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I. Introduction

R IGID-BODY attitude estimation algorithms have been previ-
ously formulated using modified Rodrigues parameter (MRP)

attitude sets. These MRP-based attitude estimation algorithms are
attractive because they have been shown to have equal accuracy to
and faster initial convergence than similar quaternion-based filters,
and they avoid the quaternion constraint problem [1]. These algo-
rithms make use of the fact that two MRP sets describe a particular
orientation and singularity avoidance is performed by switching
between the original MRP set and the alternate set, known as the
shadow set. Unfortunately, the nonuniqueness of MRPs can lead to
significant attitude estimation errors through improper calculation
of the measurement residual. This work examines the handling of
measurement residuals within existing MRP attitude estimators,
specifically the technical details of when and how to switch to and
from the MRP shadow set when calculating the measurement
residual.
Attitude estimation is often performed using an extended Kalman

filter (EKF) with quaternions as the attitude measure [2,3]. Quater-
nions lend themselves well to attitude estimation because they
represent a redundant, nonsingular attitude description with globally
nonsingular kinematics, elegant successive rotation expressions, and
rigorously linear kinematic differential equations. However, the qua-
ternion unit norm constraint complicates matters and has led to
extended discussions of attitude estimation and constraints [4–6].
Other attitude parameterizations can be used in filtering, assuming

that appropriate strategies are employed to avoid singularities;
examples include Euler angles [7,8], classical Rodrigues parameters
[9], and MRPs. MRPs are of particular interest because they are a
minimal three-parameter attitude set that are nonsingular for any
rotation other than multiples of 2π. Schaub and Junkins [10] note
that two MRP sets exist to describe a particular orientation, and the
second set, known as the shadow set, is nonsingular for nonzero
rotations. Therefore, singularity avoidance is performed by switching
between the two sets. Further, both sets obey the same differential
equations, making for easy implementation.
MRPs, first explored as an attitude estimation parameterization in

1996 [11] and discussed in detail in [10], have been used to develop
globally stabilizing feedback control [12], optimal attitude control
[13], and sliding mode control for maneuvers [14]. Lee and Alfriend

present an additive divided difference filter using MRPs, but do
not discuss the transformation of the covariance when switching to
the shadowMRP set [15]. Cheng and Crassidis propose using MRPs
in a particle filter and they mention that MRP switching may cause
discontinuities of the covariance, but do not provide an appropriate
covariance mapping‡ [16]. Jizheng et al. also note that the covariance
experiences a discontinuity at the point where the MRP is switched
and propose a first-order covariance mapping [17]. Karlgaard and
Schaub provide a first-order covariance mapping for use in an
additive MRP EKF, and additionally provide first- and second-order
transformations suitable for use in divided difference filters [1].
Furthermore, they show an additive MRP EKF to have equal accu-
racy to and faster initial convergence than quaternion filters with
slightly faster numerical evaluation and vastly simpler coding imple-
mentation. Unfortunately, none of the previously published MRP
EKF implementations address the issues that arisewhen dealing with
observations.
The present work examines the details required for proper calcu-

lation of observation residuals within existing MRP EKF formula-
tions. Specifically, this paper covers a novel method for determining
when and how to switch to and from the MRP shadow set when
calculating the measurement residual. A brief overview of the rele-
vant aspects of modified Rodrigues parameters is presented first.
Next, the derivation of an additive MRP EKF, complete with an
appropriate first-order analytical covariance mapping to be used
when switching the MRPs to or from their shadow set, is reviewed.
This additive MRP EKF is then used to illustrate the issues corre-
sponding to the calculation of themeasurement residual that can arise
due to the nonuniqueness ofMRPs, and amethod formitigating these
issues is discussed. Finally, numerical simulation results demon-
strating these issues and the performance of themitigation algorithms
are presented.

II. Modified Rodrigues Parameters
The modified Rodrigues parameter vector σ is defined in terms of

the principal rotation elements as

σ ! ê tan
!
Φ
4

"
(1)

where ê is the principal rotation axis, and Φ is the principal rotation
angle [10,18]. The MRP shadow set is defined as

σS ! −
σ

σTσ
(2)

and both MRPs satisfy the differential equation

_σ ! 1

4
"#1 − σTσ$"I3×3% & 2"σ%× & 2σσT %ω ! 1

4
"B#σ$%ω (3)

where "·%× represents the skew-symmetric cross product matrix given
by

"σ%× !
"

0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0

#

The inverseMRP is given by σ−1 ≡ −σ and the successive rotation of
two MRPs is computed using the MRP product
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!!σ ! !σ ⊗ σ ! #1 − σTσ$ !σ & #1 − !σT !σ$σ − 2"!σ%×σ
1& #σTσ$# !σT !σ$ − 2 !σTσ

(4)

For more information regardingMRPs, the reader is referred to [10].

