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Exploration of the Earth's magnetosphere using solar sails has advantages over the use of
traditional spacecraft in inertially fixed orbits because of the solar sails' capability to stay
in the geomagnetic tail for longer periods. In this paper, solar sail formation flying in
Earth-centered slightly inclined orbits is investigated, with each solar sail employing a
simple sun-pointing steering law that precesses the orbit apse-line sun-synchronously. An
analytic condition for determining target states that lead to in-plane quasi-periodic
relative motion under solar radiation pressure is derived, assuming all sails use the same
steering law. Even though active control is required to achieve these target states, only the
simple steering law is required for flying the formation upon achieving the target states.
The condition is verified in the design of two-craft and three-craft formations. The effects
of Earth's nonsphericity, lunar gravity, and solar gravity are included to determine the
stability of the designed formations under these perturbations.

© 2014 IAA.. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Earth's magnetic tail is directed along the Sun-
Earth line and therefore rotates annually. Conventional
magnetosphere missions require a highly elliptical orbit
with its apogee inside the geomagnetic tail. An inertially
fixed orbit is aligned with the geomagnetic tail only once a
year, which limits the duration of the science phase to less
than three months. Solar sail low-thrust propulsion, how-
ever, is capable of achieving long residence in the geo-
magnetic tail by continuously precessing the orbit apse-
line, as illustrated in Fig. 1. Achieving long residence times
in the geomagnetic tail is particularly important for study-
ing the poorly understood magnetic reconnection phe-
nomena. It may take a few months before a single
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magnetic reconnection event is detected and each event
typically lasts only a few minutes, therefore the contin-
uous presence of a spacecraft within the reconnection
region is critical for in situ observation. Mclnnes et al.
propose the low-cost GEOSAIL mission to explore the
Earth's magnetosphere using a single low performance
sail [1-3]. In the GEOSAIL mission, the solar sail would fly
in a moderately elliptical orbit that lies in the ecliptic plane
and would employ a simple sun-pointing steering law to
precess the orbit apse-line sun-synchronously, allowing
the orbit apogee to remain in the geomagnetic tail
throughout the entire year. It is shown that the short
period eclipses around the apogee of the sun-synchronous
orbit have little effect on the required solar sail perfor-
mance for the range of orbits applicable to magnetosphere
missions.

Many magnetosphere missions require more than a
single spacecraft to achieve their scientific objective.
Magnetospheric Multi-Scale (MMS) and Cluster II mis-
sions, from NASA and the European Space Agency (ESA),
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Nomenclature

u Earth's gravitational constant (km?/s?)

as solar radiation pressure acceleration (km/s?)
;s sun-line unit vector

n sail normal unit vector

ar,ay,a, solar radiation pressure acceleration along
radial, along-track, and cross-track direction
(km/s?)

c sail loading (g/m?)

a,e,i,2,w,f classical orbital elements: semi-major axis
(km), eccentricity, inclination (rad), right
ascension of ascending node (rad), argument
of perigee (rad), true anomaly (rad)

T orbit period (s)

k characteristic acceleration of solar sail (km/s)
[Ci] rotation matrix about the i-axis

B body-fixed frame

@] local-vertical-local-horizontal (LVLH) frame
N earth-centered inertial frame

[BO] direction cosine matrix that transfers a vector
from O to B frame
[NO direction cosine matrix that transfers a vector
from O to N frame
. sun longitude
equinox (rad)

measured from vernal

Subscript

c chief solar sail

d; jth deputy solar sail
Acronym

SRP solar radiation pressure
Rg Earth radius

Rol science region of interest
SMA semi-major axis

comprise of four identical spinning spacecraft flying in a
tetrahedron formation within a specified region of interest.
Generally, exploring the Earth's magnetic environment in
three dimensions requires multiple satellites to fly in
formation. Gong et al. [4] propose solar sail formation
flying for exploring the geomagnetic tail. In Ref. [4], the
chief solar sail employs a sun-synchronous orbit while the
deputy solar sail uses active control to enable close-
proximity formation flying. Furthermore, a linearized rela-
tive motion description is derived and a conventional
linear quadratic regulator (LQR) controller is applied to
stabilize the relative motion of the two-craft formation.
Many relative formation geometries can only be rea-
lized when characteristic acceleration is available as a
control variable. Recently, the Interplanetary Kite-craft
Accelerated by Radiation Of the Sun (IKAROS) mission,
launched by the Japan Aerospace Exploration Agency
(JAXA), successfully demonstrated reflectivity modulation
technology to control the sail's attitude [5]. To change the
surface reflectance, liquid crystal panels on the sail are
switched on to produce specular reflection and switched
off to create diffuse reflection. With the capability of

