
Landing Site Selection Using a Geometrically Conforming
Footprint on Hazardous Small Bodies

Joshua D. Nelson∗ and Hanspeter Schaub†

University of Colorado Boulder, Boulder, Colorado 80309

https://doi.org/10.2514/1.A35145

In recent years there has been a great deal of research and development pertaining to the landing of spacecraft on

small bodies, such as asteroids. The capabilities to identify and avoid large rocks and other hazards on the surface of

small bodies have seen significant improvement. However, many current techniques search for a location on the

surface that contains no hazards within a scaled square, circular, or elliptical footprint. A challenge with this

approach on asteroids with highly hazardous terrain is that such acceptable landing locations may be few and far

between, or may not even exist at all. This paper proposes the use of a geometrically conforming footprint to

significantly widen possible landing regions. An optimization technique that uses such a noncircular/elliptical

footprint is formulated for a landing location selection algorithm. Coarse and fine variations for determining a

landing location are developed and compared for their landing site selection performance as well as their

computational effort. The algorithms to find a landing pose close to some desired landing location are constructed

assuming a polygonalmodel of the lander and the obstacle regions. Numerical simulations illustrate the advantages of

the geometrically conforming footprint over a circular one. Further, while the fine search algorithm shows better

results in placing the lander close to an obstacle, the coarse search algorithm shows comparatively strong results with

significantly less computational effort.

I. Introduction

S INCE the turn of the 21st Century, scientific interest in landing
spacecraft on small celestial bodies has been on the rise. To

further understand the origin and makeup of the solar system, space-
craft are being sent out to these bodies to perform in situ analysis or,
more recently, sample extraction and return. Several missions, such
as Rosetta, Hayabusa2, and OSIRIS-REx, have been mounted where
the entry, descent, and landing (EDL) phase is critical to mission
success.Missions such as these have shown that comets and asteroids
contain a large amount of hazardous terrain, such as large rocks and
steep slopes (Fig. 1), often in the most scientifically interesting
regions [1]. Due to the long ground communication delay to Earth,
EDL operations have a limited real-time human input and thus
require a certain level of autonomy. The process of locating a safe
place to land, known as hazard detection and avoidance (HDA),
becomes challenging due to the abundance of hazardous terrain. In
2006 NASA launched the Autonomous Landing and Hazard Avoid-
ance Technology (ALHAT) project as a means of fostering innova-
tion in HDA technologies [2]. The primary goal of ALHAT was to
develop autonomous landing site selection techniques that can satisfy
any given safety and accuracy requirements. ALHAT has recently
been succeeded by NASA’s Safe and Precise Landing–Integrated
Capabilities Evolution (SPLICE) project, which seeks to further
innovate upon many of the HDA techniques introduced since the
launch of ALHAT [3]. NASA’s continued investment in landing
technologies is reflective of the current momentum surrounding
HDA research.
Several recent studies and developments in HDA focus primarily

on hazard detection, which for a long time has been considered the
deciding factor for successful landings. There are methods that
attempt to match identified features on a 2D image to database of
known hazards, such as Yu and Cui’s affine invariant matching

algorithm [4]. Many methods involve the construction of a digital
elevation model (DEM) with either LIDAR or vision-based tech-
niques [5–8]. Recently proposed techniques use artificial intelli-
gence, such as neural networks, in combination with vision-based
or LIDAR sensors to identify hazards [9–11]. With the wealth of
existing and developing research into the identification of hazards,
there is now an increasing trend toward a more refined level of
landing site selection. For example, Wei et al. provide a method for
avoiding regions that are closed environments, such as craters with a
flat interior that may otherwise be selected as a safe landing location
[12]. Further, Cui et al. propose a safety index method in which
hazardous terrain is classified with varying levels of safety, and fuel
consumption and touchdown performance are factored into an opti-
mization problem for landing site selection [13]. However, these
methods all contain the same constraint on their outcome: they search
for landing locations that fit a scaled square, circular, or elliptical
footprint. These types of footprints can be collectively referred to as
nonconforming footprints.
The use of a nonconforming footprint presents a major issue on

asteroids with highly hazardous terrain in that such acceptable land-
ing locations may be few and far between, or may not even exist at
all. Historically, these nonconforming footprints were necessary to
account for uncertainties in landing pose in the order for 10 m [14].
However, recent innovations in both the hardware and software
involved with hazard detection have greatly reduced these uncertain-
ties [8,9,15,16]. Alongside the increasing capabilities of space-flight
ready processors [17], these modern hazard detection techniques
allow the possibility of using geometrically conforming footprints,
as seen in Fig. 2, for landing among hazardous terrain. Note that the
benefits of using a conforming footprint may only be perceivable
when working with close to submeter navigation uncertainties.
While this might not seem immediately feasible, Feng et al. and
Bercovici show that small-body modeling techniques are fast
approaching the required fidelity, which is supported by the nominal
position uncertainty of OSIRIS-REx and Hayabusa2 of about 3 and
1 m, respectively [18–20].
This paper investigates a novel landing site selection technique that

uses a geometrically conforming footprint. The formulation of this
technique assumes that the surface terrain and hazards have been
identified and processed into a two-dimensional (2D) safety map,
parallel to the average local surface, in which hazards are represented
with polygons [21]. Two-dimensional hazard projection is a tech-
nique used to desegregate various conditions that are considered
unsafe into no-go regions for landing site selection [13]. Therefore
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it is important to note that the polygons representing surface hazards
in this paper are not necessarily literal representations of singular
boulders, though they might be, but rather are, regions considered
unsafe to land in. Figure 3 shows a simple example of what such a
safety map might look like. The following section develops a cost
function to minimize the distance between the landing site and some
desired location; the geometrically conforming footprint is used to
define nonintersection constraints with the hazards. Two variants of
this method are discussed and are labeled as a coarse search and fine
search, respectively.

