside the dashed rectangle in the upper figure is shown in the
lower figure. The *, •, ×, �, ▴, and ▪ represent the parameters used
later in the simulations.
We nowconsider the problemof delay stabilization of an otherwise

unstable nondelayed system by increasing either the gain of the
delayed actuator or the time delay itself. The magnification of the
small region shown by dashed rectangle in Fig. 4 illustrates how
increasing the gain of the delayed actuator stabilizes an otherwise
unstable system when �K < 0 (consequently, when K < 0). The
behavior of the system in the �K − �R plane is plotted in Fig. 4 for
different values of �P in the system (36). As mentioned before, the
stability boundaries do not remain straight lines for the P ≠ 0 cases
except for the �R � �K divergence boundary.
It should be noted that, if system is just barely stable, then a small

error or uncertainty in the system parameters could push the system
over the stability boundary. Hence, it is often desired to design
systems with somemargin of error. The relative stability is compared
with the stability boundary for �P � 1, for instance, in the �K − �R
plane, as shown in Fig. 5. For the relative stability boundary in the

figure, the spectral abscissae are assumed to be equal to −0.01,
−0.05, −0.07, and −0.1.

V. Gain Selection for Critically Damped Response

It is often desired for the system to behave in a critically damped
manner in which two roots meet on the real axis in the s plane right
before their imaginary parts become nonzero. To achieve this
specified performance, the characteristic (exponential) polynomial of
the normalized delayed system should be solved simultaneously
along with its derivative taken with respect to the polynomial
variable, s. Therefore, we have the following set of two equations:

q�s� � s2 � �Ps� �K − �Re−s � 0 (57a)

f�s� � dq

ds
� 2s� �P� �Re−s � 0 (57b)

The location of the common zeros of q�s� and f�s� in the s plane
determines the system behavior in the critically damped case. Each
curve in Fig. 6 is obtained by solving �R and �K for a range of negative
real values of s for a given �P. If one eliminates �R from Eq. (57a) by
substituting it from Eq. (57b), a second-order polynomial can be
obtained for which the solution for a repeated root of s, for a given �P,
determines the conditions

�K �
�
�P

2
� 1

�
2

− �P; �R � 2e
−
�

�P
2
�1
�

(58)

which represent a point that is located at the tip of each dashed curve
shown in Fig. 6.

Fig. 8 Responses of the systems with �P � 0 and �P � 1 with the fixed control gains K � 20 and R � 6.5 and varying time delay.
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VI. Integral Feedback to Eliminate Steady-State Error

In the case an unmodeled torqueΔL is present,which is constant or
changing vary slowly, the attitude will exhibit a nonzero steady-state
error, which is not desired. This error can be obtained implicitly as

σSS �
B�σSS�J−1ΔL
4�K − R� (59)

To eliminate this error, an integral feedback term is added to the
desired closed-loop dynamics of the system. Therefore, the new
closed-loop dynamics are

�σ � P_σ � Kσ � Ki
Z
t

0

σ�η� dη � Rσ�t − τ� (60)

Fig. 9 Time series for the unstable (with �R � 0) and delay stabilized (with �R � −4) spacecraft.

Fig. 10 Eigenvalues in the s plane for the three sets of parameter values located on the dashed curve corresponding to �P � 4 in Fig. 6.
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where, compared to the desired closed-loop dynamics in Eq. (5), the
additional feedback integral term in the left-hand side of the equation
is to compensate for the steady-state error due to the unmodeled
torque ΔL. The integral gain Ki in Eq. (60) is selected to be smaller
than the proportional,K, and the derivative, P, gains because it is not
preferable for the damping properties of the system or the frequency
of oscillations to change drastically.
Following similar steps in the inverse dynamics approach as those

shown in the proof of the lemma in Sec. III, it can be easily shown that
the additional integral feedback term in the closed-loop dynamics
(60) corresponds to a supplementary control force of

usupp�t� � −4JKiB−1�σ�t��
Z
t

0

σ�η� dη (61)

in Eq. (31), which now becomes a proportional-integral-derivative
(PID)-type control law. The supplemental integral term usupp�t� can
be added to either the nondelayed actuator or the delayed actuator.
It is instructive to compare our controller with the standard MRP-

based control law

uL�t� � ~ω�t�Jω�t� − Pω�t� − Kσ�t� � Rσ�t − τ� − PKiz�t� − L�

z�t� �
Z
t

0

�Kσ�η� � J _ω�η�� dη (62)

obtained using the Lyapunov function [3]