Solar Sail Orbit

******** Conventional Orbit

Geomagnetic Tail

Fig. 1. Comparison of chemical and solar sail propulsion in geomagnetic
tail exploration.

changing the sail's surface reflectivity, the characteristic
acceleration of a sail can be adjusted. Mu et al. [6] expand
the work in Ref. [4] by applying two nonlinear-based
control laws that use reflectivity modulation for enforcing
a projected-circular relative motion. The coupled control of
a reflectivity modulated solar sail formation is discussed
by Mu et al. in Ref. [7]. The results indicate that it is
difficult to control the solar sail's attitude and orbit
simultaneously using reflectivity modulation.

In this paper, solar sail formation flying in slightly
inclined sun-synchronous orbits is investigated. To achieve
long term residence inside the geomagnetic tail, a simple
sun-pointing steering law is used by each solar sail in the
formation to precess the apse-line of its orbit sun-
synchronously [1]. This paper is a first attempt at answer-
ing the following question: can a solar sail formation be
maintained for an acceptable amount of time, assuming each
sail in formation employs a common steering law solely for
the purpose of precessing its orbit apse-line sun-synchro-
nously? This question is motivated by the significant
reduction in operational cost and complexity with each
solar sail employing a simple common steering law during
the formation flight as opposed to using active control for
tracking a target trajectory. Thus, the main focus for this
study is to explore formation geometries that are quasi-
periodic under the condition that all solar sails in forma-
tion use the same steering law for precessing their orbit
apse-line during the formation flight.

2. Equations of motion of solar sails in earth orbits

The general equations of motion for a solar sail under
solar radiation pressure (SRP) may be written as a per-
turbed two-body problem. Thus, the equations of motion
are

r= —%r+as 1
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Ecliptic

Fig. 2. Sail's orbit geometry and general orientation. (a) Sail's orbit geometry with a = 0. (b) Sail's normal vector orientation in the LVLH frame.

where r is the position vector of the spacecraft relative to
the Earth. The adopted inertial frame N ={0,X,Y,Z} has
its origin O at the center of the Earth where the X-axis
points from the origin to the equinox and Z points along
the ecliptic north pole. The Y-axis completes the right-
handed coordinate system. For a flat, rigid, perfectly
reflecting solar sail, the solar sail acceleration can be
written as

a = k(fis - i’ht

2)

where 11 is a unit vector normal to the sail surface and fi; is
a unit vector from the Sun to the Earth. The parameter k is
the sail's characteristic acceleration and is assumed to be
adjustable. To investigate the variations of the orbital
elements under the nonconservative SRP force, the follow-
ing forms of Gauss's variational equations [8,9,13] are
used:

da  2pr? . p
3_’lm(are smf+agF> (3a)
2
?T; = % {ar sinf+ay <1 +£) C05f+ae€ﬂ (3b)
;.3
%}:L—pcos +w)ay, (39
dQ .
o “psini®n f +w)ap (3d)
dﬂ—ﬁ{—a cosf+a (1 +£> Siﬂf}
df “pe| 0 p
3
_,uprsin ; sin (f + w)ay, cos i (3e)
dt 2 2 ;
dif:%{l —/%(arcosf—ag<l +£) smf)} 3f)

where a,, ag, and aj, are the radial, along-track, and cross-

track components of the perturbing acceleration as experi-
enced by the sail, respectively.

2.1. Solar sail steering law

For the GEOSAIL mission, McInnes et al. propose a simple
steering law consisting of the sail's normal vector continu-
ously pointing along the sun-line within the orbit plane
such that the rotation of the orbit apse-line is synchronous
with the annual rotation of the sun-line [1-3]. The sun-
synchronized precession of the orbit apse-line allows the
orbit apogee to remain in the geomagnetic tail continuously,
thus enabling science data collection for long periods. In this
paper, similar to the GEOSAIL mission, the orbit apse-line is
precessed sun-synchronously while leaving inclination and
the right ascension of the ascending node unchanged.

