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a b s t r a c t

Exploration of the Earth's magnetosphere using solar sails has advantages over the use of
traditional spacecraft in inertially fixed orbits because of the solar sails' capability to stay
in the geomagnetic tail for longer periods. In this paper, solar sail formation flying in
Earth-centered slightly inclined orbits is investigated, with each solar sail employing a
simple sun-pointing steering law that precesses the orbit apse-line sun-synchronously. An
analytic condition for determining target states that lead to in-plane quasi-periodic
relative motion under solar radiation pressure is derived, assuming all sails use the same
steering law. Even though active control is required to achieve these target states, only the
simple steering law is required for flying the formation upon achieving the target states.
The condition is verified in the design of two-craft and three-craft formations. The effects
of Earth's nonsphericity, lunar gravity, and solar gravity are included to determine the
stability of the designed formations under these perturbations.

& 2014 IAA.. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The Earth's magnetic tail is directed along the Sun–
Earth line and therefore rotates annually. Conventional
magnetosphere missions require a highly elliptical orbit
with its apogee inside the geomagnetic tail. An inertially
fixed orbit is aligned with the geomagnetic tail only once a
year, which limits the duration of the science phase to less
than three months. Solar sail low-thrust propulsion, how-
ever, is capable of achieving long residence in the geo-
magnetic tail by continuously precessing the orbit apse-
line, as illustrated in Fig. 1. Achieving long residence times
in the geomagnetic tail is particularly important for study-
ing the poorly understood magnetic reconnection phe-
nomena. It may take a few months before a single
ll rights reserved.

u (K. Parsay),
magnetic reconnection event is detected and each event
typically lasts only a few minutes, therefore the contin-
uous presence of a spacecraft within the reconnection
region is critical for in situ observation. McInnes et al.
propose the low-cost GEOSAIL mission to explore the
Earth's magnetosphere using a single low performance
sail [1–3]. In the GEOSAIL mission, the solar sail would fly
in a moderately elliptical orbit that lies in the ecliptic plane
and would employ a simple sun-pointing steering law to
precess the orbit apse-line sun-synchronously, allowing
the orbit apogee to remain in the geomagnetic tail
throughout the entire year. It is shown that the short
period eclipses around the apogee of the sun-synchronous
orbit have little effect on the required solar sail perfor-
mance for the range of orbits applicable to magnetosphere
missions.

Many magnetosphere missions require more than a
single spacecraft to achieve their scientific objective.
Magnetospheric Multi-Scale (MMS) and Cluster II mis-
sions, from NASA and the European Space Agency (ESA),
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Nomenclature

μ Earth's gravitational constant (km3/s2)
as solar radiation pressure acceleration (km/s2)
n̂s sun-line unit vector
n̂ sail normal unit vector
ar ; aθ ; ah solar radiation pressure acceleration along

radial, along-track, and cross-track direction
(km/s2)

σ sail loading (g/m2)
a; e; i;Ω;ω; f classical orbital elements: semi-major axis

(km), eccentricity, inclination (rad), right
ascension of ascending node (rad), argument
of perigee (rad), true anomaly (rad)

T orbit period (s)
k characteristic acceleration of solar sail (km/s2)
½C i� rotation matrix about the i-axis
B body-fixed frame
O local-vertical-local-horizontal (LVLH) frame
N earth-centered inertial frame

½BO� direction cosine matrix that transfers a vector
from O to B frame

½NO� direction cosine matrix that transfers a vector
from O to N frame

λs sun longitude measured from vernal
equinox (rad)

Subscript

c chief solar sail
dj jth deputy solar sail

Acronym

SRP solar radiation pressure
RE Earth radius
RoI science region of interest
SMA semi-major axis
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comprise of four identical spinning spacecraft flying in a
tetrahedron formation within a specified region of interest.
Generally, exploring the Earth's magnetic environment in
three dimensions requires multiple satellites to fly in
formation. Gong et al. [4] propose solar sail formation
flying for exploring the geomagnetic tail. In Ref. [4], the
chief solar sail employs a sun-synchronous orbit while the
deputy solar sail uses active control to enable close-
proximity formation flying. Furthermore, a linearized rela-
tive motion description is derived and a conventional
linear quadratic regulator (LQR) controller is applied to
stabilize the relative motion of the two-craft formation.

Many relative formation geometries can only be rea-
lized when characteristic acceleration is available as a
control variable. Recently, the Interplanetary Kite-craft
Accelerated by Radiation Of the Sun (IKAROS) mission,
launched by the Japan Aerospace Exploration Agency
(JAXA), successfully demonstrated reflectivity modulation
technology to control the sail's attitude [5]. To change the
surface reflectance, liquid crystal panels on the sail are
switched on to produce specular reflection and switched
off to create diffuse reflection. With the capability of
Fig. 1. Comparison of chemical and solar sail propulsion in geomagnetic
tail exploration.
changing the sail's surface reflectivity, the characteristic
acceleration of a sail can be adjusted. Mu et al. [6] expand
the work in Ref. [4] by applying two nonlinear-based
control laws that use reflectivity modulation for enforcing
a projected-circular relative motion. The coupled control of
a reflectivity modulated solar sail formation is discussed
by Mu et al. in Ref. [7]. The results indicate that it is
difficult to control the solar sail's attitude and orbit
simultaneously using reflectivity modulation.