V�ω� � 1

2
ωTJω� 2K ln�1� σTσ� � 1

2
zTKiz (63)

with the extra linear delayed feedback term added into the control
law. However, even with R � 0, the resulting closed-loop dynamics

J _ω� Pω� Kσ � PKiz � 0 (64)

are not linear due to the nonlinearities in Eq. (4), although for small
motions,B�σ� can be linearized to yield linear closed-loop dynamics.
On the other hand, the inverse-dynamics-based control law given in
Eq. (31), along with the supplementary term usupp�t� given in
Eq. (61), directly results in the linear delay integrodifferential
equation for the closed-loop dynamics shown in Eq. (60).

VII. Simulation Results

In this section, we study the effect of the proposed controller via
simulations of the closed-loop DDE using MATLAB dde23.
Specifically, the time histories for certain stable and unstable
locations in the stability chart for the closed-loop system are
produced for the time-delayed system corresponding to the
parameters in Table 1. First, two points, one from the stable region
shown with * and the other one from the unstable region shown with
•, are selected arbitrarily from the regions of stability and instability
shown in Fig. 4. The response is plotted in Fig. 7 for P � 8, and
K � 16, and time delay τ � 0.5 s for the stable and unstable points
indicated by * and • in Fig. 4. In Fig. 7, MRPs are shown in left and
angular velocity components are shown in right. The initial
conditions for this figure are given in Table 1. It is seen that the
stability of the simulated response agrees with the corresponding
location of the parameter values on the stability diagram.
To study the delay stabilization strategy by varying τ, we fix the

control gains K and R as well as the dimensionless control gain �P.

Fig. 11 Eigenvalues in the s-plane for five optimally critically damped cases obtained numerically for different values of �P.
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Fig. 12 Time series for the critically damped cases for the normalized system (38).

Fig. 13 Comparison between the actual (above) and ideal (below) controllers given by Eqs. (30) and (31).
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Then, we select a point inside the unstable region such that a line that
connects that point to the origin in the �K − �R parameter plane passes
through the neighboring stable region on the right. Next, we let the
time delay increase from the initial value τ � 1 s such that the
unstable point moves into the neighboring stable region on the right.
Note that actuator 2 has an unavoidable minimum time delay such
that, whereas the time delay can be increased artificially by feeding
back the states at previous times, it is impossible to reduce the delay
from the given minimum value. The selected values for K and R are
K � 20 and R � 6.5. The unstable point corresponding to these
values of K and R when τ � 1 s is shown by × in Fig. 4. Following
the delay stabilization strategy,we increase τ to τ � 1.7748 s in order
to let the unstable point move into the neighboring stable region. The
corresponding stable point is shown by� in Fig. 4. Note that, when
�P ≠ 0, in order to fix �P � τP, we need to change the control gain P
accordingly as τ changes. In Fig. 8, unstable responses are shown in
the first row for �P � 0 (solid line) and �P ≠ 0 (dashed line) for the
point � �K; �R� � �20; 6.5� corresponding to τ � 1 s shown by × in
Fig. 4. Stable responses are shown in the second row of the figure for
�P � 0 (solid line) and �P ≠ 0 (dashed line) for the point � �K; �R� �
�63; 20.47� corresponding to τ � 1.7748 s shown by� in Fig. 4. The
initial conditions are given in Table 1. It can be seen that the response
of the system with �P � 1 converges to zero faster than that with
�P � 0, as expected.
To address delay stabilization by increasing the gain of the delayed

actuator, simulations are performed for the non-delayed system
with �R � 0 as well as the delayed system with �R � −4. The
corresponding results are shown in Fig. 9 with normalized control
gains �P � 4 and �K � −2 for the unstable and stable points indicated
respectively by▴ and ▪ in Fig. 4. MRPs are shown in left and angular
velocity components are shown in right. The initial conditions for this
figure are given inTable 1. The results in Fig. 9 agreewith the stability
chart given in Fig. 4. Recall that the normalized control gains
correspond to Eq. (36) when the time delay is normalized to one.
Thus, when the gain of the nondelayed actuator is for some reason
constrained to value(s) that result in an unstable closed-loop system
the strategy of delay stabilization can be practically implemented by
increasing the gain of the delayed actuator to an appropriate level.
Next, we monitor the behavior of the system by starting from the