II. Mathematically Defining the Geometrically
Conforming Footprint

A. Problem Formulation

Consider first the lander and the surface expressed in the group

SE�3�. The reference frame F :fF; f̂1; f̂2; f̂3g is created for the
lander such that the frame originF is located at the geometric centroid

of the feet and is coplanar with the bottom faces of the feet. The third
basis vector of frame F is defined to be orthogonal to the feet plane
and pointed toward the lander (such that the entire lander geometry is

in the�f̂3 direction), whereas the other two basis vectors are defined
such that F is right-handed, as seen in Fig. 4. Assuming that a 2D
safety map has been constructed in advance for a region on the
surface, the reference frame S:fS; ŝ1; ŝ2; ŝ3g is defined such that
the frame origin S is located at a corner of the finite plane that the
safety map exists in. The first two basis vectors are defined such that
entire safety map exists in the first octant. The third basis vector of
frame S is chosen to be normal to safety map plane, and roughly
antiparallel to the local gravity direction, with the other two basis
vectors defined such that S is right-handed.
To operatewithin the 2D safetymap, the basis vectors f̂3 and ŝ3 are

enforced to be parallel and point F is projected onto the safety map
plane. These constraints truncate the operation space of this problem
to SE�2�. Let there be two sets of input polygons: a set representing
the spacecraft lander, and a set representing the surface in some
confined rectangular region containing the desired landing location,
denoted as point L. Assume that both sets are rigid bodies such that
all the surface polygons remain fixed in theS frame, and all the lander
polygons remain fixed in the F frame. Considering the position of
the lander relative to the surface origin rF∕S and the position of the

desired landing location relative to the surface origin rL∕S, this
problem can be cast as a minimization of the quadratic cost function:

V�rL∕F� �
1

2
rTF∕SQrF∕S � cTrF∕S (1)

where Q ⪰ 0 scales the influence on the cost of each component of
rF∕S, and c � −QrL∕S offsets theminimum cost to be at rF∕S � rL∕S.
Optimization of such a cost function subject to a set of linear inequal-
ity constraints is known as quadratic programming (QP) [22]. This
QP is further expanded by constraints preventing the intersection of
the surface and lander polygons.

B. Separating Axis Theorem and Approximate Convex
Decomposition

The safety of a selected landing location materializes as the
assurance that surface hazards do not penetrate the lander hull. This
assurance is quantified by the nonintersection of the lander and
surface obstacles represented through polygons. The foundation of

Fig. 3 Example of safety map.

Fig. 4 Frame definitions for the lander and surface with f̂3 and ŝ3 forced to be parallel on the right.

Fig. 1 The rocky terrain that covers much of Bennu (NASA/Goddard/
University of Arizona).

Fig. 2 A circular footprint (left) compared to a geometrically conform-

ing footprint (right).
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the nonintersection constraints comes from the separating axis theo-
rem (SAT) [23], which says that any two convex polygons do not
overlap if, and only if, there exists at least one spatial axis where the
projections of those polygons do not overlap. Let rC∕S be a vector
from theS frame origin to the centroidC of a polygon, and let rV∕C be
a vector from C to any exterior point on the polygon, as seen in
Fig. 5a. Then for any two nonintersecting polygons h and k, there
exists an axis where the projection of rC∕S;h − rC∕S;k is greater in

magnitude than rV∕C;k � rV∕C;h, where rV∕C;k is the same direction as

the projection, and rV∕C;h is the opposite direction. This can be seen in
Fig. 5b, where the separating axis is shown to be along ŝ2.
While the SAT provides a mathematically reliable method to

determine if two polygons intersect, note that it is defined specifically
for convex polygons. This presents a natural issue, as surface hazards
and spacecraft landers are seldom convex in their geometry. This
issue is avoided by constructing a convex hull around any nonconvex
polygon. However, this idea has substantial drawbacks; a convex hull
over a highly nonconvex polygon would result in a large amount of
empty space removed from consideration when fitting two polygons
together. Thus, amore refined application of convex hulls can be used
in form of a technique known as approximate convex decomposition
[24] (ACD). The general idea behind ACD is to subdivide highly
nonconvex polygons into multiple polygons that are less nonconvex
than their parent before applying a convex hull to each new polygon.
The number of subdivided polygons is determined by the maximum
allowable level of nonconvexity, which is parameterized by the user.
For the landing technique being proposed in this paper, it is assumed
that the decomposition step has already been completed for the
lander, and the safety map construction algorithm uses only convex
polygons to represent hazards [21].