In this paper, solar sail formation flying in slightly
inclined sun-synchronous orbits is investigated. To achieve
long term residence inside the geomagnetic tail, a simple
sun-pointing steering law is used by each solar sail in the
formation to precess the apse-line of its orbit sun-
synchronously [1]. This paper is a first attempt at answer-
ing the following question: can a solar sail formation be
maintained for an acceptable amount of time, assuming each
sail in formation employs a common steering law solely for
the purpose of precessing its orbit apse-line sun-synchro-
nously? This question is motivated by the significant
reduction in operational cost and complexity with each
solar sail employing a simple common steering law during
the formation flight as opposed to using active control for
tracking a target trajectory. Thus, the main focus for this
study is to explore formation geometries that are quasi-
periodic under the condition that all solar sails in forma-
tion use the same steering law for precessing their orbit
apse-line during the formation flight.
2. Equations of motion of solar sails in earth orbits

The general equations of motion for a solar sail under
solar radiation pressure (SRP) may be written as a per-
turbed two-body problem. Thus, the equations of motion
are

€r ¼ � μ
r3
rþas ð1Þ



Fig. 2. Sail's orbit geometry and general orientation. (a) Sail's orbit geometry with α¼ 0. (b) Sail's normal vector orientation in the LVLH frame.
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where r is the position vector of the spacecraft relative to
the Earth. The adopted inertial frame N ¼ fO;X;Y ;Zg has
its origin O at the center of the Earth where the X-axis
points from the origin to the equinox and Z points along
the ecliptic north pole. The Y-axis completes the right-
handed coordinate system. For a flat, rigid, perfectly
reflecting solar sail, the solar sail acceleration can be
written as

as ¼ kðn̂s � n̂Þ2n̂ ð2Þ
where n̂ is a unit vector normal to the sail surface and n̂s is
a unit vector from the Sun to the Earth. The parameter k is
the sail's characteristic acceleration and is assumed to be
adjustable. To investigate the variations of the orbital
elements under the nonconservative SRP force, the follow-
ing forms of Gauss's variational equations [8,9,13] are
used:

da
df

¼ 2pr2

μð1�e2Þ2
are sin f þaθ

p
r

� �
ð3aÞ

de
df

¼ r2

μ
ar sin f þaθ 1þ r

p

� �
cos f þaθe

r
p

� �
ð3bÞ

di
df

¼ r3

μp
cos f þωð Þah ð3cÞ

dΩ
df

¼ r3

μp sin i
sin f þωð Þah ð3dÞ

dω
df

¼ r2

μe
�ar cos f þaθ 1þ r

p

� �
sin f

� �

� r3

μp sin i
sin f þωð Þah cos i ð3eÞ

dt
df

¼ r2ffiffiffiffiffiffi
μp

p 1� r2

μe
ar cos f �aθ 1þ r

p

� �
sin f

� �� �
ð3fÞ

where ar, aθ , and ah are the radial, along-track, and cross-
track components of the perturbing acceleration as experi-
enced by the sail, respectively.
2.1. Solar sail steering law

For the GEOSAIL mission, McInnes et al. propose a simple
steering law consisting of the sail's normal vector continu-
ously pointing along the sun-line within the orbit plane
such that the rotation of the orbit apse-line is synchronous
with the annual rotation of the sun-line [1–3]. The sun-
synchronized precession of the orbit apse-line allows the
orbit apogee to remain in the geomagnetic tail continuously,
thus enabling science data collection for long periods. In this
paper, similar to the GEOSAIL mission, the orbit apse-line is
precessed sun-synchronously while leaving inclination and
the right ascension of the ascending node unchanged.

To determine the SRP acceleration as resulting from the
sun-pointing steering law, two local reference frames must
be defined. Let B¼ fo; n̂; t̂ ; l̂g denote a body-fixed frame
with its origin point o at the sail's center of mass while the
frame O¼ fo; ôr ; ôθ ; ôh} is the sail's local-vertical-local-
horizontal (LVLH) reference frame. As shown in Fig. 2(b),
α and ϕ angles track the orientation of the B frame with
respect to the O frame. The direction cosine matrix to
transfer a vector expressed in the O frame to the B frame is
given by

½BO� ¼ ½C2ðαÞ�½C3ðϕÞ� ð4Þ

As illustrated in Fig. 2(a), the sail's normal n̂ points along
the orbit apse-line such that its projection onto the ecliptic
plane is always directed along the sun-line n̂s. The sail's
assumed orientation leads to having ϕ¼ π� f . The sail's
normal vector can then be expressed in the O frame as