point �K � �R � −4, at the corner of the stable region corresponding
to the �P � 4, where the divergence and flutter boundaries meet. We
move along the dashed curve obtained byEq. (57) in Fig. 6 toward the
right end of the curve while �P � 4. Figure 10 shows the loci of
eigenvalues for the three points indicated in Fig. 6. The eigenvalues’
loci of the system in the optimally critically damped case (second row
in Fig. 10) obtained in Eq. (58) suggest the best choice of the
parameter set for the long-term behavior of the system. In Fig. 11, the
eigenvalues of the system are studied at the optimally critically
damped scenarios expressed in Eq. (58) for different values of �P.
These five scenarios correspond to the parameter sets located at the
right end of the dashed curves shown in Fig. 6 and are obtained via
Eq. (58). We call these points optimally critically damped because
their dominant negative real eigenvalues are further to the left

compared to those of the other critically damped points, as a result of
which the system attitude orientations and the angular velocities
damp out faster. Consequently, the first negative real eigenvalue
shifts further to the left as �P increases. The repeated real eigenvalues
can be found in Figs. 10 and 11. The time series corresponding to the
critically damped performance are shown in Fig. 12, in which the
controller is turned off for the first 7.5 s and is then turned on for two
of the parameter sets indicated by ▪ in Fig. 6. For each parameter set,
MRPs (left) and angular velocities (right) are shown. The initial
conditions for the figure are given in Table 1. It can be seen in the
figure that for �P � 4 (corresponding to �K � 5 and �R � 0.0996) the
system damps out faster.
So far, the simulations have been based on the actual control law

defined in Eq. (31), whereas the stability diagrams are obtained for
the closed-loop dynamics given in Eq. (5), which are the result of
using the ideal control law proposed in Eq. (30). To justify the control
law in Eq. (31), we simulate the controlled system with the two
different control laws introduced in Eqs. (30) and (31) for a variety of
sets of control gains �P, �K, and �R. It can be seen that the time histories
of the system attitude and angular velocities controlled by these
controllers are practically identical. The reason for this is that, by
neglecting the second-order delayed terms as compared to the
first-order terms in the actual control law proposed in Eq. (31), the
ideal control law given in Eq. (30) can be obtained with a good
approximation. To compare these two control laws, we numerically
integrate the system obeying each of these control laws. In Fig. 13 the
attitude orientations and angular velocities of the controlled system
are plotted for �P � 1, �K � 2.2, and �R � 2 using the two controllers
with the controllers being turned on after 7.5 s. The initial conditions
for the figure are given in Table 1. As shown in the figure, the MRPs
behave identically in both cases, whereas the angular velocities
behave not identically but very similarly.
To study the effect of adding the integral term to the controller, the

response of the system is studied with the unmodeled torque
ΔL � �5; 10;−10�T N · m, which is, in point of fact, much larger
than what spacecraft would normally experience. In Fig. 14, the
preceding control law given in Eq. (31) is applied to the system
on the left, whereas the supplementary usupp�t� term given in
Eq. (61) is added to the controller for the system on the right.
The steady-state attitude offset in Fig. 14 is due to unmodeled
external torque ΔL � �5; 10;−10�T and is obtained via Eq. (59) as
σSS � �0.0107; 0.0322;−0.0644�T . The normalized control gains for
both plots on the left and the right are �P � 4, �K � 5, and
�R � 0.0996. The integral gain for the plot on the right isKi � −0.03.
Initial conditions are given in Table 1. Note that, once a proper Ki is
selected, it would be capable of eliminating the steady-state error due
to any unmodeled torque. Another important observation is that the
steady-state error decreases as the proportional gain K ncreases.
It should be mentioned here that the norm of the MRP set was

always less than one, and hence, there was no need to switch to the
shadow set in the simulations. According to the negligible difference
between the ideal and actual control laws shown in Eqs. (30) and (31)
and the simulation results, it can be seen that the multiactuator PID

Fig. 14 Steady-state attitude error (left) is eliminated by adding an integral term to the controller (right).
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control law obtained by adding the supplementary term in Eq. (61) to
the control law given in Eq. (31) results in asymptotic stability of the
system described by Eqs. (2) and (4) for sufficiently small τ, kσk,
and k _σk.