To determine the SRP acceleration as resulting from the
sun-pointing steering law, two local reference frames must
be defined. Let B={o0,f,t, 1} denote a body-fixed frame
with its origin point o at the sail's center of mass while the
frame O={0,0;,04,0,,} is the sail's local-vertical-local-
horizontal (LVLH) reference frame. As shown in Fig. 2(b),
a and ¢ angles track the orientation of the B frame with
respect to the O frame. The direction cosine matrix to
transfer a vector expressed in the O frame to the B frame is
given by

[BO] = [C2()][C5(h)] 4)

As illustrated in Fig. 2(a), the sail's normal fi points along
the orbit apse-line such that its projection onto the ecliptic
plane is always directed along the sun-line nis. The sail's
assumed orientation leads to having ¢ =z —f. The sail's
normal vector can then be expressed in the O frame as

O[ — cosacosf
cosasinf
—sina

%h =[BOI"?h = (5)
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where %fi =[1 0 0]" and the left-superscript indicates the
frame that the n vector is expressed in. The direction
cosine matrix [NO] = [V, V6, '0,] is used to transfer the
sail's normal “ft from the reference frame O to the inertial
frame N to be used in Eq. (1). Thus the sail's normal
expressed in the A frame is

N = [NOI°R (6)

The sunlight direction expressed in the inertial frame N
can be written as

N[ — cos s
Nia,= | —sin/s (7)
0
where the longitude of the sun As is determined through
As =As, +Ast (8)

Finally, the SRP acceleration Va, is determined by sub-

stituting Eqs. (6) and (7) into Eq. (2).
2.2. Solar sail orbit

For small inclinations, it is assumed that ns-f~
cos (i—a). Substituting this identity and Eq. (5) into
Eq. (2), the radial, along-track, and cross-track components
of the SRP acceleration as, determined by the sail's
orientation and characteristic acceleration, are written as

ol ar o[ —kcos2(i—a)cosacosf
a,= |ag| =~ kcos?(i—a)cosasinf 9)
ap —kcos?(i—a)sina

To see the effect of the SRP force on the classical orbital
elements as a result of the SRP acceleration in Eq. (9),
Gauss's variational equations in Eq. (3) are integrated over
a single orbit. The net change in the semi-major axis Aa
and the net change in the eccentricity Ae over a single
orbit are given by

ana
Aa= —df=0 10a
A 7deye o 10b
e—= —df =

For these two elements, the net change over a single orbit
is zero under the SRP force. The change in the remaining
orbital elements over a single orbit is

27 di 3rea? . .
Ai= df =—"—_kcos?(i—a)sinacosw 11a
L df If e (i-a (11a)
AQ = / df—ﬂkcosz(lfa)smasma) (11b)
2z 2 _p2 207 _
Aw — / dwdf_37ra v1—e2kcos?(i—a)cosa
ue
3nea?
—7kcot1cos2 i—a)sinasinw 11c
e = (o

Since only rotation of the apse-line is desired, the identity
Ai=AQ =0 must hold to assure no out-of-plane varia-
tions. Inspecting Eqs. (11a) and (11b), it is evident that

sina = 0. Therefore, a=0 and Aw in Eq. (11c) becomes

37a2v/1—e2kcos2(i)
ue

To make the argument of perigee sun-synchronous, the
condition Aw = AAs; must be satisfied over a single orbit
where the A/ is the change in the sun's position in the
ecliptic plane over a single orbit. Equivalently, the sun-
synchronous condition is written as Aw= Al = AT
where T = 27/ /f)a®/? is the period of the sail for a single
orbit. From this condition, the required characteristic
acceleration of the sail to precess the orbit apse-line sun-
synchronously is determined as follows:

2elds /i 13)
3y/a(1—e?)cos?i
Eq. (13) is used to determine the size of the solar sail for a
particular desired orbit with the sun-synchronous apse-
line requirement. The desired formation geometry may
require that each solar sail have different q, e, and i values.
Consequently, the required characteristic acceleration
may be different from one solar sail to another. Therefore,
each solar sail employs the same simple steering law
described with constant but different characteristic accel-
eration values compared to the other solar sails in the
formation.

To verify the sun-pointing steering law, a 11 Rg x 30 Rg
slightly orbit is employed with a=130,585 km, e=0.4634,
i=2° ®=270° and £ =57.3°. By maintaining @ = 4 via
the steering law, the perigee and apogee of the orbit
initially lying inside the day-side and night-side of the
magnetosphere will remain in the magnetic tail continu-
ously, allowing for a long period of plasma research in the
magnetosphere. This orbit serves as the chief orbit for all
the simulations presented in Section 4. The precession of
the orbit apse-line is shown in Fig. 3 for periods of 27 days
and a full year. The variations of the chief orbital elements
over 27 days are illustrated in Fig. 4. Since a = 0, there are
no out-of-plane variations and both i(t) and £2(t) remain
constant.