C. Constraint Formulation

The existence of a separating axis between a surface polygon k and
a lander polygon h is readily represented with the inequality

�rC∕S;h�β − �rC∕S;k�β ≥ �rV∕C;k�β � �rV∕C;h�β (2)

where the subscript β represents some direction in S and �⋅�β is the
scalar projection of a vector on β. Testing for a separating axis in only
one direction is insufficient, so this inequalitymust be applied over an
encompassing set of directions.When testing over a set of directions,
the SAT says that the above inequality only needs to be satisfied in
one direction. In fact, this inequalitywill fail in some other directions,
rendering this problem infeasible. Therefore, Eq. (2)must be adjusted
as follows [25]:

�rC∕S;h�β − �rC∕S;k�β ≥ �rV∕C;k�β � �rV∕C;h�β −Di�1 − ϵhk;β� (3)

X
β

ϵhk;β ≥ 1 (4)

HereDi is a scalar big-M coefficient and ϵhk;β ∈ f0; 1g are activation
decision variables. With a large-enough value of Di and with ϵ � 0,

the inequality in Eq. (3) becomes always true within the scope of the
problem. Thus, for a value of ϵhk;β � 1, the separating axis criterion

becomes active along the β direction. As stated previously, the
separating axis must exist in at least one direction for the two
polyhedra to not intersect, which is enforced with the inequality in
Eq. (4). Thevalue ofDimaybe chosen to be infinitely large; however,
its minimum effective value is the length of the longest dimension of
the operational area defined by the safety map.
These constraints are applied between every convex polygon in the

lander set h and surface set k (they are not applied between two
polygons contained in the same set). The centroid positions of lander
set are known and constant in theF frame; however, these constraints
are evaluated in the S frame. Thus Eq. (3) is modified by

SrC∕S;h � SrF∕S � �SF�F rC∕F;h (5)

where rC∕F;h is constant in theF frame and �SF� is a direction cosine
matrix (DCM) that rotates a vector description fromF toS [26]. This
alteration now adds the position of F relative to S and the attitude of
F relative to S as decision variables to this problem.
Because this problem is constrained to SE�2�, the attitude is

represented by a single angle θF∕S in-plane with the safety map

[26]. To maintain these constraints as linear, the DCM parameterized
by this angle must be linearized about some reference frameR. This
introduces an attitude angle θF∕R that is linearized to the DCM:

�C�θF∕R�� �
�

1 −θF∕R
θF∕R 1

�
(6)

To avoid a significant amount of error in the DCM introduced by
linearization, rotations defined by θF∕R should be bounded within

some small linear regime. Therefore, this problem does not consider
the surface frame S as the frame �C�θF∕R�� is linearized about. Let

frame R be an intermediate frame that relates to S by a rotation of
some reference angle θR∕S, denoted by the DCM �SR�. To maintain

linearity in these constraints, the angle θR∕S is held constant when

solving for a solution. To search for a landing pose throughout the
entire problem space, this problem is to be solved several times over
iterations of θR∕S, with the solution with the lowest cost chosen as the
final solution.
To enforce the discussed constraints on attitude, the following

bounds are added to the problem constraints:

θF∕R;min ≤ θF∕R ≤ θF∕R;max (7)

Note that these bounds introduce a double inequality to the prob-
lem constraints. In fact, upper and lower bounds on SrF∕S must also
be introduced to contain the problem within the known region of
surface hazards. For consistency in the constraints, and becausemany
effective QP solvers operate on double inequality constraints, an
upper bound is added to Eqs. (3) and (4). First, isolating the decision
variables in Eq. (3) to one side of the inequality and expressing the
vectors in their known frame leads to

a) Vector Definitions b) Depiction of Separating Axis

Fig. 5 Example of the separating axis theorem.
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�SrC∕S;k � SrV∕C;k�β −Di ≤ �SrF∕S � �SR��C�θF∕R��T
× �F rC∕F;h − F rV∕C;h��β −Diϵhk;β (8)

1 ≤
X
β

ϵhk;β (9)

Next, another big-Mvalue, calledDsr, is introduced toEq. (8) as an
upper bound. This new value can be the same as Di; however, if the
surface area being considered for landing does not fully contain all
known hazards, then Dsr may be the length of longest dimension of
the surface area being considered. The upper bound for Eq. (9) is the
number of search directions for a separating axis, labeled βmax.
Therefore, all constraints defined thus far are

SrF∕S;min ≤ SrF∕S ≤ SrF∕S;max (10a)

θF∕R;min ≤ θF∕R ≤ θF∕R;max (10b)

�SrC∕S;k � SrV∕C;k�β −Di ≤ �SrF∕S � �SR��C�θF∕R��T
× �F rC∕F;h − F rV∕C;h��β −Diϵhk;β ≤ Dsr (10c)

1 ≤
X
β

ϵhk;β ≤ βmax (10d)

Note that Eq. (10c) exists for every direction being used to test for a
separating axis, with each having a unique decision variable ϵhk;β.
For each pairing of surface and lander polygons, let the lower
bound of Eqs. (10c) and (10d) form the vector lhk and the upper
bound form the vector uhk. Let there be decision variable vectors

x � � SrTF∕S θF∕R �T and ϵhk � � ϵhk;1 : : : ϵhk;n �T for q direc-

tions in β. Then Eqs. (10c) and (10d) become

lhk ≤ �Σhk Dhk �
�

x
ϵhk

�
≤ uhk (11)

where lhk, uhk ∈ Rq�1, Σhk ∈ R�q�1�×3, and Dhk ∈ R�q�1�×q. Let
the upper and lower bounds of Eqs. (10a) and (10b) be xl and xu,
respectively. For an example of how these constraints evolve, let
there be two lander polygons h ∈ f1; 2g and two surface polygons
k ∈ f1; 2g. Then the inequality constraints would be

2
66666664

xl

l11

l12

l21

l22

3
77777775
≤

2
66666664

I3×3 0 0 0 0

Σ11 D11 0 0 0

Σ12 0 D12 0 0

Σ21 0 0 D21 0

Σ22 0 0 0 D22

3
77777775

2
66666664

x

ϵ11

ϵ12

ϵ21

ϵ22

3
77777775
≤

2
66666664

xu

u11

u12

u21

u22

3
77777775

(12)

where I3×3 is the 3 × 3 identity matrix. Recall that every variable in
ϵhk is a binary decision variable, and thus, with the constraints
defined, this problem becomes cast as a Mixed Integer Quadratic
Program (MIQP) in the form

Minimize V�z� � 1

2
zTQz� cTz (13a)

Subject To l ≤ Az ≤ u (13b)

zi ∈ f0; 1g (13c)

where z ∈ Rn, Q ∈ Rn×n, c ∈ Rn, l;u ∈ Rm, A ∈ Rm×n, and
i � 4; : : : ; n. LetK andH be the number of polygons in the surface
set and lander set, respectively, andKq be the sum of the amount of

search directions for each surface polygon. Then the dimensions of
this problem are n � 3�HKq and m � 3�HKq �HK.