On̂ ¼ ½BO�TBn̂ ¼
O264

� cosα cos f
cosα sin f

� sinα

3
75 ð5Þ
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where Bn̂ ¼ ½1 0 0�T and the left-superscript indicates the
frame that the n̂ vector is expressed in. The direction
cosine matrix ½NO� ¼ ½N ôr

N ôθ
N ôh� is used to transfer the

sail's normal On̂ from the reference frame O to the inertial
frame N to be used in Eq. (1). Thus the sail's normal
expressed in the N frame is

N n̂ ¼ ½NO�On̂ ð6Þ
The sunlight direction expressed in the inertial frame N
can be written as

N n̂s ¼
N � cos λs

� sin λs
0

2
64

3
75 ð7Þ

where the longitude of the sun λs is determined through

λs ¼ λs0 þ _λst ð8Þ
Finally, the SRP acceleration N as is determined by sub-
stituting Eqs. (6) and (7) into Eq. (2).

2.2. Solar sail orbit

For small inclinations, it is assumed that n̂s � n̂ �
cos ði�αÞ. Substituting this identity and Eq. (5) into
Eq. (2), the radial, along-track, and cross-track components
of the SRP acceleration as, determined by the sail's
orientation and characteristic acceleration, are written as

Oas ¼
O ar

aθ
ah

2
64

3
75 �

O �k cos 2ði�αÞ cosα cos f
k cos 2ði�αÞ cosα sin f

�k cos 2ði�αÞ sinα

2
64

3
75 ð9Þ

To see the effect of the SRP force on the classical orbital
elements as a result of the SRP acceleration in Eq. (9),
Gauss's variational equations in Eq. (3) are integrated over
a single orbit. The net change in the semi-major axis Δa
and the net change in the eccentricity Δe over a single
orbit are given by

Δa¼
Z 2π

0

da
df

df ¼ 0 ð10aÞ

Δe¼
Z 2π

0

de
df

df ¼ 0 ð10bÞ

For these two elements, the net change over a single orbit
is zero under the SRP force. The change in the remaining
orbital elements over a single orbit is

Δi¼
Z 2π

0

di
df

df ¼ 3πea2

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p k cos 2 i�αð Þ sinα cosω ð11aÞ

ΔΩ¼
Z 2π

0

dΩ
df

df ¼ 3πea2

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p k cos 2 i�αð Þ sinα sinω ð11bÞ

Δω¼
Z 2π

0

dω
df

df ¼ 3πa2
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
k cos 2ði�αÞ cosα
μe

� 3πea2

μ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p k cot i cos 2 i�αð Þ sinα sinω ð11cÞ

Since only rotation of the apse-line is desired, the identity
Δi¼ΔΩ¼ 0 must hold to assure no out-of-plane varia-
tions. Inspecting Eqs. (11a) and (11b), it is evident that
sinα¼ 0. Therefore, α� 0 and Δω in Eq. (11c) becomes

Δω¼ 3πa2
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
k cos 2 ið Þ

μe
ð12Þ

To make the argument of perigee sun-synchronous, the
condition Δω¼Δλs must be satisfied over a single orbit
where the Δλs is the change in the sun's position in the
ecliptic plane over a single orbit. Equivalently, the sun-
synchronous condition is written as Δω¼Δλs ¼ _λsT
where T ¼ ð2π= ffiffiffiffiμp Þa3=2 is the period of the sail for a single
orbit. From this condition, the required characteristic
acceleration of the sail to precess the orbit apse-line sun-
synchronously is determined as follows:

k a; e; ið Þ ¼ 2e _λs
ffiffiffiffiμp

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1�e2Þ

p
cos 2i

ð13Þ

Eq. (13) is used to determine the size of the solar sail for a
particular desired orbit with the sun-synchronous apse-
line requirement. The desired formation geometry may
require that each solar sail have different a, e, and i values.
Consequently, the required characteristic acceleration
may be different from one solar sail to another. Therefore,
each solar sail employs the same simple steering law
described with constant but different characteristic accel-
eration values compared to the other solar sails in the
formation.

To verify the sun-pointing steering law, a 11 RE � 30 RE

slightly orbit is employed with a¼130,585 km, e¼0.4634,
i¼ 21, ω¼ 2701, and Ω¼ 57:31. By maintaining _ω ¼ _λs via
the steering law, the perigee and apogee of the orbit
initially lying inside the day-side and night-side of the
magnetosphere will remain in the magnetic tail continu-
ously, allowing for a long period of plasma research in the
magnetosphere. This orbit serves as the chief orbit for all
the simulations presented in Section 4. The precession of
the orbit apse-line is shown in Fig. 3 for periods of 27 days
and a full year. The variations of the chief orbital elements
over 27 days are illustrated in Fig. 4. Since α¼ 0, there are
no out-of-plane variations and both iðtÞ and ΩðtÞ remain
constant.

