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Abstract
Using thrusters for either orbital maneuvers or attitude control change the current
spacecraft mass properties and results in an associated reaction force and torque. To
perform orbital and attitude control using thrusters, or to obtain optimal trajecto-
ries, the impact of mass variation and depletion of the spacecraft must be thoroughly
understood. Some earlier works make rocket-body specific assumptions such as axial
symmetric bodies or certain tank geometries hat limit the applicability of the models.
Other earlier works require further derivation to implement the provided equations
of motion in simulation software. This paper develops the fully coupled translational
and rotational equations of motion of a spacecraft that is ejecting mass through the
use of thrusters and can be readily implemented in flight dynamics software. The
derivation begins considering the entire closed system: the spacecraft and the ejected
fuel. Then the exhausted fuel motion in free space is expressed using the thruster
nozzle properties and the familiar thrust vector to avoid tracking the expelled fuel in
the simulation. Additionally, the present formulation considers a general multi-tank
and multi-thruster approach to account for both the depleting fuel mass in the tanks
and the mass exiting the thruster nozzles. General spacecraft configurations are pos-
sible where thrusters can pull from a single tank or multiple tanks, and the tank being
drawn from can be switched via a valve. Numerical simulations are presented to per-
form validation of the model developed and to show the impact of assumptions that
are made for mass depletion in prior developed models.
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Introduction

The aerospace industry has been steadily increasing the accuracy of spacecraft sim-
ulations using advanced analytical development and computer numerical techniques.
The prediction of satellite behaviors and their orbits during the preliminary design
phase and leading up to the operational period is an extremely useful tool to develop
and analyze missions. Moreover, high-fidelity models provide an efficient way to
limit fuel demanding maneuvers to preserve satellite orbital position. In this context,
the need of a general formulation to predict satellite orbital and attitude behaviors
while considering mass depletion is crucial to model the dynamical mass variation
influence on the equations of motion (EOMs). The simplest way to take into account
the ejection of propellant is to use an “update-only” approach [1], thus updating the
center of mass position and the inertia during the simulation in the EOMs without
considering the dynamical influences of the mass depletion. This results in an easy-
to-implement model whose limitations consist in the lack of detailed attitude and
translational motion prediction for high-fidelity purposes. A more accurate approach
considers the spacecraft as an open system whose mass changes in accord with the
fuel flows. Pioneering work in Reference [2] about this subject derives the EOMs
by considering a system of particles. In contrast, prior works [3, 4] introduce the
problem as a continuous system by using the Reynolds transport theorem with an
integral notation. References [5–9] present the derivation of a variable mass rocket
with an axial-symmetric design with a single axial-symmetric burn chamber and a
circular nozzle in order to take into account observed experimental results from flight
campaigns [10, 11]. These assumptions decouple the rocket axial spin from the trans-
verse angular velocity and results in a closed solution to the problem, however, the
assumptions limit the application to axial symmetric spacecraft. References [12] and
[13] present the EOMs considering a system of coaxial bodies with different angu-
lar velocities. The studies present an analysis of the nutation angle in the case of
a two-body satellite, like a spacecraft with a coaxial wheel. The equations must be
specified accordingly with the number of interconnected bodies and this results in the
need of re-derivation for a specific system of interconnected bodies and to take into
account how particles leave the system. A more recent work [14] considers a body
fixed reference origin and develops the translational and rotational EOM for a reentry
module. The EOMs, although general, are presented in integral form. Therefore, the
EOMs require further derivation to be implemented into simulation software. Addi-
tionally, the model lacks in a defined approach to connect the dynamical spacecraft
mass properties variation with the ejected mass characteristics.

In contrast to the literature, this research sets out to develop the EOMs for a space-
craft that is ejecting fuel through the use of thrusters without making assumptions
involving the spacecraft geometry, tank geometry, or the complexity of the propulsive
system. More specifically, this paper provides the detailed analytical formulation of
this problem, is applicable to a wide variety of spacecraft and can be readily imple-
mented in simulation software without excessive coding efforts or re-derivation of
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EOMs. The formulation itself is intended to be thorough and methodical to answer
this complex problem. Additionally, this research is focused on the formalization of
a general multi-tank and multi-thruster approach to link the mass depletion inside the
tanks with the fuel ejected by the nozzles and the resulting impact on the orbital and
attitude motion. Variations on the type of tank or thruster models can be implemented
in the presented model without increased model complexity as the gathering of the
EOMs is general. Furthermore, the model is derived to be as modular as possible to
be easily implemented in flight dynamics software.

Problem Statement

To help define the problem, Fig. 1 is displayed. This problem involves a spacecraft
consisting of a hub which is a rigid body and has a center of mass location labeled
as point Bc. The hub has M number of tanks and N number of thrusters attached to
it. The figure only shows one tank and one thruster but the analytical development is
general. The ith tank has a center of mass location labeled as Fci and the jth thruster
is located at Ncj . The body fixed reference frame B: {b̂1 , b̂2 , b̂3} with origin B can
be oriented in any direction and point B can be located anywhere fixed to the hub.
This means that point B and the center of mass location of the spacecraft, C, are not
necessarily coincident. As a result, the vector c defines the vector pointing from the
body frame origin to the center of mass fo the spacecraft. The inertial reference frame
N : {n̂1 , n̂2 , n̂3} is centered at N and is fixed in inertial space.

Another important description of this problem are the assumptions being used.
The following list organizes the assumptions that are used for this formulation:

• The spacecraft hub is rigid and deformations are not considered.

Fig. 1 Spacecraft with depleting mass and definition of frames and variables
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• The mass flow among the tanks, the thrusters and in the combustion chamber
are considered to be second order effects and neglected. As a consequence fluid
motions in pipeline and pumps, and gas whirling are not taken into account.
However, the fuel expenditure related time varying fuel tank mass properties,
such as total mass and inertia, are taking into account.