D. Search Directions

The set of directions to search for a separating axis must be
encompassing; i.e. for two polygons sufficiently far from each other
anywhere inR2, there must exist at least one valid direction in the set.
An obvious choice for the set comprises the positive and negative of
the two basis directions of the S frame. However, while such a set
satisfies the encompassing requirement, it may not provide an ideal
result when the two polygons are very close to one other. For
example, if a separating axis is only checked along the basis direc-
tions of S, then the case shown in Fig. 6a would fail, even though the
lander is not intersecting the rock. Think of the separating axis as
creating a plane defined by the direction of the axis, and the most
extreme point in the axis direction on the polygon. Therefore, using
only the S frame basis vectors as separating axes creates a frame-
oriented bounding parallelogram. Luckily, a separating axis can be

defined in anydirection inR2, and thus the set of search directions can
be chosen freely. Consider a set of search directions defined by the
normal vectors that define the faces of one of the polygons, which is
also an encompassing set. Because only one separating axis needs to
exist to prove separation, then this new selection of possible axes
allows the previously failed case to pass, as seen in Fig. 6b.
There are pros and cons to using either of the described search

direction sets. The set containing the basis directions of S is consis-
tent throughout the problem space, and it is thus simpler to prepro-
cess. The negative aspect of this set is potential restrictions it places
on two polygons that are closely placed together. The set containing
the normal directions of a polygon’s faces involves a greater amount
of preprocessing, as each pair of polygons being compared requires a
specific set of search directions. Because the surface hazard polygons
remain constant in the S frame, they are used to define these search
direction sets. Thus, each polygon in the surface set has a unique
corresponding search direction set that must be defined in prepro-
cessing. However, these types of search direction sets provide a more
conforming fit between lander and surface polygons,which is ideal in

a) The dashed line represents the plane created by
the separating axis in the s1 directionˆ

b) The shape with the dashed/dotted border only passes the
separating axis test with the dashed/dotted line

Fig. 6 Comparing the effectiveness of the two search methods.
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the fine placement of the final landing position. Therefore, the search
direction set containing the basis directions of S is referred to as the
coarse searching set, and the set that contains the face-normal
directions of the surface polygons is referred to as the fine searching
set.

III. Algorithm to Solve for Landing Locations

The program described in Eq. (13) is known to be Nondetermin-
istic Polynomial (NP)-hard due to the presence of integer decision
variables [27]. This raises tractability concerns in regard to solving
this problem on-board a spacecraft. Fortunately, recent studies
[28,29] show tractable results for solving MIQPs on embedded
systems. These techniques use the branch and bound (B&B)
approach to solve MIQPs by subdividing the problem into a tree of
relaxed QP problems that can be searched to find the optimal sol-
ution. The performance of this approach depends heavily on the
method used to search the tree. This section describes an example
of an algorithm for solving this problem with a B&B approach. This
algorithm in particular is not developed with the intention of being
flight ready, but rather as a means to compare how the two variants of
Eq. (13) perform when solved via B&B.
Using the B&B approach allows the binary decision variables in

this problem to be abstracted away, and replaced by continuous
variables whose value is dictated by the tree of QP problems. There-
fore, Eq. (13) is restructured to

Minimize V�z� � 1

2
zTQz� cTz (14a)

Subject To

�
l
�l

�
≤
�
A
�A

�
z ≤

�
u
�u

�
(14b)

where �l, �A, and �u are the continuous representation of Eq. (13c). For
every binary decision variable in the original problem, there is a row

in �A with a value of 1 at the column corresponding to that variable.

Initially, the upper and lower bounds are �l � −τ1 and �u � τ1, where
τ is a small feasibility tolerance. Each successive branch in the tree
alters a single set of ϵhk, choosing one ϵhk;β to have its upper and lower
bounds changed to �l � 1 − τ and �u � 1� τ. In context to the
problem, this process begins by deactivating all of the separating
axis constraints defined by Eq. (10c), and then reactivating one for
each combination of surface and lander polygons as the tree is
explored. A final solution is only accepted if it is found at the
maximum depth of the tree. Because this process ensures the neces-
sary activation of separating axis constraints, then the constraints
defined by Eq. (10d) become unnecessary, and thus can be removed
from the problem. This reduces the dimensionality of this problem

such thatz, c, l,u ∈ Rn, �l, �u ∈ Rm,Q,A ∈ Rn×n, and �A ∈ Rm×nwith
n � 3�HKq and m � HKq.