3. Condition for in-plane quasi-periodic relative motion

The sail's orbit period under the perturbing SRP force is
computed by

T a; e; ið Þ ¼
Z 2π

0

1
_f
df ð14Þ

where _f is the instantaneous angular velocity of the sail.
From Gauss's variational equations [8,9], the instantaneous
angular velocity can be expressed as

_f ¼ h
r2
� 1
ev

2 sin faθþ 2eþ r
a
cos f

� �
ah

h i
ð15Þ

For bounded relative motion between two spacecraft, the
orbital periods must be equal. Gong et al. derive an explicit
solution for the period in terms of initial orbital elements
by expanding the integrand of Eq. (14) about _f 0 a0; e0; i0ð Þ
and show that including the higher-order terms in the
T a0; e0; i0ð Þ expansion yields a good approximation for the
orbit period [4]. The necessary condition for bounded



Fig. 3. Precession of argument of perigee (ω). (a) Precession of ω after 27 days. (b) Precession of ω after 1 year.
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relative motion in terms of T a0; e0; i0ð Þ is
Tðad0 ; ed0 ; id0 Þ�Tðac0 ; ec0 ; ic0 Þ ¼ 0 ð16Þ

The first order variation of Eq. (16) is

ΔT ac0 ; ec0 ; ic0 ; ad0 ; ed0 ; id0
	 
¼ ∂T

∂a
Δa0þ

∂T
∂e
Δe0þ

∂T
∂i
Δi0 ¼ 0

ð17Þ
where Δa0 ¼ ad0 �ac0 , Δe0 ¼ ed0 �ec0 and Δi0 ¼ id0 � ic0 .
However, using Tða0; e0; i0Þ and its partial derivatives in
Eq. (17) to analytically solve for the deputy spacecraft
elements is difficult due to the large number of terms in
the Tða0; e0; i0Þ expansion.

Instead of solving Eq. (17) directly for the required
deputy's elements, a set of initial conditions (target states)
that significantly reduce δTðtÞ variation is sought. Reduction
in δTðtÞ variation increases formation long-term stability. To
search for such feasible target states, the variation in the
semi-major axis within a single orbit is investigated further.
The solar sail's semi-major axis and eccentricity experience
a periodic behavior under the SRP force as is evident in
Fig. 4, Eq. (10a), and Eq. (10b). The variation in the semi-
major axis is particularly large and fluctuates about
70:4 RE in a single orbit. For the long-term stability of
the relative motion between two spacecraft, δaðtÞ must
remain small. To reduce δa variation, the deputy's semi-
major axis initial value ad0 and its initial rate of change _ad0
are used as design variables. Fig. 5 illustrates scenarios in
which δa experiences large variations causing the forma-
tion to fall apart quickly. As seen in Fig. 5(a), ad0 should be
chosen such that Δa0 � 0, otherwise it leads to large
variations in δaðtÞ. In Fig. 5(b), the condition _ad0 a _ac0 leads
to δaðtÞ growing larger despite having ad0 ¼ ac0 . The condi-
tion ad0 ¼ ac0 does not have to identically hold to design an
in-plane quasi-periodic relative motion but the deputy's ad0
must be carefully selected to assure Δa0 is small. Therefore,
a condition for in-plane quasi-periodic relative motion
under the SRP force, assuming each sail employs the simple
steering law for precessing its orbit apse-line, is proposed as
follows:

ad0 ¼ ac0 ð18aÞ

_ad0 ¼ _ac0 ð18bÞ
Imposing this condition only reduces δTðtÞ variation and does
not guarantee full quasi-periodic relative motion since there
is no condition imposed on out-of-plane relative motion. The
condition _ad0 ¼ _ac0 is further expanded. The instantaneous
rate of change of semi-major axis is

_a ¼ 2a2

h
e sin farþ

p
r
aθ

� �
ð19Þ

Substituting Eq. (9) into Eq. (19), we have

_a ¼ 2ka
ffiffiffi
a

p
cos 2ði�αÞ cosα sin fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μð1�e2Þ
p ð20Þ

Using Eq. (13) and α¼ 0, the expression simplifies to

_a a; e; fð Þ ¼ 4 _λsae sin f
3ð1�e2Þ ð21Þ

From _ad0 ¼ _ac0 , we have

ad0ed0 sin f d0
1�e2d0

¼ ac0ec0 sin f c0
1�e2c0

ð22Þ

Solving for ed0 in Eq. (22), the deputy's required eccentricity
to enforce small variations in δa is

ed0 ¼
�ad0 sin f d0 ð1�e2c0 ÞþHðac0 ;ec0 ;f c0 ;ad0 ;f d0 Þ

2ac0 ec0 sin f c0
: f c0 ; f d0 Að0;πÞ

�ad0 sin f d0 ð1�e2c0 Þ�Hðac0 ;ec0 ;f c0 ;ad0 ;f d0 Þ
2ac0 ec0 sin f c0

: f c0 ; f d0 Aðπ;2πÞ

8>><
>>:

ð23Þ
where

Hðac0 ; ec0 ; f c0 ; ad0 ; f d0 Þ ¼ 4a2c0e
2
c0 sin

2f c0 þa2d0e
4
c0 sin

2f d0
�

�2a2d0e
2
c0 sin

2f d0 þa2d0 sin
2f d0

�1=2

The solution for ed0 in Eq. (23) is derived assuming that ad0 is
not identically equal to ac0 . Note that the desired ed0 is
dependent on where in orbit the condition for in-plane
quasi-periodic relative motion is enforced. There is a singu-
larity in the ed0 solution at the chief's orbit perigee and
apogee. Therefore, the in-plane formation stability condition
must be enforced at points in the chief's orbit that exclude
perigee and apogee.