• The relative motion between the propellant and the fuel tanks, such as fuel
sloshing, is not considered in this present work

• The particles are accelerated instantaneously from the spacecraft velocity ṙB/N

to the exhausted velocity vexh at the nozzle exit.
• The particle exhausted velocity vexh is considered constant and parallel to the

nozzle’s normal n̂.

Throughout this paper, vector calculus is used and the notation to define certain
quantities needs to be introduced. A position vector, rC/N , is the vector pointing from
N to C. ωB/N is the angular velocity of the B frame with respect to the N frame. ṙ
denotes an inertial time derivate of vector r and r ′ defines a time derivate of r with
respect to the body frame. Using these definitions, the following section develops the
EOMs for the spacecraft system.

Equations of Motion

Reynolds Transport Theorem and Continuity Equation

In this section the main tool used for the development of the governing equations
is presented and explained. The Reynolds transport theorem provides a basic tool
to pass from a Lagrangian formulation, based on the analysis of particles moving
in space, to an Eulerian one, which considers a fixed space volume where physical
quantities are exchanged through the boundaries.

In the present document, the Lagrangian system is labeled Body, the moving vol-
ume of the Eulerian approach is labeled Vsc and its surface Asc are represented in
Fig. 2.

By using this notation, the Reynolds transport theorem affirms [3, 15–17]:

Dd

dt

∫
Body

ρ f dV =
Dd

d t

∫
Vsc

ρ f dV +
∫
Asc

ρ f
(
vrel · n̂

)
dA (1)

where f is a general vectorial quantity transported out from the control volume, ρ is
the density of the infinitesimal mass dm, n̂ the surface normal considered positive if
exiting from the control volume,D is a generic reference frame and vrel is the relative
velocity of the particles flowing out from the surface with respect to the control sur-

face itself. This last quantity can be easily defined as vrel(x, t) =
Dd

dt
rM/B(x, t) −

vsurf(x, t) where
Dd

dt
rM/B(x, t) is the particles’ velocity with respect to the D

frame and vsurf(x, t) is the control surface velocity with respect to the D reference
frame.
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Fig. 2 Division of the total system in spacecraft and exhausted gas. The control surfaceAsc represents the
exchanging surface between the two subsystems

Moreover, if the control volume is fixed in theD frame and no deformable control
volume is considered, the following relation is proved [14, 16]:

Dd

d t

∫
Body

ρ f dV =
∫
Vsc

D∂

∂ t
(ρ f ) dV +

∫
Asc

ρ f

(
Dd

dt
rM/B

)
· n̂ dA (2)

An additional key equation that is used throughout the paper is the continuity
equation. First, the continuity equation is gathered:

d

dt

∫
Body

dm = d

dt

∫
Vsc

ρ dV +
∫
Asc

ρ vrel · n̂ dA = 0 (3)

The rate of change of the spacecraft is defined as ṁsc = d

dt

∫
Vsc

ρ dV and yields:

ṁsc = −
∫
Asc

ρ vrel · n̂ dA ⇒ dṁ = −ρ vrel · n̂ dA (4)

This definition will be used in the derivation of the EOMs.
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Translational Equation of Motion

The derivation of the translational EOM begins considering Newton’s law for a closed
system

N d

d t

∫
Body

ṙM/N dm = F ext (5)

where ṙM/N is the velocity of a particle at the M point expressed with respect to the
inertial reference frame and F ext is the sum of the external forces experienced by
the body. As the total mass of the system is constant, the differentiation operator is
brought inside the integration:

N d

d t

∫
Body

ṙM/N dm =
∫
Body

r̈M/N dm (6)

The acceleration of the origin of the B frame is expressed as r̈M/N = r̈B/N + r̈M/B .
By using the kinematic transport theorem, the expression of r̈M/B is found:

ṙM/B = r ′
M/B + ωB/N × rM/B (7)

r̈M/B = r ′′
M/B +2ωB/N ×r ′

M/B +ω̇B/N × rM/B +ωB/N × (
ωB/N × rB/M

)
(8)

A Lagrangian formulation of linear momentum is deduced by using Eqs. 5, 6 and 8:∫
Body

(
r̈B/N + ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dm

+2ωB/N ×
∫
Body

r ′
M/Bdm +

∫
Body

r ′′
M/Bdm = F ext (9)

The system mass is constant, therefore the derivative operator can be applied after
the integration yielding

∫
Body

r ′
M/Bdm =

Bd
dt

∫
Body

rM/Bdm (10)

∫
Body

r ′′
M/Bdm =

Bd2

dt2

∫
Body

rM/Bdm (11)

By using the Reynolds transport theorem, Eqs. 10 and 11 are expressed in a space
fixed volume, shown in Fig. 2. Performing this conversion results in the following
equations:

Bd
dt

∫
Body

rM/B dm =
Bd
dt

∫
Vsc

ρ rM/B dV +
∫
Asc

ρ r ′
M/B · n̂ rM/BdA (12)

Bd2

dt2

∫
Body

rM/B dm =
Bd2

dt2

∫
Vsc

ρ rM/B dV +
Bd
dt

∫
Asc

ρ r ′
M/B · n̂ rM/B dA

+
∫
Asc

ρ r ′
M/B · n̂ r ′

M/B dA (13)
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where vrel = r ′
M/B because point B is fixed with respect to the spacecraft. Equa-

tion 9 is re-organized by using the previous relations in order to consider an Eulerian
approach, i.e. based on a volume-based derivation:

∫
Body

(
r̈B/N +ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dm

+2ωB/N ×
(

Bd
dt

∫
Vsc

ρ rM/B dV +
∫
Asc

ρ r ′
M/B · n̂ rM/BdA

)

+
Bd2

dt2

∫
Vsc

ρ rM/B dV

+
Bd
dt

∫
Asc

ρ r ′
M/B · n̂ rM/B dA+

∫
Asc

ρ r ′
M/B · n̂ r ′

M/B dA=F ext (14)

As explained in previous work [15], if all of the mass is contained in the control
volume at the initial time, then a particular relation results because no mass is outside
the control volume at t = 0 and the dynamic quantities will be transported out during
the integration. This relationship is quantified in the following equation:

F ext −
∫
Body

(
r̈B/N + ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dm =

∫
Vsc

dF vol

+
∫
Asc

dF surf −
∫
Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dV (15)

where the forces are divided into volumetric forces and the forces applied on the
spacecraft surface. Rearranging this result, replacing the definition of F ext, and
isolating the forces to the right hand side of the equation yields:

∫
Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dV

+2ωB/N ×
(

Bd
dt

∫
Vsc

ρ rM/B dV +
∫
Asc

ρ r ′
M/B · n̂ rM/BdA

)

+
Bd2

dt2

∫
Vsc

ρ rM/B dV

+
Bd
dt

∫
Asc

ρ r ′
M/B · n̂ rM/B dA +

∫
Asc

ρ r ′
M/B · n̂ r ′

M/B dA =
∫
Vsc

dF vol

+
∫
Asc

dF surf (16)

One goal for this paper is to develop the EOMs of a spacecraft with depleting mass
without the necessity of continuing to track the depleted mass once it has left the
spacecraft. One aspect of achieving this goal, is to define the center of mass of the
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spacecraft with respect to point B, including the remaining fuel while disregarding
the spent fuel. This variable, c = rC/B , is defined as:

c = mhub rBc/B + ∑M
i=1mfueli rFci/B

mhub + ∑M
i=1mfueli

(17)

where mhub is the mass of the hub, mfueli is the ith tank’s fuel mass and rFci/B is the
position of the center of mass of the ith tank.

In order to infer the influence of the mass variation in the EOMs the first and
second time derivatives with respect to the body frame of c are defined:

c′ =
∑M

i=1

(
ṁfueli rFci/B + mfueli r

′
Fci/B

)

mhub + ∑M
i=1mfueli

−
(∑M

i=1ṁfueli

) (
mhub rBc/B + ∑M

i=1mfueli rFci/B

)
(
mhub + ∑M

i=1mfueli

)2 (18)

c′′ =
∑M

i=1

(
m̈fueli rFci/B + 2 ṁfueli r

′
Fci/B

+ mfueli r
′′
Fci/B

)

mhub + ∑M
i=1mfueli

−
(∑M

i=1m̈fueli

) (
mhub rBc/B + ∑M

i=1mfueli rFci/B

)
(
mhub + ∑M

i=1mfueli

)2

−
2

(∑M
i=1ṁfueli

) ∑M
i=1

(
ṁfueli rFci/B + mfueli r

′
Fci/B

)
(
mhub + ∑M

i=1mfueli

)2

+
2

(∑M
i=1ṁfueli

)2 (
mhubrBc/B + ∑M

i=1mfueli rFci/B

)
(
mhub + ∑M

i=1mfueli

)3 (19)

Using these definitions of c and its derivatives, the translational EOM can be sim-
plified. Additionally, some assumptions need to be defined to further simplify the
translational EOM. The hub is assumed to be rigid, therefore deformations are not
considered. The mass flow within the tanks and the thrusters is assumed to be a
second order effect and ignored for this paper. The particles are assumed to be accel-
erated instantaneously from the spacecraft velocity, ṙB/N , to the exhausted velocity
vexh at the nozzle. And the exhausted velocity vexh is considered constant and parallel
to the nozzle’s normal n̂.

The first integral in Eq. 16 is computed using the fact that rM/B = c + rM/C and
the result is shown in the following equation:∫

Vsc

ρ
(
r̈B/N + ω̇B/N × rM/B + ωB/N × (

ωB/N × rM/B

))
dV = msc r̈B/N

+msc ω̇B/N × c + msc ωB/N × (
ωB/N × c

)
(20)
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where msc = mhub + ∑M
i=1 mfueli is the instantaneous mass of the spacecraft. The

second and fourth integrals are computed and yield:

Bd
dt

∫
Vsc

ρ rM/B dV =
Bd
dt

(msc c) = msc c′ + ṁfuelc (21)

Bd2

dt2

∫
Vsc

ρ rM/B dV =
Bd2

dt2
(msc c) = msc c′′ + 2 ṁfuel c

′ + m̈fuelc (22)

where ṁfuel = ∑M
i=1ṁfueli and m̈fuel = ∑M

i=1m̈fueli .
In order to find the terms calculated on the reference surface seen in the third,

fifth and sixth integrals, it is convenient to separate the integrals on the surface of
each nozzle. Moreover, as the fuel’s properties are flowing out of a surface plane,
it is convenient to consider that rM/B = rM/Ncj

+ rNcj /B where Nci is the area’s
geometric center. Finally, an appropriate variable transformation is given in Eq. 4.
Performing these calculations on the third integral results in:

∫
Asc

ρ r ′
M/B ·n̂ rM/B dA=−

N∑
j=1

∫
ṁnozj

(
rM/Ncj

+ rNcj /B

)
dṁ=−

N∑
j=1

ṁnozj rNcj /B

(23)
where the first part of the integral is null because of barycenter definition and ṁnozj

is the mass flow of the j th nozzle. The fifth integral in Eq. 16 yields:

Bd
dt

∫
Asc

ρ r ′
M/B · n̂ rM/B dA =

Bd
dt

⎛
⎝−

N∑
j=1

ṁnozj rNcj /B

⎞
⎠ = −

N∑
j=1

m̈nozj rNcj /B

(24)
Using the assumption introduced earlier in this section, r ′

M/B = vexh, the sixth is
integral is found and can be in the following equation:

∫
Asc

ρ r ′
M/B · n̂ r ′

M/B dA =
N∑

j=1

∫
Anozj

ρ r ′
M/B · n r ′

M/BdA = −
N∑

j=1

ṁnozj vexhj

(25)
where vexhj

is the exhausted velocity of a particle exiting from the j th nozzle.
The two integrals on the right-hand-side of Eq. 16 depends on the force model cho-

sen. Therefore, to not lose generality, the resulting surface integral due to the pressure
jump between the nozzle and the environment is the only term that is analytically
computed seen in the following equation:

∫
Vsc

dF vol+
∫
Asc

dF surf = F ext, vol+F ext, surf+
N∑

j=1

vexhj

vexhj

Anozj (pexhj
−patm) (26)

where F ext, vol are the external forces acting on the control volume, F ext, surf are
the external forces accelerating the control surface, pexhj

is the particles’ exhausted
pressure at the j th nozzle and patm is the atmospheric pressure at the flying altitude.
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Finally, Eq. 16 is rewritten considering the nozzles’ geometry and fluid properties
by using Eqs. 21–26:

mscr̈B/N + msc ω̇B/N × c + msc ωB/N × (
ωB/N × c

) + msc c′′ + 2 ṁfuel c
′

+ m̈fuelc + 2ωB/N ×
⎛
⎝msc c′ + ṁfuelc −

N∑
j=1

ṁnozj rNcj /B

⎞
⎠

−
N∑

j=1

m̈nozj rNcj /B −
N∑

j=1

ṁnozj vexhj
= F ext, vol + F ext, surf

+
N∑

j=1

vexhj

vexhj

Anozj (pexhj
− patm) (27)

The above development is simplified by introducing the classical thruster force to
fuel mass rate relation:

F thrj = vexhj

(
Anozj

vexhj

(pexhj
− patm) + ṁnozj

)
= Ispj

g0 ṁnozj

vexhj

vexhj

(28)

For further simplicity, the cross product is substituted with the associated skew
symmetric matrix, and the translational equation is written in a more compact form:

mscr̈B/N − msc
[
c̃
]
ω̇B/N = F thr − 2ṁfuel

(
c′ + [

ω̃B/N
] × c

) − mscc
′′

−2msc
[
ω̃B/N

]
c′ − m̈fuel c − msc

[
ω̃B/N

] [
ω̃B/N

]
c

+2
N∑

j=1

ṁnozj

[
ω̃B/N

]
rNcj /B +

N∑
j=1

m̈nozj rFcj /B

+F ext, vol + F ext, surf (29)

This EOM is the translational equation for an open system subjected to external
forces F ext, vol and F ext, surf and thrust F thr = ∑N

j=1 F thrj due to mass depletion of
the spacecraft, represented in Fig. 1. From this equation, it can be deduced that the
variation of the mass inside the spacecraft directly impacts the position of the satel-
lite with respect to the origin as the body fixed point B changes its state of motion
according to the variation of the tanks’ linear inertia. In the next section, the rotational
EOM for the spacecraft is developed.

Rotational Equation of Motion

The goal of this section is to develop the EOM associated with attitude dynamics
of a spacecraft with depleting mass due to thrusters pulling mass from fuel tanks.
Beginning from the Newton’s equation:

r̈M/N dm = dF ⇒ rM/N × r̈M/N dm = rM/N × dF (30)
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and performing an integration over the system:
∫
Body

rM/N × r̈M/N dm =
∫
Body

rM/N × dF (31)

The term on the left-hand side of the previous equation is manipulated in order to
define the momentum about point B. This manipulation can be seen in the following
equation:

∫
Body

ρ rM/N × r̈M/N dV =
∫
Body

ρ rM/B × r̈M/B dV +
∫
Body

ρ rB/N × r̈M/N dV

+
∫
Body

ρ rM/B × r̈B/N dV =
∫
Body

rM/N × dF (32)

Knowing that r̈M/N dm = dF , the torque caused by the forces acting on the body is
easily defined:

∫
Body

rM/N ×dF −
∫
Body

ρ rB/N × r̈M/N dV =
∫
Body

(
rM/N − rB/N

)×dF = LB (33)

where LB is the external torque on the spacecraft about point B.
As the mass of the system is constant, the derivative of the angular momentum

about point B is inferred from Eq. 32 due to a property of the cross product and the
previously explained Reynold’s transport theorem:

∫
Body

ρ rM/B × r̈M/B dV =
N d

dt

∫
Vsc

ρ rM/B × ṙM/B dV

+
∫
Asc

ρ r ′
M/B · n̂

(
rM/B × ṙM/B

)
dA (34)

Moreover, similar to the translational equation, if all the mass of the system is
assumed to be contained inside the control volume at the initial time, the following
relationship results:

∫
Body

ρ rM/B × r̈B/N dV − LB =
∫
Vsc

ρ rM/B × r̈B/N dV −
∫
Vsc

rM/B × dF vol

−
∫
Asc

rM/B × dF surf = mscc × r̈B/N

−LB, vol − LB, surf (35)

where LB, vol and LB, surf are the torques caused by the volume and surface forces
about point B. The general rotational equation for a control volume in a rotating
reference frame is reorganized:

Ḣ sc, B +
∫
Asc

ρ r ′
M/B · n̂ (

rM/B × ṙM/B

)
dA+mscc× r̈B/N = LB, vol+LB, surf (36)
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To perform the inertial derivative of H sc, B , first the definition of H sc, B is defined:

H sc, B = [
Ihub, Bc

]
ωB/N + rBc/B × mhub ṙBc/B +

M∑
i=1

([
Ifueli , F ci

]
ωB/N

+rFci/B × mfueli ṙFci/B

)
(37)

where
[
Ihub, Bc

]
is the hub’s inertia about its center of mass, Bc, and

[
Ifueli , F ci

]
is the

ith tank’s inertia about its center of mass, Fci . Furthermore, an analytical expression
of mass depletion in the rotational motion is deduced:

Ḣ sc, B = [
Ihub, Bc

]
ω̇B/N + ωB/N × ([

Ihub, Bc

]
ωB/N

) + rBc/B × mhub r̈Bc/B

+
M∑
i=1

([
Ifueli , F ci

]
ω̇B/N + ωB/N × ([

Ifueli , F ci

]
ωB/N

)

+rFci/B ×mfueli r̈Fci/B +rFci/B ×ṁfueli ṙFci/B +[
Ifueli , F ci

]′
ωB/N

)

(38)

It should be noted here that any relative motion of particles inside the fuel tanks of the
spacecraft has been neglected and, as a consequence, the effects both of the Coriolis’
acceleration and of the whirling motion of the fuel on the spacecraft dynamics have
not been considered. A more detailed explanation of the impact of these effects can
be found in Reference [8].