As stated previously, this algorithm assumes that the surface
hazards and lander have already been identified and decomposed
into sets of convex polygons fPg. Each polygon P in a set contains a
set of vertices fVg and face normal unit vectors fNg that describe the
polygon. Let there be two sets of polygons denoted with the sub-
scripts k andh, which contain the polygons for the surface and lander,
respectively. Within a polygon, every vertex rV and face normal n̂ is
described in the reference frame respective to the polygon’s set.
Furthermore, this algorithm is presented using the fine searching
set and may be adjusted to use the coarse searching set by replacing
all fNg with the set of positive and negative basis vectors of the
S frame.
Before the elements in Eq. (13b) can be assembled, the values of

rV∕C and rC (this notation is truncated from rC∕S and rC∕F for surface

and lander polygons, respectively) must be found for each polygon,
as shown in Algorithm 1. The value of rC is simply the vertex-
weighted centroid of each polygon. As previously discussed, rV∕C
must be the vector from the centroid to the edge of the polygon in the
search direction. This value is more easily found on a polygon from
the surface set, because the search directions are defined in the S

frame. As seen in line 8, the largest projection of the vertices relative
to the centroid is found for each search direction vector. These scalar
values are stored in a set fρg that aligns with the search direction set.
Due to the variability in attitude between the lander and the surface,
rV∕C for a lander polygon cannot be predetermined using the search

directions. Instead, the set fρg is filled with the largest projections in
the basis directions of the F frame.
With the geometry preprocessed, the vectors and matrices in

Eq. (14) are constructed in the manner depicted in Algorithm 2. Lines
1–4 perform initialization, followed by the hessian and gradient value
assignment. Because this problem is only concerned with minimizing
the distance of rF∕S to some objective position rL∕S in the ŝ1 and ŝ2
directions, the hessian should only be nonzero (and positive) at the
elementsQ1;1 andQ2;2. Line6 implements theupper and lower bounds

for rF∕S and θF∕R. The solver is warm started with the vector z0, which

Algorithm 2: Solver part 1

Input: The surface and lander sets of polygons fPkg and fPhg, rF∕S hessian
weights x and y, objective position rL∕S, position lower and upper
bounds rF∕S;min and rF∕S;max, attitude lower and upper bounds θF∕R;min

and θF∕R;max, big-MvaluesDi andDsr, reference angle θR∕S, tolerance
τ, and max solver iterations Λ.

1 H � size�fPhg�; Kq � 0

2 for each P ∈ fPkg do Kq � Kq � size�fρg�
3 n � 3�HKq; m � HKq; i; j � 4; t � 1; fΓg � ∅
4 Q � 0n×n; c � 0n; A � 0n×n; �A � 0m×n; l � 0n; u � 0n; �l � −τ1m;
�u � τ1m

5 Q1;1, Q2;2 � x; y; c1 � −Q1;1 � rL∕S;1; c2 � −Q2;2 � rL∕S;2
6 A1∶3;1∶3 � I3×3; l1∶2 � rF∕S;min; u1∶2 � rF∕S;max; l3 � θF∕R;min;
u3 � θF∕R;max

7 z0 � 0; z0;1 � rL∕S;1; z0;2 � rL∕S;2
8 for each Ph ∈ fPhg do
9 for each Pk ∈ fPkg do
10 Γ � krL∕S − rC∕S;kk; fγg � ∅; β � 1

11 for each �n̂; ρ� ∈ �fNkg; fρkg� do
12 γ � n̂ ⋅ �r�F∕S � �SR�θR∕S��rC∕F;h − �rC∕S;k � ρn̂��; fγg←�β; γ�
13 rV∕C;h � � ρh;1 ρh;2 �T
14 Ai�β;1 � n̂1; Ai�β;2 � n̂2
15 Ai�β;3 � n̂ ⋅ �rC∕F;h;θ − rV∕C;h;θ�
16 Ai�β;j � −Di; �At;j � 1; ui�β � Dsr

17 li�β � n̂ ⋅ �rC∕S;k − rC∕F;h;α � rV∕C;h;α� � ρ −Di

18 j � j� 1; t � t� 1; β � β� 1

19 sort�fγg�; fΓg← �j − 3;Γ; fγg�; i � i� β

20 sort�fΓg�
21 Execute Algorithm 3 with Q, A, �A, c, l, u, �l, �u, z0, fΓg, τ, and Λ

Algorithm 1: Preprocessing the geometry

Input: The surface and lander sets of polygons fPkg and fPhg, where each
polygon contains a set of vertices fVg and face normal unit vectors fNg
in their respective frames.

1 for each P ∈ fPkg ∪ fPhg do
2 rC � 0; j � 0; fρg � ∅
3 for each rV ∈ fVg do
4 rC � rC � rV ; j � j� 1

5 rC � rC
j

6 if P ∈ fPkg then
7 for each n̂ ∈ fNg do
8 fρg←maxfn̂ ⋅ �rV − rC�; ∀ rV ∈ fVgg
9 else if P ∈ fPhg then
10 for each i ∈ f1; 2; 3g then
11 fρg←maxff̂ i ⋅ �rV − rC�; ∀ rV ∈ fVgg
12 P←�rC; fρg�
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contains the objective position. Next, each combination of surface and
lander polygons and their corresponding search directions are looped
through to build the constraints defined by Eq. (10c). In the matrix A,
every ith row is the start of a new polygons combination and β iterates
through that combination’s search directions. To improve the read-
ability of lines 15–17, the notation of rα and rθ is defined for vectors
rotated from the F frame to the S frame, such that

�SR��C�θF∕R��TFr �
S
� r1 cos θR∕S − r2 sin θR∕S

r1 sin θR∕S � r2 cos θR∕S

�

�
S
� r1 sin θR∕S � r2 cos θR∕S

−r1 cos θR∕S � r2 sin θR∕S

�
θF∕R

� Srα � SrθθF∕R (15)