Aw=

(12)

k(a,e,i)=

3. Condition for in-plane quasi-periodic relative motion

The sail's orbit period under the perturbing SRP force is
computed by

2z
T(a,e,i):/0 %df (14)

where f is the instantaneous angular velocity of the sail.
From Gauss's variational equations [8,9], the instantaneous
angular velocity can be expressed as

ol

2 elv[z sin fa, + <2e+£cosf) ah} (15)
For bounded relative motion between two spacecraft, the
orbital periods must be equal. Gong et al. derive an explicit
solution for the period in terms of initial orbital elements
by expanding the integrand of Eq. (14) about fo(ao,eo,io)
and show that including the higher-order terms in the
T(ayp, eg,ip) expansion yields a good approximation for the
orbit period [4]. The necessary condition for bounded
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a ’ -—-—Apse Line at ¢

Apse Line at ¢y

b -—-—Apse Line at t;
—— Apse Line at ¢

Fig. 3. Precession of argument of perigee (). (a) Precession of @ after 27 days. (b) Precession of @ after 1 year.

relative motion in terms of T(ag, g, ip) is
T(adg 5 edn 5 ido) - T(ac0 5 eco» ico) =0 (]6)
The first order variation of Eq. (16) is

N

aT
—Aiy=
geEot At 0

a7)

. . oT
AT (dey, €cy» ey Ay €y 1y ) = 57 A0+

where Aag=a,4,—0d,, Aeg=eq,—ec, and Aig=ig —ic,.
However, using T(ao, €g,ip) and its partial derivatives in
Eq. (17) to analytically solve for the deputy spacecraft
elements is difficult due to the large number of terms in
the T(ay, eg, ig) expansion.

Instead of solving Eq. (17) directly for the required
deputy's elements, a set of initial conditions (target states)
that significantly reduce oT(t) variation is sought. Reduction
in OT(t) variation increases formation long-term stability. To
search for such feasible target states, the variation in the
semi-major axis within a single orbit is investigated further.
The solar sail's semi-major axis and eccentricity experience
a periodic behavior under the SRP force as is evident in
Fig. 4, Eq. (10a), and Eq. (10b). The variation in the semi-
major axis is particularly large and fluctuates about
+ 0.4 Rg in a single orbit. For the long-term stability of
the relative motion between two spacecraft, da(t) must
remain small. To reduce da variation, the deputy's semi-
major axis initial value ay, and its initial rate of change ag4,
are used as design variables. Fig. 5 illustrates scenarios in
which da experiences large variations causing the forma-
tion to fall apart quickly. As seen in Fig. 5(a), a4, should be
chosen such that Aagy~0, otherwise it leads to large
variations in da(t). In Fig. 5(b), the condition a4, # d., leads
to da(t) growing larger despite having a4, = ac,. The condi-
tion ag4, = ac, does not have to identically hold to design an
in-plane quasi-periodic relative motion but the deputy's a4,
must be carefully selected to assure Aag is small. Therefore,
a condition for in-plane quasi-periodic relative motion
under the SRP force, assuming each sail employs the simple
steering law for precessing its orbit apse-line, is proposed as
follows:

ag, = dg, (18a)

g, = e, (18b)

Imposing this condition only reduces 6T(t) variation and does
not guarantee full quasi-periodic relative motion since there
is no condition imposed on out-of-plane relative motion. The
condition ag4, =dg, is further expanded. The instantaneous
rate of change of semi-major axis is

. 2a%, . p
a :T(e smfaﬁ—;ag) (19)
Substituting Eq. (9) into Eq. (19), we have

g 2ka./a cos?(i—a)cos asin f

(20)
Vu(l—e?)
Using Eq. (13) and a = 0, the expression simplifies to
. 4] sae sin f
a(a,e,f)_w 21
From a4, = ac,, we have
g, eq, Sin fg, _ 9o sinfe, 22)

1-ef 1-e2
Solving for ey, in Eq. (22), the deputy's required eccentricity
to enforce small variations in éa is

