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Nomenclature

a = semimajor axis, km
ar, aθ, ah = solar radiation pressure acceleration along radial,

along-track, and cross-track directions, km∕s2
as = solar radiation pressure acceleration, km∕s2
a♁ = acceleration due to Earth’s nonsphericity, km∕s2
a☾ = acceleration due to moon’s gravity, km∕s2
a⦿ = acceleration due to sun’s gravity, km∕s2
�Ci� = rotation matrix about i axis
e = eccentricity
f = true anomaly, deg
i = inclination, deg
J = cost function
k = characteristic acceleration of solar sail, km∕s2
N = Earth-centered ecliptic inertial frame
�NO� = direction cosinematrix that transfers vector fromO

to N frame
n̂s = sun-line unit vector
n̂ = sail normal unit vector
O = local-vertical–local-horizontal frame
RE = Earth’s radius, km
r = sail position vector, km
T = orbit period, s
T̂ = unit thrust direction
V = local-velocity-normal-binormal frame
δœ = differential orbital elements
λs = sun longitude measured from vernal equinox, deg
μ = Earth’s gravitational constant, km3∕s2
Ω = right ascension of ascending node, deg
ω = argument of perigee, deg
œ = array containing classical orbital elements

�a; e; i;Ω;ω; f�T

Subscripts

c = chief solar sail
d = deputy solar sail

I. Introduction

S OLAR sail low-thrust propulsion is capable of achieving long
residence in the geomagnetic tail by continuously precessing the

orbit apse line. McInnes et al. [1–3] propose the low-cost GEOSAIL
mission to explore the Earth’s magnetosphere using a single low-
performance solar sail. In the GEOSAIL mission, the solar sail would
fly in a moderately elliptical orbit that lies in the ecliptic plane and
would employ a simple sun-pointing steering law to precess the orbit
apse line sun synchronously, allowing the orbit apogee to remain in the
geomagnetic tail throughout the entire year. Many magnetosphere
missions require more than a single spacecraft to achieve their scienti-
fic objective. NASA’s Time History of Events and Macroscale Inter-
actions during Substorms and Magnetospheric Multi-Scale missions
along with ESA’s Cluster II mission are some of the currently active
magnetosphere missions requiring multiple spacecraft to accomplish
their scientific objectives [4]. Gong et al. [5] propose solar sail
formation flying for exploring the geomagnetic tail. In [5], the chief
solar sail employs a sun-synchronous orbit, while the deputy solar sail
uses active control to enable close-proximity formation flying.Mu et al.
[6] expand the work in [5] by applying two nonlinear-based control
laws that use reflectivity modulation for enforcing a projected-circular
relative motion. The coupled control of a reflectivity modulated solar
sail formation is discussed byMu et al. in [7]. The results indicate that it
is difficult to control the solar sail’s attitude and orbit simultaneously
using reflectivity modulation. Natural solar sail formations for
GEOSAIL formation flying are proposed in [8]. An analytic condition
for determining target states that lead to in-plane quasi-periodic relative
motion under solar radiation pressure is derived, assuming all sails use
the same sun-pointing steering law for precessing their orbit apse lines.
The problem of formation deployment and the establishment of a

desired relative geometry for GEOSAIL formation flying has yet to
be explored in the literature. In this Note, a natural leader–follower
formation is established using a hybrid system that combines solar
sailing with solar electric propulsion (SEP). The main advantage of a
natural leader–follower formation is that it only requires the sails to
maintain a sun-pointing attitude once the desired relative motion is
achieved via the SEP system. The two sails employ the sun-pointing
attitude to precess their orbit apse lines sun synchronously. The chief is
assumed to be a low-cost solar sail that only maintains a sun-pointing
attitude, while the deputy is a hybrid systemwith a small SEP thruster.
The problem of deployment and the establishment of the natural for-
mation using low-thrust one-burn and two-burn maneuver strategies
are discussed in detail. Because the SEP system is unable to fire
thrusters in the direction of the sail’s reflective surface, the formation
establishment problem is a constrained two-point boundary value
problem (TPBVP). This constrained two-point boundary value pro-
blem is solved numerically using a predictor-corrector method. A
Monte Carlo analysis is performed to study the solution space for the
problem of formation establishment when the two sails are inserted
into slightly differentmission orbits due to the launcher’s attitude error.
The effects of Earth’s nonsphericity, lunar gravity, and solar gravity are
included in all the simulations to ensure a high-fidelity analysis.