This part of the algorithm also includes the construction of the B&B
searching tree. For the overall structure of the tree, every level of depth
represents a unique combination of surface and lander polygons, with
the choice of ϵhk;β to activate existing laterally. Starting with the lateral
structure of the tree, a set fγg is created for each combination of
polygons. This set contains groupings of values β and γ for each
separating axis search direction, where β is the position of the search

direction in the block in �l and �u that represents this polygon combi-
nation. The value of γ, seen in line 12, is the signed distance of the
lander polygon centroid, if rF∕S � rL∕S, from the edge of the lander

polygon in the search direction, assuming that θF∕R � 0. The set fγg is
then sorted in descending order of the value of γ in line 19. This step
acts as a rough heuristic for the order in which the search direction
constraint should be explored. Next, for the depthwise structure of the
tree, a value Γ is determined for each combination of polygons in line
10. This value is the distance from the surface polygon centroid to the
objective landing position, and it is added to the set fΓg along with the
starting position of the block in �l and �u that represents this polygon
combination and the set fγg. Then in line 20, the set fΓg is sorted in
descending order of the value of Γ. The method for ordering the tree
laterally ismore likely to be accurate the further the surface polygon in
question is from the final landing position. Therefore, assuming that a
feasible landing position exists anywhere near the objective position,
starting the tree at the surface polygon furthest away from the objective
position leads to the shortest number of iterations until a feasible
solution is found. This method of searching from the furthest polygon
is quicker because a valid separating axis of distant polygons is more
likely to be closer in angle to the vector connecting the polygon to the
objective position, thus providing quicker verification of noninter-
section.
The branches of relaxed QP problems can be individually solved

using any QP solver that operates on problems in the structure of
Eq. (14)withQ ⪰ 0 and can bewarm started. The primarymotivating
factor in choosing a solver for this problem is how well it performs
with limited computing power. The solver chosen for the develop-
ment of this paper is the OSQP solver [30], which meets all the
requirements and is shown to be robust and efficient enough to
operate on low-power embedded systems [29].
Algorithm 3 depicts how the QP solver operates on the searching

tree map to obtain a feasible solution to the problem. The lowest
feasible cost valueV and its associated solution z� are initializedwith
∞ and z0, respectively. After theQP solver is initialized, the set fTg is
created to contain all active branches of relaxed QPs (the current
deepest branch and all previous branches that links it back to the start
of the tree). Every T ∈ fTg contains the solution of the previous

branchz (initializedwithz0), the currentmodification of the vectors �l
and �u, and the depth μ and lateral ν position of the current branch. The
relaxed QP of the most recently added branch is solved in lines 6–8,
using the previous solution for warm starting. If the solution of the
relaxed QP is both feasible and less than the lowest feasible cost
value, the first lateral position of the next depth level in fΓg is
accessed to create a new branch to be added to fTg in lines 13–15.
Otherwise, the current branch is removed from fTg and is replaced
with the next lateral position of its depth level in lines 22–24. If there

are no more lateral positions in the current depth level, the current
branch is not replaced and the previous branch in fTg is cycled
through.
When the final depth level of the tree obtains an accepted solution,

the values ofV and z� are updated in line 11. The max iteration value
is also reduced here by some factor ζ that is given by the user. The
purpose of the max iteration reduction is to give the user control over
how much time the solver takes to find a better solution once a
solution is found. Once this step is over, the tree searched for a
better solution. This process continues until either the entire tree is
searched, or some maximum number of iterations Λ is reached. At
that point, the current values of V and z� are returned as the solution
of the MIQP. Note that the returned solution is not guaranteed to be
optimal. The feasible region of this MIQP is nonconvex and will
settle into a valley based on the construction of the searching tree.
While brute force searching through the entire tree will find the
optimal solution (if one exists), restrictions on computation time,
controlled withΛ, may cause the algorithm to exit with a suboptimal
solution.

IV. Numerical Results and Analysis

The following results come from two variations of the algorithm
described in the previous section: one using the fine searching set,
and the other using the coarse searching set. The algorithm has been
implemented in C++ using the eigen linear algebra library (http://
eigen.tuxfamily.org). A Python 3.7 script is used to call and time the
algorithm with the appropriate inputs and to process the resulting
data. Note that the algorithm implementation has not yet been opti-
mized for solve times; the following solve times are presented for
comparison between the fine and coarse searching methods. A Mac-
Book Pro 2.8 GHz Intel Core i7 with 16 GB of RAM was used to
collect these data.
Convex polygons were used to hand craft 2D models for both the

lander and the surface, and the dimensions of these models were left
unitless for simplicity. The four-legged lander is composed of five
polygons that fit within a 1.75 × 1.75 unit box, and the feasibility

Algorithm 3: Solver part 2

Input: The problem matricesQ, A, �A and vectors c, l, u, �l, �u, initial solution
z0, searching tree map fΓg, tolerance τ, max solver iterations Λ, and
max iteration reduction factor ζ.