— gy Sinfay (1 - %)+ H(aey ecy f ey -0ay fay)
2dac, ec, smfc'J

:fCUafdo € (O, )

feyfa, € (. 27)
(23)

ey = .
do —ay, sinf g, (1—€2)) — H(aeg ecy f ¢y g S )

2ato 2 smch

where
2 52 o2 2 4 o2
H(ac,, €cy>f¢y» Adyfdy) = (4aCOeC0 sin “f, +ag, ez, sin“fq,

1/2
2 52 cin 2 2 i 2
—2ag ez, sin“fg +ag, sin fdo)

The solution for ey, in Eq. (23) is derived assuming that ag, is
not identically equal to ac,. Note that the desired ey, is
dependent on where in orbit the condition for in-plane
quasi-periodic relative motion is enforced. There is a singu-
larity in the ey, solution at the chief's orbit perigee and
apogee. Therefore, the in-plane formation stability condition
must be enforced at points in the chief's orbit that exclude
perigee and apogee.
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Fig. 4. Sail's orbital elements variations. (a) Semi-major axis. (b) Eccen-
tricity. (c) Argument of perigee.

The first order approximation of this condition is given by
aa
of
where the partial derivatives are evaluated with respect to
the chief's elements. The change in the deputy's eccentricity

that is required to reduce the variation of da is given
by Eq. (25) which is determined from Eq. (24) by setting

. oa oa
AaozﬁAam—%AemL Afo (24)

a ,

>
>

Fig. 5. Impractical SMA initial conditions for a stable formation
(@) ag, # ac,,ag, = Ay (b) Agy = Agy, g, # Acy- (€) gy # ey, Agy # Aey-

.- . .
Aeoz—(‘l‘]> (Z%Aao+g—;Af0> (25)

Computing the partial derivatives and substituting them into
Eq. (25), the deputy's required eccentricity is

ec, 1- e?o
b — €cy 7(Aao + 0, COthg AfO) . (26)

€y, —
g, 1+€2
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4. Formation design and numerical simulations

The condition for in-plane quasi-periodic relative motion
is applied to the design of two-craft and three-craft forma-
tions. The main objective is to determine initial conditions
(target states) that lead to quasi-periodic formations, assum-
ing all sails use the same sun-pointing steering law to
precess their orbit apse-line sun-synchronously. The exis-
tence of such target states has a great operational advantage
because only one steering law is required for all the sails in
formation once the target states are achieved. These target
states can be achieved upon solving the minimum-time two
point boundary value problem using active control. It is
important to note that full periodic motion is not possible
without the use of active control since the relative motion is
unstable [4,10]. However, for two-craft and three-craft for-
mations, particular formation geometries are proposed that
lead to quasi-periodic relative motions with the enforcement
of the in-plane formation stability condition.

4.1. Two-craft formation

A quasi-periodic leader—follower formation in the chief's
xy plane is designed using the in-plane quasi-periodic

a
0.2
0 o
-0.2
-0.4
E _os
=
-0.8
1
-1.2
14t
0 50 100 150 200 250 300 350
Time [Day]
C
)
5
=
3
kS

0 50 100 150 200 250 300 350
Time [Day]

relative motion condition. To restrict the relative motion
to the xy plane, the deputy's inclination and right
ascension of the ascending nodes must equal that of
the chief. For this simple example, five of the deputy's
orbital elements are known because of the in-plane
formation stability condition (aq,, eq,), the sun-
synchronous requirement (wg,) and the restriction on
no relative out-of-plane motion (ig,, £24,). Hence, the
deputy orbital elements are

adn = acn
a4, =dc, (determines eg)

ido = iCo

Qdo = QCD

W, = W, (27)
For unperturbed relative motion, the along-track separa-
tion at any point in orbit is approximately [9]

y~1c(6f + 6w+ 682 cosi) (28)

From Eqs. (27) and (28), we can solve for the deputy's
true anomaly using

Fay =y +72 29)
Co

b x107™

1.615

1.61

oe

1.605

1.595 y * . * * * +
0 50 100 150 200 250 300 350
Time [Day]

y [km]

-60 -40 -20 0 20 40 60
2 [km)]

Fig. 6. Relative dynamics of two-craft formation over one year. (a) Relative variation in a. (b) Relative variation in e. (c) Relative variation in . (d) Relative

motion of deputy.
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where y4.s is the instantaneous desired separation at the
epoch where the stability condition is enforced. The deputy's
eccentricity eq, is determined by enforcing d., = dg4, using Eq.
(23) after f4, is determined. It is important to justify the use of
the unperturbed along-track separation equation in Eq. (28).
Since the relative motion takes place in the xy plane, the in-
plane formation stability condition is sufficient for full quasi-
periodic relative motion. Therefore, the relative motion is
invariant to the SRP perturbation and can be treated as
unperturbed for a short period of time.