Additionally, the inertial time derivatives of the vectors rBc/B and rFci/B are com-
puted using the transport theorem between the two reference frames given in Eqs. 7
and 8 and considering that the point Bc is fixed in the B frame, Eq. 38 is rewritten:

Ḣ sc, B = [
Ihub, Bc

]
ω̇B/N + ωB/N × ([

Ihub, Bc

]
ωB/N

)
+rBc/B × mhub

(
ω̇B/N × rBc/B + ωB/N × (

ωB/N × rBc/B

))

+
M∑
i=1

([
Ifueli , F ci

]
ω̇B/N + ωB/N × ([

Ifueli , F ci

]
ωB/N

)

+rFci/B × mfueli

(
r ′′

Fci/B
+ 2ωB/N × r ′

Fci/B
+ ω̇B/N × rFci/B

+ωB/N × (
ωB/N × rFci/B

)) + rFci/B

×ṁfueli

(
r ′

Fci/B
+ ωB/N × rFci/B

)
+ [

Ifuel,i , F ci

]′
ωB/N

)
(39)

In order to simplify Eq. 39 the following inertia matrices are defined using the skew
symmetric matrix to replace the cross product:

[
Ihub, B

] = [
Ihub, Bc

] + mhub
[
r̃Bc/B

] [
r̃Bc/B

]T (40)[
Ifueli , B

] = [
Ifueli , F ci

] + mfueli

[
r̃Fci/B

] [
r̃Fci/B

]T (41)

[
Isc, B

] = [
Ihub, B

] +
M∑
i=1

[
Ifueli , B

]
(42)
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Moreover, using the Jacobi identity for the cross product a× (b× c)+b× (c× a)+
c× (a×b) = 0, the body relative time derivative of the fuel inertia in the B reference
frame is introduced:[

Ifueli , B
]′ = [

Ifueli , F ci

] + ṁfueli

[
r̃Fci/B

] [
r̃Fci/B

]T
+mfueli

([
r̃Fci/B

] [
r̃ ′

Fci/B

]T +
[
r̃ ′

Fci/B

] [
r̃Fci/B

]T) (43)

By substituting Eqs. 40–43, Eq. 39 is simplified to:

Ḣ sc, B = [
Isc, B

]
ω̇B/N + [

ω̃B/N
] [

Isc, B
]

ωB/N

+
M∑
i=1

(
mfueli

[
r̃Fci/B

]
r ′′

Fci/B
+ ṁfueli

[
r̃Fci/B

]
r ′

Fci/B

+ [
Ifueli , B

]′
ωB/N + [

ω̃B/N
] [

r̃Fci/B

]
r ′

Fci/B

)
(44)

Considering that at the nozzles’s exit ṙM/B = vexhj
+ ωB/N × rM/B and dṁ =

−ρ r ′
M/B · n̂ dA because the control volume is fixed, the surface integral is expressed

in terms of the nozzles’ surface:
∫

Aexh

ρ r ′
M/B · n

(
rM/B × ṙM/B

)
dA = −

N∑
j=1

∫
ṁnozj

rM/B × vexhj
dṁ

+
N∑

j=1

∫
ṁnozj

rM/B

× (
rM/B × ωB/N

)
dṁ (45)

Equation 36 is updated with Eqs. 44 and 45:

[
Isc, B

]
ω̇B/N + [

ω̃B/N
] [

Isc, B
]

ωB/N +
M∑
i=1

(
mfueli

[
r̃Fci/B

]
r ′′

Fci/B

+ [
Ifueli , B

]′
ωB/N + ṁfueli

[
r̃Fci/B

]
r ′

Fci/B

+ mfueli

[
ω̃B/N

] [
r̃Fci/B

]
r ′

Fci/B

)
+

N∑
j=1

∫
ṁnozj

[
r̃M/B

]T
vexhj

dṁ

+
N∑

j=1

∫
ṁnozj

[
r̃M/B

] [
r̃M/B

]
ωB/N dṁ

+ [
c̃
]
msc r̈B/N = LB, vol + LB, surf (46)

The torque of each thruster nozzle is computed by the exhausting flow pressure dis-
tribution and by the lever arm distance from point B and the application point of the
force:

LBthrj
= LBsc, nozj

+
∫

ṁnozj

rM/B × vnozj dṁ (47)



436 The Journal of the Astronautical Sciences (2018) 65:423–447

Furthermore, a term taking into account the angular momentum variation caused by
mass depletion is defined:

[K] =
M∑
i=1

[
Ifueli , B

]′ +
N∑

j=1

∫
ṁnozj

[
r̃M/B

] [
r̃M/B

]
dṁ (48)

Equation 48 is important because this is what drives the dynamical effect of the fully
coupled mass depletion model. The difference between the changing mass proper-
ties in the full tank to the exhausted fuel at the nozzle locations is what produces a
torque on the spacecraft. The quantities

[
Ifueli , B

]
and

[
Ifueli , B

]′ depend on the cho-
sen tank model and some examples can be seen in the Appendix. Interchanging tank
models does not change the overall EOMs and other type of models can be developed
depending on the application. The second integral in Eq. 48 is computed evaluating
the momentum exchanged due to the fuel exiting the nozzle area, coincident with the
interface surface between the spacecraft and the exhausted fuel and supposed circular:
∫

ṁnozj

[
r̃M/B

] [
r̃M/B

]
dṁ =

∫
ṁnozj

([
r̃Ncj /B

] + [
r̃M/Ncj

]) ([
r̃Ncj /B

]

+ [
r̃M/Ncj

])
dṁ = −ṁnozj

⎛
⎝ [

r̃Ncj /B

] [
r̃Ncj /B

]T

+ Anozj

4π

[
BMj

]
⎡
⎣ 2 0 0
0 1 0
0 0 1

⎤
⎦[

BMj

]T
⎞
⎠ (49)

where Anozj is the exiting area of the j th nozzle and
[
BMj

]
is the direction cosine

matrix (DCM) between the j th nozzle frame Mj and the B frame, where Mj is
defined to have its origin at the Ncj point and its first axis in the exhausting velocity
direction vexhj

. An important aspect of Eq. 49 is that the assumption of a circular
surface has been chosen to obtain an analytical closed form of the EOM. However, the
previously derived term can be easily adapted to a more complex surface geometry
by changing the matrix between the two DCMs at the end of Eq. 49 with the inertia
matrix associated with the mass surface of each nozzle.