1 Initialize the QP solver with Q, c, A� � �AT �AT �T , l� � � lT �lT �T ,
u� � � uT �uT �T

2 z, z� � z0; V � ∞; μ � 1; ν � 1; λ � 0; fTg � ∅; fTg←�z; �l; �u; μ; ν�
3 while fTg ≠ ∅ do

4 if λ > Λ then return V, z�

5 λ � λ� 1

6 �z; �l; �u; μ; ν�←last element of fTg
7 Update QP solver with l� � � lT �lT �T , u� � � uT �uT �T , and warm

start z

8 Run QP solver, set z � solution

9 if QP problem is feasible and 1
2
zTQz� cTz < V then

10 if μ � size� �l� then
11 V � 1

2
zTQz� cTz; z� � z; Λ � ζΛ

12 goto line 17
13 �j;Γ; fγg�←μth element of fΓg; �β; γ�← 1st element of fγg
14 �lj�β � 1 − τ; �uj�β � 1� τ; μ � μ� 1; ν � 1

15 fTg←�z; �l; �u; V; μ; ν�
16 else
17 �z; �l; �u; V; μ; ν�←last element of fTg; Remove last element of fTg
18 �j;Γ; fγg�←μth element of fΓg
19 if ν � size�fγg� then
20 if fTg ≠ ∅ then goto line 17 else return V, z�

21 else
22 �β; γ�← νth element of fγg; �lj�β � −τ; �uj�β � τ; ν � ν� 1

23 �β; γ�← νth element of fγg; �lj�β � 1 − τ; �uj�β � 1� τ

24 fTg← �z; �l; �u; μ; ν�
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tolerance is τ � 1.11 × 10−13. The maximum number of iterationsΛ
is set to be 20 times the depth of the searching tree, and the iteration
reduction factor is ζ � 1∕2. Finally, the Python script, given an
objective landing location, is set to run the solver 18 times over 20°
intervals of θR∕S for both searching sets.

A. Advantage over Circular Footprint

The initial tests for this solver algorithm were done on a surface
composed of a grid of simple hazards. The searchable surface area is
constrained to 10 × 10 units in ŝ1 and ŝ2, leading to the choice of big-
M values to be Dsr � Di � 10. These tests yielded results that
clearly show the advantage of using a geometrically conforming
footprint over a circular footprint. Figure 7 displays a solution for
the placement of the geometrically conforming footprint (highlighted
in blue) close to the objective landing location (marked with a red X)
with a similarly scaled circular footprint centered on the solution.
This is a situation where the circular footprint is violated by the
arrangement of the hazards, creating a region on the surface where
only a geometrically conforming footprint can find a solution. While
this result showcases the usefulness of a geometrically conforming
footprint, the followingmore complex set of tests was constructed for
a deeper analysis of the solving algorithm and its two variants.

B. Coarse Versus Fine Searching Sets

The rest of the testing is done on a surface that is constrained to
20 × 20 units in the ŝ1 and ŝ2 directions and contains 14 polygons,
with big-M values Dsr � Di � 20. Several trials are run with hand-
picked objective landing locations, such to stress test the solver
algorithm. Three notable trials are presented graphically in Fig. 8
with some more analytic results in Table 1, where the offset value is
the final distance from the center of the lander (point F) to the
objective landing location (point L) as a percentage of the search
region boundDsr. Note that no assumptions are made as to if pointL
is actually reachable. Also shown in Fig. 8 are circles fit around the
geometrically conforming footprint to demonstrate the feasibility of
the circular footprint compared to the proposed one. Trial 1 demon-
strates the expected outcome of this algorithm when the objective
landing location is placed among a dense field of hazards that are
similar in scale, or smaller, to the lander; the expectation being that
both searching sets find a solution, and the fine searching set outper-
forms the coarse by a nonnegligible margin. However, this expect-
ation changes when larger hazards are involved, which is best shown
in trial 2, where the previously discussed drawbacks of the coarse
searching set impact its performance significantly. While the result
shown in Fig. 8d is among the most noticeable low-performance
results of the geometry being tested here, it clearly demonstrates a

lack of robustness for the coarse searching set when compared to
the fine searching set. Finally, trial 3 demonstrates a case where
the coarse searching set is able to outperform the fine, although
this outcome is much less common than that of trial 1. The primary
reason that the coarse searching set performed better is the afore-
mentioned nonconvexity of the MIQP’s feasible region; the solver
got caught in a nonoptimal local minimum and returned a solution
that is further from the objective than the coarse searching set. Of the
results shown from this trial, the solution displayed in Fig. 8f best
showcases the advantages of a geometrically conforming footprint
over a circular footprint.

C. Monte Carlo Testing

Several other hand-picked trials were run to evaluate specific
performance cases. Notable results from these trials indicate that the
solver is generally robust to the placement of the objective landing
location, including cases when the objective landing location is
placed within a surface polygon. However, there are some cases
where the solver was unable to return a solution when using the
coarse searching set. These failures are a result of the iteration limit
placed on the solver with the given Λ. Given unlimited time the
solver will always return a solution, if one exists, however, a
practical limit on solve time is crucial to HDAoperations. To further
quantify the performance of this solver with the given setting, a set
of 1000 objective landing locations within the bounds of the surface
area were randomly generated from a uniform distribution. This set
was run through the Python script for the solver to produce solve
time and objective offset data. Figure 9 shows the distribution of
both searching set’s objective offset over the generated set of data.
Figure 10a shows the percent increase in time required to produce a
solution of the fine searching set relative to the coarse, and Fig. 10b
shows the objective offset of the fine searching set relative to the
coarse for each individual trial, where a negative value indicates that
the fine solution has a lower value (and thus higher performance)
than the coarse.
The data collected from these 1000 trials further reinforce the