The validity of the in-plane formation stability condition
and the proposed simple procedure to design a leader—
follower formation in the xy plane is numerically verified
through a year long simulation shown in Fig. 6, where
Vaes =30 km. As shown in Fig. 6(a), the variation in the
relative semi-major axis da is periodic. The periodicity of da
is expected since the semi-major axis experiences periodic
variation under the sun-pointing steering law. The amplitude
of da reaches zero at the true anomaly where the in-plane
stability condition is enforced. The differential eccentricity de
experiences both periodic and secular perturbations as seen
in Fig. 6(b). Similar to Je, the differential argument of perigee
0w has both periodic and secular variations but the secular
variation in dw is larger than the one experienced in de. The
secular perturbation in dw is a direct consequence of having
nonzero da and Jde. The overall relative motion of the
deputy is shown in Fig. 6(d). The deputy's motion is
quasi-periodic and remains bounded over the entire
simulation. The maximum &a is linearly correlated to
the size of the formation as shown in Fig. 7(a). One year
simulations are generated with various formation sizes
Y4es according to the initial conditions in Egs. (27) and
(29). As illustrated in Fig. 7(b), higher y4., values corre-
spond to larger damax Which leads to a greater difference
between the periods of the two crafts. Consequently,
smaller formations experience a more periodic relative
motion than larger formations. The classical orbital ele-
ments of the chief and deputy solar sails are presented in
Table C1 in Appendix C. Using Eq. (13), the required
characteristic acceleration for the chief and deputy solar
sails are k.=0.12142 and k;=0.12147 mm/s?, respectively.
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Fig. 8. eq vs. fy in applying the Adg =0 condition.

The location where the in-plane quasi-periodic condition
is enforced is important. Because the semi-major axis experi-
ences large variations under the SRP force in a single orbit,
the deputy's required eccentricity that satisfies Adg=0
varies with the true anomaly at which the condition is
applied. Fig. 8 illustrates how the deputy's eccentricity
changes as the condition Adg =0 is applied at different true
anomalies, revealing a family of quasi-periodic relative
motions. Selecting a feasible true anomaly to enforce the
Adg = 0 condition depends on the desired relative geometry,
maximum achievable characteristic acceleration, and other
constraints, such as the minimum close approach require-
ment. It should be noted that the proposed in-plane two-craft
formation is easily extended to multiple spacecraft scenarios.

4.2. Three-craft formation

The science region of interest (Rol) for exploring the
geomagnetic tail is shown in Fig. 9(a). In this paper, the
region of interest is defined as all portions of the chief's
orbit with radius above 21 Rg. The desired three-craft
formation geometry to be designed inside the Rol is a
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912 - 913-

breathing isosceles triangle. For this simple formation
geometry, a preliminary formation is designed analytically,
similar to the design of the two-craft formation. This
preliminary formation is then used as an initial guess for
a numerical optimization problem to design a triangle for
maximizing the science gain in the Rol. The orbital
elements of the chief and Deputy 1 are determined as

described in the previous section, with y4.s =20 km. Four
elements of the second spacecraft, Deputy 2, are known.
The semi-major axis, eccentricity and argument of perigee
of Deputy 2 are selected based on the in-plane formation
stability condition and sun-synchronous requirement. To
design a triangle inside Rol, either Deputy 2's inclination
or right ascension of the ascending node must be different
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than that of the chief and Deputy 1. Since the selected
formation geometry is a breathing isosceles triangle,
inclination is selected as a free variable for creating out-
of-plane relative motion. The general formation geometry
proposed is illustrated in Fig. 9(b). The selected elements
for Deputy 2 are

aq

o ad10 =g,

Ag, =dq, =dg, (determines €d,)
deu =.Qd10 =8,

@, =g, =W (30)

As an approximation for the initial guess, Aiy, = iz, —ic,
is selected to be 0.005°. Deputy 2's only remaining free
variable is the true anomaly and is taken to be the average
of the chief's and Deputy 1's true anomalies at the
entrance of the Rol. The numerical optimization problem
setup is discussed next. It is seen in Fig. 9(b) that, at any
point in the orbit, each side of the triangle is defined using