Finally the rotational EOM is written as:
[
Isc, B

]
ω̇B/N + msc

[
c̃
]
r̈B/N = − [

ω̃B/N
] [

Isc, B
]

ωB/N − [K] ωB/N

+
M∑
i=1

(
mfueli

[
r̃Fci/B

]T
r ′′

Fci/B

+mfueli

[
ω̃B/N

]T [
r̃Fci/B

]
r ′

Fci/B

+ ṁfueli

[
r̃Fci/B

]T
r ′

Fci/B

)
+ LB, vol

+LB, surf +
N∑

j=1

LBthrj
(50)
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This concludes the derivation of the EOMs needed to describe the translational and
rotational motion of a spacecraft with depleting mass due to thrusters. The following
section describes a method used to implement the mass flow relationship between
thrusters and fuel tanks.

Fuel Supply Architecture and Implementation

This section connects how the fuel expelled at each thruster causes a fuel talk or fuel
reserve to change its mass properties. As mentioned earlier, the fuel flow within the
piping is ignored in this analysis as being higher order. A set of thruster may draw fuel
from the same tank, or a set of tanks. During flight the fuel-draw may be switched
to an auxiliary tank. The following development illustrates how the presented for-
mulation can be flexibly connected with a range of fuel storage configurations. This
makes it convenient to implement in modular astrodynamics simulation such as the
Basilisk framework. Alcorn et al. [18, 19]

From a software implementation prospective, the tank mass flow rates and their
associated derivatives must be computed to evaluate the different terms in the EOMs.
This approach assumes that the j th nozzle mass flow is a known quantity and is
computed using Eq. 28 and then the tanks’ mass variation ṁfueli is computed. If a
thruster firing is numerically simulated the computational thruster model contains
information about its fuel efficiency through the Isp parameter. By knowing what
force the thruster model is producing, the Isp value allows Eq. 28 to be solved for
the associated thruster fuel mass flow. If the thruster control solution is requiring a
variable thrust implementation, or the computational thruster model contains on- and
off-ramping to the steady-state thrust force, then the mass flow acceleration values
would be obtained from this thruster model.

The ith tank’s mass variation is expressed as a linear combination of the fuel
ejected by the nozzle where the coefficient, Aij , linking the ith tank with the j th noz-
zle is the ratio of the mass released by the tank flowing to that nozzle to the total
mass released by that tank.

ṁfueli =
N∑

j=1

Aij ṁnozj (51)

A matrix notation can also be used:

ṁfuel = [A] ṁnoz (52)

where [A] is a matrix linking the tanks’ and nozzles’ mass flow rates. A fundamental
property of the matrix [A] is established from the definition of ṁfuel:

M∑
i=1

ṁfueli =
M∑
i=1

N∑
j=1

Aij ṁnozj =
N∑

j=1

ṁnozj ⇒
M∑
i=0

Aij = 1 ∀j ∈ (1, N)

(53)
The previous relation is a direct consequence of the mass flow conservation between
the tanks and the nozzles and is used in the flight software implementation to verify
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inputs consistency. From the previous relation, the first derivative of mass flows is
computed:

m̈fuel = [A] m̈noz + ˙[A]ṁnoz (54)

This architecture takes into account connections among tanks and thrusters in
a straightforward formulation and allows the implementation of both changes in
propellant chemical composition and of switching among tanks.

In Fig. 3 an example of a possible distribution system is shown. Taking into
account this schematic representation and the fact that each component of the matrix
Aij represent the ratio of fuel ejected by the nozzle j given from the tank i, an
example is developed. The resulting equations are:

ṁfuel1 = ṁnoz1 + ṁnoz2 (55a)

ṁfuel2 = 0.3 ṁnoz4 + ṁnoz5 (55b)

ṁfuel3 = ṁnoz3 + 0.7 ṁnoz4 (55c)

Thus, the corresponding [A] matrix for the configuration in Fig. 3 is:

[A] =
⎡
⎣ 1 1 0 0 0
0 0 0 0.3 1
0 0 1 0.7 0

⎤
⎦ (56)

By considering the assumptions of the model, the following points should be noted:

• There is no difference between solid and liquid propellant in a tank except for
how the mass distribution could vary inside the tank itself, the propellant den-
sity and the Isp. From this point of view, different tank models that specify
how expelled fuel mass impact the tank inertia properties can be chosen without
needing to changing the underlining EOMs. Some examples of tank models are

Fig. 3 An example of the distribution system among tanks and nozzles with numerical values
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summarized in the Appendix, but other tank models can be developed depending
on the application.

• Thrust modulation, for example throttling, does not change the EOMs because
force of the j th nozzle modifies through the Tsiolkovsky formula, Fthrj =
g0Ispj

ṁnozj , and the mass flow is regulated accordingly through the [A] matrix.
• The model assumes that the thrust forces are known. From this information,

ṁnozj and ṁfueli are computed accordingly by knowing [A], ˙[A] and Ispj
for each

thruster and tank.

Results

This section provides simulations to both validate the EOMs developed and to show
the impact of mass depletion on a specific scenario. In the first example, a simu-
lation is developed to compare results to prior developed models. Following this,
an example is included that involves a fuel demanding maneuver that highlights the
importance of considering mass depletion for high-accuracy pointing, simulation and
control law design.