expected behavior between the two variants of the solver. The data
in Fig. 9a show that the average objective offset for the coarse
searching set (when a solution is returned) is 6.3% of the search
region bound with a maximum value of 29.3%, whereas Fig. 9b
shows that the fine searching set’s average objective offset is 4.7% of
the search region bound with a maximum value of 24.3%. The
indication from these results is that the use of the fine searching
set, on average, provides a solution closer to the objective landing
location than when the coarse searching set is used. Observation of
Fig. 10b further bolsters this claim where, when the results of
individual trials are compared, the fine searching set has, on average,
an objective offset that is 1.8% of the search region bound less than
that of the coarse searching set, up to a value of 18.9% of the search
region less than the coarse searching set. While the fine searching set
appears to be performing better than the coarse in regard to the
objective offset, the previously discussed downside of using the fine
searching set must also be examined. As expected, the solver using
the fine searching set averages a longer duration of time to return a
solution. The data in Fig. 10a show that the fine searching set has on
average a 25.04% increase in solving time compared to the coarse,
with a minimum and maximum increase of −43.84 and 94.37%,
respectively. For reference to the actual scale of time being compared
here, on themachine used to run this test, the average solving time for
the fine set and coarse set is 27.8 and 36.7 s, respectively.Note that the
implementation used for this test was not optimized for computa-
tional speed, which is why the solving time of the two variants is
being compared relative to each other. Future work will include
refinement and optimization of the searching algorithm, as well as
warm starting for sequential solving, to meet computation times
required for flight. Therefore, the bulk of the results presented here
indicate that, with the problem configuration tested here, the fine
searching set offers a landing solution that is about 2% closer to the
objective landing location that costs about a 25% increase in solving
time over the coarse searching set.

Fig. 7 Example of a geometrically conforming footprint fitting where a
circular one cannot.
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D. Likelihood of Returning a Solution

From the 1000 trials performed here, there were no failures to
return a solution when using the fine searching set and there were 32
cases where the coarse searching set failed to return a solution. The
cases where the coarse searching set failed had objective landing
locations clustered around the �ŝ1; ŝ2� pairs (4, 12.5) and (16, 17).
Visual inspection of these regions indicates that, due to the use of the

a) Trial 1 Fine Search b) Trial 1 Coarse Search

c) Trial 2 Fine Search d) Trial 2 Coarse Search

e) Trial 3 Fine Search f) Trial 3 Coarse Search

Fig. 8 Visual solutions of the three trials, where the objective landing location ismarked by a redX, the geometrically conforming footprint is highlighted
in blue, and a black circular footprint is centered over the solution.

Table 1 Numerical results of the three
hand-picked trials

Trial number Fine offset, % Coarse offset, %

1 6.083 7.387
2 5.331 21.161
3 7.449 4.927
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basis directions for separating axes, the feasible region for the coarse
searching set is significantly far from these regions. The big disad-
vantage that the coarse searching set sees from the very large surface
polygons becomes highly prevalent here, which opens up a discus-
sion on the required scale and shape of polygons from a given safety
map.Asmentioned previously, the drawbacks of the coarse searching

set become less significant when the local surface polygons are of the
same scale or smaller than the lander. A natural solution then would
be to further subdivide the larger polygons until every surface poly-
gon is of the same scale as the lander. While this would certainly
work, it has the potential to create a significant increase in the time
required for the solver to return a solution. Recall the dimensionality

Fig. 9 The objective offset values in each trial for both searching sets.

Fig. 10 Percent increase of the fine searching set performance values over the coarse set.
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of the defined MIQP, with Q ∈ R�3�HKq�×�3�HKq�, where H is the
number of lander polygons,K is the number of surface polygons, and
Kq is the sumof the searchdirections of each surfacepolygon.Because

the coarse searching set only uses theS basis directions, the dimension
of Q would be �3� 4HK� × �3� 4HK�. Therefore, increasing the
number of surface polygons by subdivision results in a quadratic
increase in the size of the MIQP and thus would increase the duration
of time required for the solver to find a solution. As the failures from
using the coarse searching setwere a direct result of the solver reaching
the given iteration limit, raising that iteration limit (and thus giving the
solvermore time to find a solution) is also a valid adjustment to prevent
failure. Thus, to avoid these failure conditions for a given problem set,
some combination of subdividing polygons and raising the iteration
limit is recommended on a case-by-case basis.

V. Conclusions

In this paper, a new technique is presented as the foundation for a
new landing site selection algorithm. The core idea of this technique is
to decompose a given 2D safety map of a small-body surface and a
geometrically conforming footprint of a spacecraft lander into sets of
convex polygons, and create an optimization problem with procedur-
ally generated constraints that prevent the polygons from intersecting
via the SAT. This problem is cast into an MIQP that minimizes the
distance between a feasible landing location and a desired landing
location. Two possible variations of this MIQP are discussed: one that
uses the basis directions of the surface frame as possible separating
axes, and one that uses the face normal vectors of the surface polygons,
named the coarse and fine searching sets, respectively. An algorithm
that uses a B&B framework to solve these MIQPs is formulated and
has been tested on an illustrative scenario. The results of this scenario
show the potential of using a geometrically conforming footprint over a
circular one when subject to relatively low navigation uncertainties.
Further, the coarse and fine variants of this MIQP are compared to
identify the advantages anddisadvantages of each variant. The numeri-
cal results from this comparison show that the fine searching set, on
average, produces solutions that are 1.8% closer to a desired landing
location than the coarse searching set, at the cost of a 25.04% increase
in time required for the solver to return a solution. Finally, the fine
searching set is shown to be more robust than the coarse searching set
in the solver’s ability to return a valid solution, given the same problem
configuration. While this technique assumes a level of navigational
uncertainty that is not presently feasible, the recent OSIRIS-REx and
Hayabusa2 missions have shown that current technological advance-
ments are on the cusp of attaining such feasibility. Futurework includes
the incorporationofnavigational uncertainty into theMIQPand further
development of a solving algorithm that is flight-ready. This technique,
as it is presented in this paper, then serves as a foundation to guide the
near-future cutting edge in hazard avoidance research.
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