Fig. 4. Sail's orbital elements variations. (a) Semi-major axis. (b) Eccen-
tricity. (c) Argument of perigee.

Fig. 5. Impractical SMA initial conditions for a stable formation
(a) ad0 aac0 ; _ad0 ¼ _ac0 . (b) ad0 ¼ ac0 ; _ad0 a _ac0 . (c) ad0 aac0 ; _ad0 a _ac0 .
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The first order approximation of this condition is given by

Δ _a0 ¼
∂ _a
∂a
Δa0þ

∂ _a
∂e
Δe0þ

∂ _a
∂f
Δf 0 ð24Þ

where the partial derivatives are evaluated with respect to
the chief's elements. The change in the deputy's eccentricity
that is required to reduce the variation of δa is given
by Eq. (25) which is determined from Eq. (24) by setting
Δ _a0 ¼ 0

Δe0 ¼ � ∂ _a
∂e

� ��1 ∂ _a
∂a
Δa0þ

∂ _a
∂f
Δf 0

� �
ð25Þ

Computing the partial derivatives and substituting them into
Eq. (25), the deputy's required eccentricity is

ed0 ¼ ec0 �
ec0
ac0

1�e2c0
1þe2c0

Δa0þac0 cotf c0Δf 0
	 


: ð26Þ
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4. Formation design and numerical simulations

The condition for in-plane quasi-periodic relative motion
is applied to the design of two-craft and three-craft forma-
tions. The main objective is to determine initial conditions
(target states) that lead to quasi-periodic formations, assum-
ing all sails use the same sun-pointing steering law to
precess their orbit apse-line sun-synchronously. The exis-
tence of such target states has a great operational advantage
because only one steering law is required for all the sails in
formation once the target states are achieved. These target
states can be achieved upon solving the minimum-time two
point boundary value problem using active control. It is
important to note that full periodic motion is not possible
without the use of active control since the relative motion is
unstable [4,10]. However, for two-craft and three-craft for-
mations, particular formation geometries are proposed that
lead to quasi-periodic relative motions with the enforcement
of the in-plane formation stability condition.

4.1. Two-craft formation

A quasi-periodic leader–follower formation in the chief's
xy plane is designed using the in-plane quasi-periodic
Fig. 6. Relative dynamics of two-craft formation over one year. (a) Relative varia
motion of deputy.
relative motion condition. To restrict the relative motion
to the xy plane, the deputy's inclination and right
ascension of the ascending nodes must equal that of
the chief. For this simple example, five of the deputy's
orbital elements are known because of the in-plane
formation stability condition (ad0 , ed0 ), the sun-
synchronous requirement (ωd0 ) and the restriction on
no relative out-of-plane motion (id0 , Ωd0 ). Hence, the
deputy orbital elements are

ad0 ¼ ac0
_ad0 ¼ _ac0 ðdetermines ed0 Þ
id0 ¼ ic0
Ωd0 ¼Ωc0

ωd0 ¼ωc0 ð27Þ

For unperturbed relative motion, the along-track separa-
tion at any point in orbit is approximately [9]

y� rc δf þδωþδΩ cos i
	 
 ð28Þ

From Eqs. (27) and (28), we can solve for the deputy's
true anomaly using

f d0 ¼ f c0 þ
ydes
rc0

ð29Þ
tion in a. (b) Relative variation in e. (c) Relative variation in o. (d) Relative



Fig. 7. Change in δamax and relative motion with formation Size. (a) δamax vs. ydes. (b) Relative motion for various ydes.

Fig. 8. ed vs. fd in applying the Δ _a0 ¼ 0 condition.
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where ydes is the instantaneous desired separation at the
epoch where the stability condition is enforced. The deputy's
eccentricity ed0 is determined by enforcing _ac0 ¼ _ad0 using Eq.
(23) after f d0 is determined. It is important to justify the use of
the unperturbed along-track separation equation in Eq. (28).
Since the relative motion takes place in the xy plane, the in-
plane formation stability condition is sufficient for full quasi-
periodic relative motion. Therefore, the relative motion is
invariant to the SRP perturbation and can be treated as
unperturbed for a short period of time.