Validating Simulations: Axial-symmetric Rocket

The following simulations are performed to reproduce the results outlined in Refer-
ence [5] in order to validate the dynamical model developed versus the model seen
in Reference 5 which assumes that the spacecraft is axial-symmetric. The spacecraft
under study is an axial-symmetric rocket represented in Fig. 4 where the geometrical
features of the rocket are shown.

There are two tank models considered for this simulation: a centrifugal burn
tank and a uniform cylinder tank. The models used for these tanks can be seen in
Reference [5] and are reported in the Appendix for the sake of completeness. The
numerical values used in the simulations are chosen accordingly with the NASA pub-

Fig. 4 Geometrical properties of the axial-symmetrical rocket
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Table 1 Dimensionless parameters for the axial-symmetrical rocket simulation

δ1 δ2 γ1 γ2 α δ ψ

2 3 1.2 1 0.01 10 2

lication [5]. In the publication, dimensionless variables are used and their primitive
definitions can be found using the following formulas:

β = Rnoz

Rcyl
δ1 = L1

Rcyl
δ2 = L2

Rcyl
δ = L

Rcyl

ψ = mhub

mfuel0
γ1 = khub12

Rcyl
γ2 = khub3

Rcyl
α = ṁfuel

mfuel0

where khub12 is the hub’s gyration radius of the b̂1 or the b̂2 about the Bc point and
khub3 is the hub’s gyration radius of the b̂3 about the same point. The numerical
dimensionless coefficients’ values are reported in Table 1.

The spin rate, ωB/Nz
, is presented for the two tank’s cases given in Reference [5].

This quantity is defined as follows:

ωB/Nz
= ωB/N · b̂3 (57)

Fig. 5 Spinning rate ωB/N z
evolution in time comparing the developed model and Reference [5]’s model
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Fig. 6 Variation of main orbital parameters during the LEO-to-GEO transfer

Figure 5 shows that the behavior of the angular velocity for the entirety of the simula-
tion match the previous work from Reference [5]. Furthermore, Fig. 5a and c present
the results obtained by the direct integration of the model developed in the present
paper while Fig. 5b and d display the integration of the dimensionless model intro-
duced in Reference [5]. These results give partial validation of the model introduced
in this work. It is important to point out, however, that the model presented in this
paper does not constrain the analysis to axial-symmetric bodies or to a single-tank
and single-thruster spacecraft. It is developed in a general way that can apply to many
spacecraft configurations.

On-orbit Spacecraft Simulations: LEO-to-GEO Transfer

The goal of the following closed-loop attitude control maneuver is to illustrate how
the depletable mass dynamics model can impact the control solution. For this purpose
a scenario is studied where the spacecraft attitude is regulated while fuel is expelled to
perform a large orbit maneuver. A geostationary transfer maneuver from LEO (Low
Earth Orbit) to GEO (Geostationary Earth Orbit) using a Hohmann transfer maneuver
is implemented (see Fig. 6). The orbital elements of the initial, the transfer orbit, and
the final orbit are included in Table 2. To isolate the impacts of mass depletion, a
two-body-problem gravity field is considered and no gravity torque perturbation is
included.

In order to give a meaningful example using the EOMs developed, a control law
is introduced. The control is included to reach the desired reference state despite
disturbances applied on the spacecraft. A Modified Rodrigues Parameters (MRP)

Table 2 Orbital element for the Hohmann maneuver

a [km] e [ ] i [◦] ω [◦] � [◦]

Low earth orbit 6578.0 0.0 0.0 0.0 0.0

Hohmann transfer orbit 24478.0 0.73126 0.0 90.0 0.0

Geostationary earth orbit 42378.0 0.0 0.0 0.0 0.0
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Table 3 Geometrical characteristics of the satellite for the Hohmann transfer

mhub [kg] Ihub, Bc1 1 [kgm
2] Ihub, Bc2 2 kgm

2] Ihub, Bc3 3 [kgm
2]

750.0 900.0 800.0 600.0

Ispj
[s]

∀j ∈ [1, 14]

mtanki
[kg]

∀i ∈ [1, 2]

Anozj [m2]

∀j ∈ [3, 14]

Anozj [m
2]

∀j ∈ [1, 2]

Rtanki
[m]

∀i ∈ [1, 2]

300.0 1060.0 0.07 0.2 0.5

feedback control law is chosen and, if a reference frame R is defined, the control is
expressed as follows:

u = −K σB/R − P ωB/R (58)

where σB/R is the MRP defining the attitude of B with respect toR and ωB/R is the
angular velocity of B with respect to R. In order to evaluate the control torque, the
attitude σB/R and the angular velocity ωB/R must be computed. σR/N and ωR/N
are assumed to be specified by the controller by using information about the desired
reference frame, R. Schaub and Junkins [20] Moreover, to avoid singularities of the
MRP set σB/R, the MRP can be switched to the shadow set representation [20].

In this scenario, the satellite has a 12-ADC nozzle cluster in a symmetric con-
figuration to control the attitude of the spacecraft and it is equipped with two
delta-velocity (DV) thrusters to perform the firing at apogee and at perigee of the
elliptic orbit. Two spherical constant volume tanks, using the constant volume model
seen in the Appendix, provide the fuel for the ACS and DV thrusters. The geometrical
features are presented in Table 3. Furthermore, the initial conditions for the dynamic
variables and the chosen simulation parameters are listed in Table 4.

Three scenarios are simulated for this example to highlight the impact of mass
depletion on the dynamics of the spacecraft. An “Update-Only” simulation is the
first scenario considered and is very commonly used in industry. This involves only
updating the current mass properties of the spacecraft but not considering the influ-
ence of mass depletion on the system. Additionally, there is not a control law on
the attitude of the spacecraft implemented in this scenario. In contrast, the second
scenario is named “No-Control” and is a scenario in which the attitude and attitude
rate of the satellite is not being controlled, however, this scenario does use the full
dynamical model developed in this paper. Lastly, the “Active-Control” scenario uses
the developed model along with the previously introduced attitude control law.