III. MRP Kalman Filter Formulation
A common spacecraft attitude estimation problem involves

propagating state dynamics using an inertial angular velocity vector,
sensed via a rate gyroscope, and correcting that estimate using a direct
measurement of the body’s attitude, via a star tracker or other generic
attitude sensor [2,3,19]. An additive MRP EKF approach, as pro-
posed by Karlgaard and Schaub [1], is used here to illustrate the
issues that can arisewhen computing the observation residual, but it is
important to note that the same issues arise with a multiplicative
attitude estimation approach.
The MRP EKF assumes the gyroscope dynamics follow

Farrenkopf’s approximation [20]

ω ! ~ω − ωb − ηω (5)

_ωb ! ηωb (6)

where ~ω represents the sensed angular velocity,ω is the true angular
velocity, ωb is the measurement bias, and ηω and ηωb are zero-mean
Gaussian white-noise processes with spectral densities given by
σ2ωI3×3 and σ2ωbI3×3, respectively. It follows that the state dynamics
are given by

_x ! f#x$ & g#x; η$ (7)

where x ! "σ;ωb%T , η ! "ηω; ηωb %T , and

f#x$ !
#

1
4 "B#σ$%# ~ω − ωb$

03×3

$
(8)

g#x; η$ !
#
− 1

4 "B#σ$%ηω
ηωb

$
(9)

Thus, continuous-time propagation of the state and covariance is
performed by numerically integrating Eq. (7) and the Lyapunov
differential equation [21]

_̂
P ! FP̂& P̂FT &GQGT (10)

where P̂ represents the current estimate of the state covariance, and

F≡
∂f
∂x

%%%%
x!x̂
!
#
1
2#σ̂ω̂T − ω̂σ̂T − "ω̂%×& σ̂Tω̂I$ − 1

4 "B#σ̂$%
03×3 03×3

$
(11)

G ≡
∂g
∂η

%%%%
x!x̂;η!0

!
#
− 1

4 "B#σ̂$% 03×3
03×3 I3×3

$
(12)

where σ̂ and ω̂b are the best estimates of the attitude MRP and rate
gyroscope bias, respectively, output by the EKF and ω̂ ! ~ω − ω̂b.
The attitude sensing device measurements are assumed to take the

form

~σ ! σ ⊗ δσ (13)

where ~σ represents the measured MRP, σ represents the true attitude,
and δσ represents an attitude measurement error. It is assumed that all
measurements ~σ are given by the MRP representation corresponding
to a principle rotation angle less than 180 deg, thus the magnitude of
the reported measurement MRP will always be less than one. Using
the measurement equation

h#x$ ! σ̂ (14)

discrete-time measurements at time tk are incorporated into the
propagated state x̂−k and covariance P̂−

k estimates to give an updated
state x̂&k and covariance P&k estimate using

x̂&k ! x̂−k &Kkyk (15)

P̂&k ! "I −KkHk#x̂−k $%P̂−
k "I −KkHk#x̂−k $%T &KkRkKTk (16)

where the measurement residual is given by yk ! ~σk − σ̂k. The
Kalman gain Kk at time tk is given by

Kk ! P̂−
kH

T
k #x̂−k $"Hk#x̂−k $P̂−

kH
T
k #x̂−k $ &Rk%−1 (17)

where

Hk#x̂−k $ ≡
∂h
∂x

%%%%
x̂−k

! " I3×3 03×3 % (18)

If, after propagating, using Eq. (7), or performing an update, using
Eqs. (15) and (16), the estimated MRP’s magnitude is greater than
one kσ̂kk > 1, theMRPattitude set is switched to the shadow set. The
shadow set transformation of the state vector is given by

xS !
#
−#σTσ$−1σ

ωb

$
(19)

The shadow set transformation of the covariance matrix is found by
decomposing the covariance matrix into submatrices

P !
#
Pσσ Pσωb
PTσωb Pωbωb

$

where Pxx is the covariance matrix of x, and Pxy is the cross-
correlation matrix between x and y. The mapping of the covariance
matrix to the shadow set is given by [1]

PS !
#
SPσσS

T SPσωb
PT

σωbS
T Pωbωb

$
(20)

where

S ! 2σ−4σσT − σ−2I3×3

and σ2 ! σTσ.
Although an additive approach to anMRPEKF is presented here, it

is important to note that a multiplicativeMRP EKF is also viable and
provides similar estimation accuracy. Such a filter uses a true relative
orientation residual as opposed to the numerical residual used in
Eq. (16) and is derived by following the multiplicative quaternion
EKF formulation in [19].