The validity of the in-plane formation stability condition
and the proposed simple procedure to design a leader–
follower formation in the xy plane is numerically verified
through a year long simulation shown in Fig. 6, where
ydes ¼ 30 km. As shown in Fig. 6(a), the variation in the
relative semi-major axis δa is periodic. The periodicity of δa
is expected since the semi-major axis experiences periodic
variation under the sun-pointing steering law. The amplitude
of δa reaches zero at the true anomaly where the in-plane
stability condition is enforced. The differential eccentricity δe
experiences both periodic and secular perturbations as seen
in Fig. 6(b). Similar to δe, the differential argument of perigee
δω has both periodic and secular variations but the secular
variation in δω is larger than the one experienced in δe. The
secular perturbation in δω is a direct consequence of having
nonzero δa and δe. The overall relative motion of the
deputy is shown in Fig. 6(d). The deputy's motion is
quasi-periodic and remains bounded over the entire
simulation. The maximum δa is linearly correlated to
the size of the formation as shown in Fig. 7(a). One year
simulations are generated with various formation sizes
ydes according to the initial conditions in Eqs. (27) and
(29). As illustrated in Fig. 7(b), higher ydes values corre-
spond to larger δamax which leads to a greater difference
between the periods of the two crafts. Consequently,
smaller formations experience a more periodic relative
motion than larger formations. The classical orbital ele-
ments of the chief and deputy solar sails are presented in
Table C1 in Appendix C. Using Eq. (13), the required
characteristic acceleration for the chief and deputy solar
sails are kc¼0.12142 and kd¼0.12147 mm/s2, respectively.
The location where the in-plane quasi-periodic condition
is enforced is important. Because the semi-major axis experi-
ences large variations under the SRP force in a single orbit,
the deputy's required eccentricity that satisfies Δ _a0 ¼ 0
varies with the true anomaly at which the condition is
applied. Fig. 8 illustrates how the deputy's eccentricity
changes as the condition Δ _a0 ¼ 0 is applied at different true
anomalies, revealing a family of quasi-periodic relative
motions. Selecting a feasible true anomaly to enforce the
Δ _a0 ¼ 0 condition depends on the desired relative geometry,
maximum achievable characteristic acceleration, and other
constraints, such as the minimum close approach require-
ment. It should be noted that the proposed in-plane two-craft
formation is easily extended to multiple spacecraft scenarios.

4.2. Three-craft formation

The science region of interest (RoI) for exploring the
geomagnetic tail is shown in Fig. 9(a). In this paper, the
region of interest is defined as all portions of the chief's
orbit with radius above 21 RE. The desired three-craft
formation geometry to be designed inside the RoI is a



Fig. 9. Solar sail triangle formation over a region of interest. (a) Science region of interest around apogee. (b) Evolution of an isosceles triangle formation.

Fig. 10. Evolution of breathing isosceles triangle formation over one year. (a) Evolution of θ12 angle. (b) Evolution of θ13 angle. (c) Evolution of θ23 angle. (d)
θ12�θ13.
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breathing isosceles triangle. For this simple formation
geometry, a preliminary formation is designed analytically,
similar to the design of the two-craft formation. This
preliminary formation is then used as an initial guess for
a numerical optimization problem to design a triangle for
maximizing the science gain in the RoI. The orbital
elements of the chief and Deputy 1 are determined as
described in the previous section, with ydes ¼ 20 km. Four
elements of the second spacecraft, Deputy 2, are known.
The semi-major axis, eccentricity and argument of perigee
of Deputy 2 are selected based on the in-plane formation
stability condition and sun-synchronous requirement. To
design a triangle inside RoI, either Deputy 2's inclination
or right ascension of the ascending node must be different



Fig. 11. Differential orbital elements of three-craft formation over 60 days. (a) Relative variation in a. (b) Relative variation in e. (c) Relative variation in ω.
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than that of the chief and Deputy 1. Since the selected
formation geometry is a breathing isosceles triangle,
inclination is selected as a free variable for creating out-
of-plane relative motion. The general formation geometry
proposed is illustrated in Fig. 9(b). The selected elements
for Deputy 2 are

ad20 ¼ ad10 ¼ ac0
_ad20

¼ _ad10
¼ _ac0 ðdetermines ed20 Þ

Ωd20
¼Ωd10

¼Ωc0

ωd20
¼ωd10

¼ωc0 ð30Þ
As an approximation for the initial guess, Δi20 ¼ i20 � ic0

is selected to be 0:0051. Deputy 2's only remaining free
variable is the true anomaly and is taken to be the average
of the chief's and Deputy 1's true anomalies at the
entrance of the RoI. The numerical optimization problem
setup is discussed next. It is seen in Fig. 9(b) that, at any
point in the orbit, each side of the triangle is defined using

R1 ¼ r1�rc
R2 ¼ r2�rc
R3 ¼ r2�r1 ð31Þ
Let θ12, θ13 and θ23 define the three inner angles of the
triangle. Assuming the geometry shown in Fig. 9(b), the
inner angles are computed using