II. Equations of Motion of Solar Sails in Earth Orbits

The general equations of motion for a solar sail in an Earth orbit is
written as

�r � −
μ

r3
r� a♁ � a☾ � a⦿ � as (1)

where r is the position vector of the spacecraft relative to the
Earth and a♁, a☾, a⦿, and as are the accelerations due to Earth’s
nonsphericity, lunar gravitational effects, solar gravitational effects,
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and solar radiation pressure, respectively. The adopted inertial frame
N � fO;X;Y;Zg has its originO at the center of theEarthwhere thex
axis points from the origin to the equinox and z points along the ecliptic
north pole. The y axis completes the right-handed coordinate system.
For a flat, rigid, perfectly reflecting solar sail, the solar sail’s acceleration
due to the Solar Radiation Pressure (SRP) can be written as [1]

as � k�n̂s · n̂�2n̂ (2)

where n̂ is a unit vector normal to the sail surface, n̂s is a unit vector
from the sun to the Earth, and the parameter k is the sail’s charac-
teristic acceleration. For the GEOSAIL mission, McInnes et al. [1–3]
propose flying a solar sail in the ecliptic plane using a simple steering
law consisting of the sail’s normal vector continuously pointing along
the sun linewithin the orbit plane such that the rotation of the orbit apse
line is synchronous with the annual rotation of the sun line. The sun-
synchronized precession of the orbit apse line allows the orbit apogee to
remain in the geomagnetic tail continuously, thus enabling science data
collection for long periods. The required characteristic acceleration k to
precess the orbit sun synchronously is dependent on the shape of the
orbit and is computed according to [1,2]

k�a; e� � 2

3
_λs

e�������������
1 − e2

p
���
μ

a

r
(3)

As shown in Fig. 1a, the SRP acceleration Oas expressed in the sail’s
local-vertical–local-horizontal (LVLH) frame may be written as

Oas � k�n̂s · n̂�2On̂ �
O
2
4 ar
aθ
ah

3
5 �

O
2
4 k cos α cos ϕ
k cos α sin ϕ
−k sin α

3
5 (4)

For the LVLH frameO � fo; ôr; ôθ; ôhg, ôr points along the sail’s
position vector, ôh is directed along the orbit angular momentum
vector, and ôθ � ôh × ôr completes the right-handed coordinate
system. As illustrated in Fig. 1b, the sail’s normal n̂ points along the
sun line within the ecliptic plane such that the identity ω � λs and
n̂ · n̂s � 1 hold. This leads to the orbit apse line always pointing
along the sun line n̂s. The sail’s sun-pointing attitude leads to having

ϕ � π − f and α � 0. Substituting these identities to Eq. (4), the
sail’s normal vector becomes On̂ � O�− cos f sin f 0 �T . The
direction cosine matrix �NO� � �N ôr

N ôθ
N ôh � is used to

transfer the sail’s normalOn̂ from the reference frameO to the inertial
frameN to be used in Eq. (1). The sunlight direction expressed in the

inertial frame N is N n̂s � N �− cos λs − sin λs 0 �T , where the
longitude of the sun λs is determined through λs � λs0 � _λst.
Another local reference frame used in this Note is the velocity-

normal-binormal frame V � fo; ôv; ôh; ôbg, where ôv points along
the local velocity direction, ôh is directed along the orbit angular
momentum vector, and ôb � ôv × ôh completes the right-handed
coordinate system.
The mission orbit considered is an 11RE × 30RE orbit that lies in

the ecliptic plane. The corresponding orbit period isT � 5.4457 days.
The orbital elements for the mission orbit are a � 130; 751.8 km,
e � 0.4634, i � 0 deg, ω � 0 deg, and Ω � 0 deg.
Although a hybrid sail enables the establishment of formation