IV. MRP Shadow Set Considerations
Of particular interest here is the computation of the measurement

residual yk, the difference between the measured ~σk and estimated
attitude σ̂k at time tk, which has not previously been discussed in
detail. For the additive MRP EKF, the measurement residual is given
by the numerical difference

yk ! ~σk − σ̂k (21)

As discussed earlier, due to the nonuniqueness of MRPs, there are
always two MRP sets to describe the same orientation. This can
become an issue if the magnitude of the discrete MRP measurement
k ~σkk or estimate kσ̂kk is near one. For example, if ~σk ! "1; 0; 0% and
σ̂k ! "−1; 0; 0%, which represents the same physical orientation as ~σSk ,
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both values describe the same attitude and thus the measurement
residual should be "0; 0; 0%. However, Eq. (21) will result in a mea-
surement residual of "2; 0; 0% and the update equation given by
Eq. (15) will apply a correction when none is needed, thus degrading
the estimate of the attitude.
To avoid this issue in practice, a newapproach is proposed inwhich

the measurement residual is calculated a second time using

y 0k ! ~σSk − σ̂k (22)

where ~σSk is evaluated using Eq. (2). The quantity yk or y 0k with the
smaller magnitude is then used in Eq. (15) and estimation continues.
Figure 1 illustrates graphically the situation where ky 0kk < kykk and
Algorithm 1 provides pseudocode for the proposed algorithm. Note
that, although the measurements ~σ are assumed to be noisy, the
measurement at tk is a discrete value and k ~σkk is themagnitude of this
discrete value.
Performing this additional calculation at every time step does not

represent a significant computational burden, however, an issue does
develop when a measurement has a magnitude near zero. When
k ~σkk → 0 the shadow set k ~σSkk → ∞ and is ill defined. In this
scenario, the magnitude of the original measured MRP k ~σkk is
always less than the magnitude of the shadow MRP set of the
measurement k ~σSkk and there is no need to evaluate Eq. (22). For this
reason, a bound is placed on when to evaluate Eq. (22). As noted
earlier, both ~σk and σ̂k are assumed to be constrained with a magni-
tude less than or equal to one, which implies, at any time tk,

kykk ≤ 2

Therefore, conservatively, if the magnitude of the measured MRP’s
shadow set ~σSk at time tk is greater than three, themagnitude ofy 0kmust
be greater than yk

k ~σSkk > 3 ⇒ kykk < ky 0kk

and y 0k need not be calculated. By applying Eq. (2), it is evident that

k ~σSkk > 3 ⇒ k ~σkk < 1∕3

Thus, a conservative bound on when the calculation of y 0k can be
ignored is when k ~σkk < 1∕3. Therefore, when 1∕3 < k ~σkk < 1, as
illustrated in Fig. 1, the check described earlier should be computed.

For amultiplicativeMRPEKF, themeasurement residual at time tk
is given by the relative orientation difference

yk ! ~σk ⊗ σ̂−1k (23)

Using the example provided earlier, where ~σ ! "1; 0; 0% and
σ̂ ! "−1; 0; 0%, evaluating Eq. (23) results in a division by zero and, in
other cases, can lead to an erroneously large residual when the
resulting MRP describes a rotation with a principal rotation angle
greater than 180 deg. To avoid this, a similar approach is proposed
where themeasurement residual is calculated a second time using the
shadow set of the measurement

y 0k ! ~σSk ⊗ σ̂−1k (24)

and the quantity yk or y 0k with the smaller magnitude is used in the
update equations. Algorithm 2 provides pseudocode for a multipli-
cative MRP EKF. In this case, k ~σkk is compared with a sufficiently
small number ϵ to prevent division by zero.
As an alternative, Eq. (23) could be calculated using direction

cosine matrices

"C#yk$% ! "C# ~σk$%"C#−σ̂k$%

and extracting the resultant MRP set with the smaller principal
rotation angle, but this is found in practice to be significantly more
computationally demanding than the proposed algorithm.