R] =r1—rc
Ry=r;—rc
R3 =r,—r (31)

Let 012, 613 and 0,3 define the three inner angles of the
triangle. Assuming the geometry shown in Fig. 9(b), the
inner angles are computed using

R; -R
_ ~1(R1-Ry
61, = cos <R1R2 >
R; -R
o -1 1 3
013 = — cos <R1R3 )
R, -R
_ _1(R2-Rs3
6,3 = cos < RR; ) 32)

The acceptable range for the two equal angles, &, and 63,
within the Rol is taken to be between 35° and 70°. To avoid
designing a triangle with small (less than 35°) or large
(greater than 70°) equal angles in the Rol, the cost function
is defined for an equilateral triangle as follows:

J= /Rol [(912(f)*g)2+ (913(f)*g)2+ (923(0*%)2} dt
(33)

The continuous cost function in Eq. (33) is discretized at N
integration steps within the Rol. Therefore, Eq. (33) is
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approximated as
N

= (00D 0 (03

k=

(34)

The single-orbit numerical optimization problem for
designing an isosceles triangle solar sail formation within
the Rol is given by
minimize J
with respect to Aceg
subject to Agj, =0, Aa;, =0
ACD]O = 0, A‘qu =0

Air, =0 (35)

where j=1,2 denotes the jth deputy solar sail and the
array A =[Af;, Af,, Aiy] contains the free variables
for the optimization problem. The generalization of this
optimization problem is discussed in Ref. [11]. To solve
the optimization problem, a nonlinear programming
problem (NLP) solver is used. In this paper, MATLAB®’s
constrained minimization routine fmincon, with the
active-set algorithm, is used to find a locally optimal
solution. As shown in Fig. 10, despite the evolution of 8,
and 6,3, the maximum difference between these two
angles is less than 6° throughout the entire year. This is a
direct consequence of both imposing the in-plane quasi-
periodic condition and the particular simple geometry
selected for flying three solar sails. If there is no
constraint on the inner angles and the shape of the
triangle, the triangle formation around perigee can be
used to study the day-side simultaneously. The total
number of days that the equal angles of the isosceles
triangle formation are within 35° and 70° inside the Rol
is 137 days. If the lower bound for the equal angles is
raised to 40°, the total number of days that the forma-
tion is ideal for collecting science inside the Rol is
reduced to 105. The variation in differential orbital
elements are shown in Fig. 11. The behavior of the
differential elements is similar to that in the two-craft
formation example. The relative motion of Deputy 1 and
Deputy 2 in the chief's LVLH frame is illustrated in
Fig. 12. As expected, the in-plane relative motion is
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Fig. 13. Inter-spacecraft range for triangle formation.

quasi-periodic due to the enforcement of the in-plane
formation stability condition. The evolution of the tri-
angle formation in the chief's LVLH frame is shown in
Fig. 16 in Appendix A. Designing a close-approach free
formation is critical, especially for solar sails due to the
absence of high thrust, to avoid potential collisions. The
inter-spacecraft ranges are illustrated in Fig. 13. The
closest approach happens on day 78 with R, ~6.06 km
and R3~6.08 km. Thus, the formation remains safe
throughout the entire year. The classical orbital ele-
ments of the chief, Deputy 1 and Deputy 2 are presented
in Table C2 in Appendix C. Using Eq. (13), the required
characteristic acceleration for the chief and deputy
solar sails is k.=0.12131, k4, =0.12134 mm/s2, and
kq, = 0.12133 mm/s?, respectively.

5. Effects of perturbations

Although the effect of Earth's nonsphericity on the
relative motion is minimal because of the high altitude
of the orbits considered [4], the perturbations due to the
gravitational effects of the moon and sun cannot be
ignored. Thus, the equations of motion given in Eq. (1)
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are modified as follows:

'f:—%r-l-as—i-a@-l-a(( +ap (36)
where ag, ag and a, are the accelerations due to the
Earth's nonsphericity, lunar and solar gravitational effects
respectively. The effects of the perturbations on formation
stability are analyzed for a two-craft formation designed
according to the simple procedure described in Section 4.1
with y4es =30 km. The 10Rg x 30Rg ecliptic orbit proposed
for the GEOSAIL mission is used as the chief orbit. The initial
conditions for this two-craft formation are presented in Table
C3 in Appendix C. The required characteristic acceleration for
the chief and deputy solar sails is k.=0.13547 and
ky=0.13553 mm/s?, respectively. Assuming a constant solar
radiation of P = 4.56 x 10 % N/m? and solar sail efficiency of
1n=0.85, the required sail loading o =m/A=2nP/k for
generating the characteristic acceleration of k.=0.13547 mm/
s? is 57.2 g/m?. For a solar sail with a total launch mass of
m=100 kg, a reflectable area of A~ 1750 m? is required for
generating the computed sail loading. The numerical simula-
tion is performed using the high-fidelity FreeFlyer® software.
The simulation is run with an 8th order Runge-Kutta inte-
grator that includes a 21 x 21 gravity model, along with the
lunar and solar gravity perturbations. The simulation begins at
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Fig. 15. Two-craft relative motion under perturbations over one year.

the spring equinox (March 20, 2015) with an equatorial
inclination of 23.4° corresponding to an orbit that lies in the
ecliptic plane. The variations in the chief's orbital elements
over one year are shown in Fig. 17 in Appendix B. Despite the
variations in orbit eccentricity and inclination, the argument
of perigee remains sun-synchronous. The relative in-plane
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motion is quasi-periodic for at least seven months as
illustrated in Fig. 14(a) and (b).The relative out-of-plane
variation is small within this period as seen in Fig. 15.
Both the in-plane and out-of-plane motions are
degraded after seven months as shown in Figs. 14(c)
and (d) and 15. During the first 6 months, the minimum
and maximum inter-spacecraft ranges are 18.8 km
and 70.1 km respectively. The minimum and maximum
inter-spacecraft ranges evolve to 1.3 km and 128.8 km
after one year.

Because the coupled orbit and attitude control of a solar
sail formation are difficult using reflectivity modulation [7],
achieving the designed formation using reflectivity modula-
tion technology may not be possible. An ideal spacecraft may
comprise a hybrid propulsion system that combines a reflec-
tivity modulated solar sail with solar electric propulsion
similar to that of the Earth pole-sitter mission proposed by
Ceriotti and Mclnnes [12]. Solar electric propulsion could
primarily be used for achieving the target states while re-
flectivity modulation technology could be used during the for-
mation flight to maintain both the simple sun pointing
attitude and the constant characteristic acceleration that re-
sults from enforcing the in-plane formation stability condition.

6. Conclusion
Solar sail formations with all sails using the same

control have a significant operational advantage. An
analytic condition for determining target states that lead

to in-plane quasi-periodic relative motion is derived and
numerically verified, assuming that all the sails use the
same sun-pointing steering law for precessing their
orbit apse-line. It is shown that in-plane leader-follower
and isosceles triangle formations last a long time under
the simple sun-pointing steering law and thus reduce
the complexity of active control during the formation
flight period. The effects of perturbations on the in-
plane leader-follower formation are discussed. It is
shown that the formation remains quasi-periodic for at
least seven months under perturbations due to lunar
and solar gravity and Earth's nonsphericity. The in-plane
leader-follower formation can easily be extended to a
multiple spacecraft formation. Because each set of target
states corresponds to a slightly different required char-
acteristic acceleration, each sail must have the capability
of varying its characteristic acceleration to achieve and
maintain the target states.
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Appendix A. Three-craft formation plots

Fig. 16 illustrates the evolution of the isosceles triangle
during the first orbit in the chief's LVLH frame.
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Appendix B. Effects of perturbations on orbital elements
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Appendix C. Initial conditions

This section contains all the initial conditions (target
states) determined in Sections 4 and 5.

Table C1
Initial conditions for two-craft simulation.

Orbital elements Chief Deputy

a 130,585 130,585

e 0.4634 0.46356

i 2° 2°

Q 57.3° 57.3°

® 270° 270°

f 163.0361° 163.0454°
Table C2

Initial conditions for three-craft simulation.

Orbital elements Chief Deputy 1 Deputy 2

a 130,585 130,585 130,585

e 0.4634 0.46351 0.46345

i 1° 1° 0.996°

Q 57.3° 57.3° 57.3°

0] 270° 270° 270°

f 163.0361° 163.0423° 163.0392°
Table C3
Initial conditions for high-fidelity two-craft simulation.

Orbital elements Chief Deputy

a 127,562.74 127,562.74

e 0.5 0.50017

i 0° 0°

Q0 0° 0°

[ 0° 0°

f 164.2195° 164.2288°
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