VIII. Conclusions

In this paper, a nonlinear delayed multiactuator control law has
been introduced to attain the desired closed-loop dynamics of a rigid
spacecraft by following the inverse dynamics approach used in
previous literature. As opposed to the authors’ prior work in which
the time delay was assumed in the measurements, the time delay here
has been assumed to be in one of the actuators whereas the other is
nondelayed. The stability of the multiactuator closed-loop control
was shown to approximately reduce to the stability of a linear
second-order delay differential equation for which the Hsu–Bhatt–
Vyshnegradskii stability chart can be used to select a stable set of
control gains given the time delay. The approach could possibly be
extended for use in desaturation maneuvers involving two different
types of actuators, although the current formulation does not take
internal momentum management into account.
Note that the linear closed-loop dynamics is the result of a rigorous

ideal nonlinear control obtained by the inverse dynamics approach
and thus retains the almost global nonlinear stability results. This
contrasts sharply from developing linearized closed-loop dynamics,
which are only valid in a local neighborhood, and doing a local
stability analysis. The only caveat is that the error between the ideal
and actual controllers is of order τkσkk _σk, so that the actual law is not
globally asymptotically stabilizing because this strategy assumes
kσk, k _σk, and τ to be small enough. Also, note that no system
properties, such as inertia, are included in the controlled closed-loop
system, a property beneficial in adaptive control strategies. Delay
stabilization was also investigated, in which either the gain of the
actuator with a time delay is intentionally increased or the time
delay is intentionally increased in order to stabilize the closed-loop
dynamics, which would be unstable without delay due to constraints
in the gain of the nondelayed actuator. One practical way to increase
the time delaywould be to feed back the states at the previous time. In
the simulations, the control gains K and R were fixed as well as the
dimensionless derivative control gain �P, and the time delay was
allowed to increase such that the unstable parameter set moves into
the neighboring stable region. It was shown that the response of the
system with nonzero derivative control gain converges to zero faster
than that with zero derivative control gain.
The analytical boundaries of the Hsu–Bhatt–Vyshnegradskii

stability chart for the delayed closed-loop system with �P � 0 were
derived, and the stability regions appear as triangles in the �K − �R
plane. Stability boundaries, however, do not in general remain as
straight lines for the system with �P ≠ 0 nor can they be investigated
analytically. Hence, a numerical discretization method, the
Chebyshev spectral continuous time approximation (CSCTA), has
been implemented to obtain the stability boundaries for the case in
which �P ≠ 0. The MATLAB dde23 integrator has been applied to
obtain the time histories of the controlled system, which have been in
agreement with the stability charts. In control design, it is usually
important to design the gains of the closed-loop dynamics for a
specified performance such as critical damping. To achieve this, the
criteria for a critically damped response were studied. The loci of the
eigenvalues of the closed-loop linear delay differential equation
along with numerical simulation indicate that the optimally critically
damped parameter set obtained analytically achieves the best
performance.
Unmodeled external torques due to effects such as atmospheric

drag or bearing friction can cause steady-state attitude errors, which
have been eliminated by adding a supplemental integral feedback
term to the controller. This integral term has been sought through the
inverse dynamics approach, in which similar steps to those given in
the proof of the lemma have been followed. Then, the dynamics of
the new closed-loop system have been studied. The advantage of
including the additional integral termhas been clarified by comparing
the system response under the previous (actual) controller without

the integral term to that under the recent (actual) controller with the
integral term. There is no need for a priori knowledge of the
unmodeled torque in this analysis.
Futurework could consider the casewhere full 3 × 3 gain matrices

P, K, and R occur in the closed-loop dynamics, which could be
solved for via linear quadratic regulator theory, in combination with
the CSCTA, for example. Although stability of the controlled
response in this method would be guaranteed from the linear spectral
stability, however, the derivation of the corresponding nonlinear
control law would involve additional complexity and would differ
from the actual control law for the case of the multiactuator control,
as was illustrated in this paper. Additional related areas to pursue
would be control gain selection by solving linear matrix inequality
derived from the Lyapunov–Krasovskii theory and the implementa-
tion of a tracking control law.
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