The initial conditions specified in Table 4, along with assumptions being made will
constrict the satellite to only rotate about the b̂1 axis. Therefore, the numerical results

Table 4 Hohmann transfer simulation parameters

tin [s] tfin [s] � t [s] σR/N [ ] ωR/N [rad s−1]
0.0 30000.0 0.01 [0, 0, 0 ]T [0.002, 0, 0 ]T

rB/N0 [m] ṙB/N0 [ms−1] σB/N 0 [ ] ωB/N 0 [rad s−1]
[aLEO, 0, 0 ]T

[
0,

√
μ

aLEO
, 0

]T

[0, 0, 0 ]T [0.002, 0, 0 ]T
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Fig. 7 Projection of ωB/N on the b̂3 axis

between the “Update-Only” and the “No-Control” scenarios will directly show the
impact of mass depletion on the dynamics of the satellite. The numerical results of
the simulation are presented in Figs. 7 and 8. Figures 8a and b are included to show
the mass variation of the system.

In Figs. 7a and b the angular velocity about the b̂1 axis is shown. In Fig. 7a, the
complete 75 hr simulation is presented to compare the previously listed simulations.
By comparing the “Update-Only” scenario with the “No-Control” scenario, there
is a noticeable difference in the angular velocity of the system which is caused by
the dynamical effects introduced by the mass depletion. The fact that the angular
velocity variation in the “No-Control” case is negative along with the magnitude
of the angular velocity variation are due to the DV thrusters’ configuration, both
in term of position and geometry, and the tanks’ location and dimension as seen
in Eq. 48. Obviously changing the properties of either one of the two features will
lead to a different solution in terms of amplitude and sign. The results show that
the “Update-Only” scenario does not show any change to the angular velocity due
to mass depletion, while the “No-Control” case does. This difference can lead to a

Fig. 8 Mass variation during the Hohmann maneuver simulation
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dramatic differences in results and gives importance to the model developed in this
paper. In this particular case, the error introduced by mass depletion is about 4%.

In Fig. 7a, a portion of the first DV burn is displayed to get a better view of
the transient. This result is important because it highlights the difference between
the “Update-Only” and the “Active-Control” scenarios. As discussed previously, this
shows that the “Update-Only” approach indicates no change in the angular velocity.
However, with the dynamics developed in this paper, to keep the spacecraft with the
desired angular velocity, the “Active-Control” shows that control is required and the
the transient due to the ACS thrusters controlling the spacecraft can be seen in Fig. 7b.

Conclusions

A review of the previous work on the dynamics of spacecraft with mass depletion
due to thrusters shows that the assumptions being made limit the applicability of the
models to many spacecraft. This work develops the translational and rotational EOMs
while keeping the formulation as general as possible to avoid this issue. This results
in arriving at a complete solution that gets rid of the need to rederive the EOMs for
specific spacecraft. A novel and compact form of the EOMs is introduced in the case
of a realistic multi-tank and multi-thruster configuration that provides rapid and effi-
cient formulation to perform simulations. Additionally, the general derivation allows
the model to be expanded quite easily to include effects like panels’ deployment or
flexible structures, without loss of generality.

The model is validated by comparing a simulation to prior models on mass deple-
tion. This gives confidence in the formulation developed. Again, these prior models
have assumptions that limit the scope of applicability and this comparison is purely
for validation purposes. The importance of considering mass depletion is proven by
comparing the full model developed in this paper with a solution where the mass
properties of the spacecraft are just updated each time step. This gives an error of
4% on the spacecraft angular velocity with the chosen geometrical features. Depend-
ing on the scenario, this error could be much worse and highlights the main desire
to consider mass depletion using this model. Ignoring these effects of mass deple-
tion could lead to hastened de-saturation maneuvers or cause inaccurate pointing and
unpredicted errors in orientation and position of the spacecraft.

Some limiting assumptions are introduced to this model that does not allow the
EOMs to consider the effect of whirling motions or relative fuel motion in the distri-
bution of the system. Future works could consider the influence of whirling motion
using a simple formulation or introduction of reaction wheels to simulate complex
de-saturation maneuvers.
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Appendix

This appendix summarizes how a series of tank models [5] relate the fuel mass flow
rate (expelled from the thruster) to the tank inertia and inertia rate properties. All the
models have a fixed center of mass and this results in r ′

T c/B = 0 and r ′′
T c/B = 0.

Tanks which are more complex than the ones presented in the following para-
graphs can be implemented by the user thanks to the modularity and generality of the
exposed model.

Uniform burn cylinder

This model considers a cylindrical tank whose geometry remains constant while fuel
density changes. From these considerations and by looking at Fig. 9a, the inertia
tensor and its derivative are evaluated:

I1 1 = I2 2 = mfuel

[
R2

4
+ h2

3

]
I3 3 = mfuel

R2

2
(59)

I ′
1 1 = I ′

2 2 = ṁfuel

[
R2

4
+ h2

3

]
I ′
3 3 = ṁfuel

R2

2
(60)

where R is the cylinder radius and h its half-height.

Centrifugal burn cylinder

This model considers a cylinder whose propellant burns radially from the center till
the edge. The geometry properties and their nomenclature is presented in Fig. 9b. By
denoting r the distance of the fuel surface from the axis of the cylinder:

r =
√

R2 − mfuel

2π ρ h
(61)

where R is the cylinder radius, h its half-height and ρ the fuel density.
The time derivative of r is gathered from volume-mass relationship:

ṁfuel = −4πρ h r ṙ (62)

Fig. 9 Tanks’ geometrical properties
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As a consequence:

I1 1 = I2 2 = mfuel

[
R2 + r2

4
+ h2

3

]
I3 3 = mfuel

[
R2 + r2

2

]
(63)

I ′
1 1 = I ′

2 2 = ṁfuel

[
r2

2
+ h2

3

]
I ′
3 3 = ṁfuel r

2 (64)

The constant tank’s volumemodel

This model takes into account the variation of the fuel inside considering no variation
of the volume off the tank. By looking at Fig. 9a the following equation is found:

(65)
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