V. Results
A simple numerical simulation is presented to illustrate the

performance of the nonsingular additive MRP EKF and highlight
certain implementation details. The uncontrolled tumbling motion of
a small spacecraft is modeled assuming the spacecraft has principle
inertia values of I1 ! 4, I2 ! 4, and I3 ! 3 kg · m2. The initial
attitude of the spacecraft is given by σ#t0$ ! "0.3; 0.1;−0.5%T.
The initial angular velocity is given by ω#t0$ ! "−0.2; 0.2;
−0.1%T deg ∕s.
Attitude measurements are simulated at 0.2 Hz with an attitude

measurement error covariance of 20 arcsec. The measurement
covariance for the additive filter is set to R ! 0.0004I3×3. The

Fig. 1 Illustration of possible measurement residual at a specific time and region where y 0k must be considered.

Algorithm 1
Proposed

measurement residual
algorithm for additive

MRP EKF

1: yk ! ~σk − σ̂k
2: if k ~σkk > 1

3 then
3: y 0k ! ~σSk − σ̂k
4: if ky 0kk < kykk then
5: yk ! y 0k
6: end if
7: end if

Algorithm 2
Proposed

measurement residual
algorithm for

multiplicative MRP
EKF

1: yk ! ~σk ⊗ σ̂−1k
2: if k ~σkk > ϵ then
3: y 0k ! ~σSk ⊗ σ̂−1k
4: if ky 0kk < kykk then
5: yk ! y 0k
6: end if
7: end if
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angular rate measurements are simulated at 2.0 Hz, assuming
an initial bias of ωb0 ! "−1.0; 2.0;−3.0%T deg ∕h and σω !

&&&&&&
10
p

×
10−7 rad∕s1∕2 and σωb !

&&&&&&
10
p

× 10−10 rad∕s3∕2. The initial attitude
estimate is σ̂ ! 03×1 and the initial angular rate bias estimate is
ω̂b ! 03×1. The initial covariance matrix is given by P̂0 ! diag"Pσ;
Pσ ; Pσ ; Pωb ; Pωb ; Pωb % where Pσ ! 0.175 rad2 and Pωb !
0.005 rad2∕s2.
The time history of the true attitude and the principal rotation error

of the estimate for a 60 min simulation are shown in Fig. 2. It can be
seen that not all instances of MRP switching require the proposed
algorithm, for instance, the estimator handles the switching at
11.2 min quite well. An example of when ky 0kk < kykk is seen at
38.2 min. At that time, simply calculating the vector difference
between ~σk and σ̂k results in

yk ! " 0.859201 −0.137457 −1.800605 %

whereas using the shadow MRP set of the measurement results in

y 0k ! "−0.000006 −0.000048 0.000195 %

Clearly, yk represents a spuriously large error in the attitude estimate
and the original additive estimator diverges, whereas by using the
shadow MRP set of the measured attitude, the magnitude of the
measurement residual is very close to zero.

It is important when using an additive filter to use a numerical
difference for the measurement residual and when using a multipli-
cative filter to use amultiplicative residual. Included in Fig. 2b are the
results for an additive filter using amultiplicative residual, illustrating
the poor performance resulting from such an incorrect mixture of
methods.
The state estimates and their associated covariance bounds for the

proposed algorithm are shown in Fig. 3. Both the attitude MRP and
rate gyroscope bias estimates can be seen to quickly converge to the
noise level while remaining within the 1σ covariance bounds, despite
the relatively slow attitude measurement update rate.

VI. Conclusions
The details associated with calculating the measurement residual,

specifically switching to and from the MRP shadow set, for an MRP
EKF performing attitude estimation are discussed. It is shown
analytically and with numerical simulation that, when calculating the
measurement residual, it is important that there are two valid MRP
representations for any one attitude. Calculating the measurement
residual using the attitude measurement MRP shadow set does not
represent a significant computational burden; however, issues arise
when k ~σkk → 0. A conservative bound of k ~σkk < 1∕3 has been
established for when to calculate the measurement residual using the
shadow set of the measurement MRP when using an additive MRP
EKF. The MRP EKF provides a globally nonsingular attitude
estimation algorithm with a minimal attitude representation, but care

a) True spacecraft attitude b) Attitude estimate error
Fig. 2 Results of simulation using additive MRP EKF with and without proposed algorithm illustrating importance.

a) σ estimate errors b) ωb estimate errors

Fig. 3 Results of numerical simulation using proposed method showing convergence of all states. Dotted lines indicate 1σ covariance bounds.
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must be taken when switching attitude estimate to and from theMRP
shadow set.
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