θ12 ¼ cos �1 R1 � R2

R1R2

� �

θ13 ¼ π� cos �1 R1 � R3

R1R3

� �

θ23 ¼ cos �1 R2 � R3

R2R3

� �
ð32Þ

The acceptable range for the two equal angles, θ12 and θ13,
within the RoI is taken to be between 351 and 701. To avoid
designing a triangle with small (less than 351) or large
(greater than 701) equal angles in the RoI, the cost function
is defined for an equilateral triangle as follows:

J ¼
Z
RoI

θ12 tð Þ�π
3

� �2
þ θ13 tð Þ�π

3

� �2
þ θ23 tð Þ�π

3

� �2
� �

dt

ð33Þ

The continuous cost function in Eq. (33) is discretized at N
integration steps within the RoI. Therefore, Eq. (33) is



Fig. 12. Relative dynamics of three-craft formation over one year. (a) Relative motion in xy plane. (b) Relative motion of Deputy 2.

Fig. 13. Inter-spacecraft range for triangle formation.
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approximated as

J ¼ ∑
N

k ¼ 1
θ12k �

π
3

� �2
þ θ13k �

π
3

� �2
þ θ23k �

π
3

� �2
ð34Þ

The single-orbit numerical optimization problem for
designing an isosceles triangle solar sail formation within
the RoI is given by

minimize J

with respect to Δœ0

subject to Δaj0 ¼ 0; Δ _aj0 ¼ 0

Δωj0 ¼ 0; ΔΩj0 ¼ 0

Δi10 ¼ 0 ð35Þ
where j¼ 1;2 denotes the jth deputy solar sail and the
array Δœ0 ¼ ½Δf 10

Δf 20 Δi20 � contains the free variables
for the optimization problem. The generalization of this
optimization problem is discussed in Ref. [11]. To solve
the optimization problem, a nonlinear programming
problem (NLP) solver is used. In this paper, MATLABs’s
constrained minimization routine fmincon, with the
active-set algorithm, is used to find a locally optimal
solution. As shown in Fig. 10, despite the evolution of θ12

and θ13, the maximum difference between these two
angles is less than 61 throughout the entire year. This is a
direct consequence of both imposing the in-plane quasi-
periodic condition and the particular simple geometry
selected for flying three solar sails. If there is no
constraint on the inner angles and the shape of the
triangle, the triangle formation around perigee can be
used to study the day-side simultaneously. The total
number of days that the equal angles of the isosceles
triangle formation are within 351 and 701 inside the RoI
is 137 days. If the lower bound for the equal angles is
raised to 401, the total number of days that the forma-
tion is ideal for collecting science inside the RoI is
reduced to 105. The variation in differential orbital
elements are shown in Fig. 11. The behavior of the
differential elements is similar to that in the two-craft
formation example. The relative motion of Deputy 1 and
Deputy 2 in the chief's LVLH frame is illustrated in
Fig. 12. As expected, the in-plane relative motion is
quasi-periodic due to the enforcement of the in-plane
formation stability condition. The evolution of the tri-
angle formation in the chief's LVLH frame is shown in
Fig. 16 in Appendix A. Designing a close-approach free
formation is critical, especially for solar sails due to the
absence of high thrust, to avoid potential collisions. The
inter-spacecraft ranges are illustrated in Fig. 13. The
closest approach happens on day 78 with R2 � 6:06 km
and R3 � 6:08 km. Thus, the formation remains safe
throughout the entire year. The classical orbital ele-
ments of the chief, Deputy 1 and Deputy 2 are presented
in Table C2 in Appendix C. Using Eq. (13), the required
characteristic acceleration for the chief and deputy
solar sails is kc¼0.12131, kd1 ¼ 0:12134 mm/s2, and
kd2 ¼ 0:12133 mm=s2, respectively.

5. Effects of perturbations

Although the effect of Earth's nonsphericity on the
relative motion is minimal because of the high altitude
of the orbits considered [4], the perturbations due to the
gravitational effects of the moon and sun cannot be
ignored. Thus, the equations of motion given in Eq. (1)



Fig. 14. Deputy's relative motion in xy plane under perturbations. (a) 3 Months. (b) 6 Months. (c) 9 Months. (d) One Year.

Fig. 15. Two-craft relative motion under perturbations over one year.
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are modified as follows:

ð36Þ

where a� , and a	 are the accelerations due to the
Earth's nonsphericity, lunar and solar gravitational effects
respectively. The effects of the perturbations on formation
stability are analyzed for a two-craft formation designed
according to the simple procedure described in Section 4.1
with ydes ¼ 30 km. The 10RE � 30RE ecliptic orbit proposed
for the GEOSAIL mission is used as the chief orbit. The initial
conditions for this two-craft formation are presented in Table
C3 in Appendix C. The required characteristic acceleration for
the chief and deputy solar sails is kc¼0.13547 and
kd¼0.13553mm/s2, respectively. Assuming a constant solar
radiation of P ¼ 4:56� 10�6 N=m2 and solar sail efficiency of
η¼ 0:85, the required sail loading σ ¼m=A¼ 2ηP=k for
generating the characteristic acceleration of kc¼0.13547mm/
s2 is 57.2 g/m2. For a solar sail with a total launch mass of
m¼100 kg, a reflectable area of A� 1750 m2 is required for
generating the computed sail loading. The numerical simula-
tion is performed using the high-fidelity FreeFlyers software.
The simulation is run with an 8th order Runge–Kutta inte-
grator that includes a 21�21 gravity model, along with the
lunar and solar gravity perturbations. The simulation begins at
the spring equinox (March 20, 2015) with an equatorial
inclination of 23.41 corresponding to an orbit that lies in the
ecliptic plane. The variations in the chief's orbital elements
over one year are shown in Fig. 17 in Appendix B. Despite the
variations in orbit eccentricity and inclination, the argument
of perigee remains sun-synchronous. The relative in-plane
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motion is quasi-periodic for at least seven months as
illustrated in Fig. 14(a) and (b).The relative out-of-plane
variation is small within this period as seen in Fig. 15.
Both the in-plane and out-of-plane motions are
degraded after seven months as shown in Figs. 14(c)
and (d) and 15. During the first 6 months, the minimum
and maximum inter-spacecraft ranges are 18.8 km
and 70.1 km respectively. The minimum and maximum
inter-spacecraft ranges evolve to 1.3 km and 128.8 km
after one year.

Because the coupled orbit and attitude control of a solar
sail formation are difficult using reflectivity modulation [7],
achieving the designed formation using reflectivity modula-
tion technology may not be possible. An ideal spacecraft may
comprise a hybrid propulsion system that combines a reflec-
tivity modulated solar sail with solar electric propulsion
similar to that of the Earth pole-sitter mission proposed by
Ceriotti and McInnes [12]. Solar electric propulsion could
primarily be used for achieving the target states while re-
flectivity modulation technology could be used during the for-
mation flight to maintain both the simple sun pointing
attitude and the constant characteristic acceleration that re-
sults from enforcing the in-plane formation stability condition.
6. Conclusion

Solar sail formations with all sails using the same
control have a significant operational advantage. An
analytic condition for determining target states that lead
to in-plane quasi-periodic relative motion is derived and
numerically verified, assuming that all the sails use the
same sun-pointing steering law for precessing their
orbit apse-line. It is shown that in-plane leader–follower
and isosceles triangle formations last a long time under
the simple sun-pointing steering law and thus reduce
the complexity of active control during the formation
flight period. The effects of perturbations on the in-
plane leader–follower formation are discussed. It is
shown that the formation remains quasi-periodic for at
least seven months under perturbations due to lunar
and solar gravity and Earth's nonsphericity. The in-plane
leader–follower formation can easily be extended to a
multiple spacecraft formation. Because each set of target
states corresponds to a slightly different required char-
acteristic acceleration, each sail must have the capability
of varying its characteristic acceleration to achieve and
maintain the target states.
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Appendix A. Three-craft formation plots

Fig. 16 illustrates the evolution of the isosceles triangle
during the first orbit in the chief's LVLH frame.
Fig. 16. Triangle formation in chief's local frame. (a) f c ¼ 01, θ12 ¼ 19:61, θ13 ¼ 19:61. (b) f c ¼ 1401, θ12 ¼ 27:21, θ13 ¼ 27:21. (c) f c ¼ 1601, θ12 ¼ 42:41,
θ13 ¼ 42:41. (d) f c ¼ 1801, θ12 ¼ 59:11, θ13 ¼ 59:11. (e) f c ¼ 2001, θ12 ¼ 63:51, θ13 ¼ 63:51. (f) f c ¼ 2401, θ12 ¼ 29:11, θ13 ¼ 29:11.



K. Parsay, H. Schaub / Acta Astronautica 107 (2015) 218–233232
Appendix B. Effects of perturbations on orbital elements
emi-major axis. (b) Eccentricity. (c) Inclination. (d) Argument of perigee.
Fig. 17. Chief's orbital elements variations under perturbations. (a) S
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Appendix C. Initial conditions

This section contains all the initial conditions (target
states) determined in Sections 4 and 5.
Table C1
Initial conditions for two-craft simulation.

Orbital elements Chief Deputy

a 130,585 130,585
e 0.4634 0.46356
i 21 21
Ω 57.31 57.31
ω 2701 2701
f 163.03611 163.04541

Table C2
Initial conditions for three-craft simulation.

Orbital elements Chief Deputy 1 Deputy 2

a 130,585 130,585 130,585
e 0.4634 0.46351 0.46345
i 11 11 0.9961
Ω 57.31 57.31 57.31
ω 2701 2701 2701
f 163.03611 163.04231 163.03921

Table C3
Initial conditions for high-fidelity two-craft simulation.

Orbital elements Chief Deputy

a 127,562.74 127,562.74
e 0.5 0.50017
i 01 01
Ω 01 01
ω 01 01
f 164.21951 164.22881
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