geometries that may not be possiblewith a solar sail alone, the design
of such a system is significantly more difficult. With the additional
mass of the SEP system, the required reflective surface area must
increase in order to maintain the required characteristic acceleration
given in Eq. (3) for sun-synchronous precession of the orbit apse line.
The main advantage of the SEP system is that the thrust value is
known upfront and is accurately estimated on the ground, unlike a
solar sail for which the exact value of the sail’s characteristic ac-
celeration model is difficult to estimate [9]. Furthermore, the SEP
system is more reliable in terms of generating the required accelera-
tion since it is not prone to the physical issues that a sail’s reflective
surface is prone to, such as degradation, wrinkles, and a large uncer-
tainty of the optical properties. Because the natural formation
requires no formation maintenance, the SEP system is primarily used
for establishing the desired formation. This allows for the selection of
a small SEP system, leading to only a small increase in solar sail mass
and reflective surface area. The required characteristic acceleration to
precess the apse line of an 11RE × 30RE orbit sun synchronously is
k � 0.12119 mm∕s2. Assuming a constant solar radiation of P �
4.56 × 10−6 N∕m2 and solar sail efficiency of η � 0.85, the required
sail loading σ � 2ηP∕k � m0∕As for generating the characteristic
acceleration of k � 0.12119 mm∕s2 is 63.96 g∕m2. The total mass
of the hybrid system is computed to bem0 � 120 kg, assuming only

Fig. 1 Sail’s orbit geometry and general orientation.
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0.5 kg for the propellant mass. This crude mass estimation is based
on [10] and [11]. For a hybrid sailcraft with a total launch mass
of m0 � 120 kg, a reflectable area of As ≈ 1876 m2 is required for
generating the computed sail loading. The total surface area of the sail
is computed usingA � As � Acells, whereAcells is a small area (5%of
the total area) coveredwith thin film solar cells used to provide power
for the SEP system. The SEP system is assumed to be able to generate
the maximum thrust of Tmax � 0.01 N with ISP � 2500 s. Such a
SEP system falls within the scope of current technology [12]. For a
typical square sail configuration, the size of the sail is approxi-
mately 44 × 44 m.

III. Natural Leader–Follower Formation

In this section, a natural formation is proposed for flying two solar
sails in a leader–follower formation in an eccentric orbit. It is assumed
that both solar sails always point toward the sun line to individually
precess their orbit apse line sun synchronously. The goal is tomaintain
a formation without continuously varying the sail’s orientation or
changing the sail’s reflectivity. Let œd0 and œc0 denote the initial
classical osculatingorbital elements for the deputy and chief solar sails,
respectively. The differential orbital elements are defined as
δœ0 � œd0 − œc0 � � δa0 δe0 δi0 δΩ0

δω0
δf0 �T . A natural

leader–follower formation may be established if the following initial
differential orbital elements are established at orbit apogee:

δœ0 � � 0 0 0 0 0 δf0 �T (5)

If the chief is in a circular orbit, the deputy holds a constant offset
behind or ahead of the chief throughout the entire orbit, depending on
the sign of δf0. For a chief in an eccentric orbit, the deputy’s relative
motion is a bounded periodicmotion that takes place behind the chief if
δf0 < 0 and ahead of the chief if δf0 > 0 and satisfies the condition

_y�t0�
x�t0�

� −n�2 − e���������������������������������
�1 − e��1� e�3

p (6)

at orbit apogee [13], where n and e are the chief’s mean motion and
eccentricity, respectively. The formation size is only dependent on the
magnitude of δf0. An example of such relative motion is illustrated in
Fig. 2 for two different formation sizes of δf0 � −0.001 deg and
δf0 � −0.01 deg. The minimum and maximum distances between
the chief and deputy sails occur at the chief’s apogee and perigee,
respectively. The minimum distance can be analytically computed
using the along-track equation y ≈ rc�δf� δω� δΩ cos i� [14].

Since δω � δΩ � 0, the minimum distance is determined as
ymin � rcδf. To determine the center and the radius of the relative
circular orbit, the relative motion is propagated for a full orbit, and a
least-squares solution is used to fit a circle to the deputy’s relative
motion. Let �xo; yo� and R denote the center and the radius of the
relative circular motion of the deputy. To determine �xo; yo� andR, the
problem

minimize J �
XN
i�1

��xi − xo�2 � �yi − yo�2 − R2�2

with respect to xo; yo; R (7)

must be solved, where N is the number of integration steps taken in
propagating the formation for one full orbit.Thisminimization problem
may be converted to a simple least-squares problem by a change of
variables. Expanding the cost function leads to

J �
XN
i�1

�x2i − 2xixo � y2i − 2yiyo � w�2

wherew � x2o � y2o − R2 is used as a new variable. Let ϵ � Ax − b,
where

A�

2
6664
−2x1 −2y1 1

−2x2 −2y2 1

..

. ..
. ..

.

−2xN −2yN 1

3
7775; x�

"xo
yo
w

#
; b�−

2
6664

x21�y21
x22�y22

..

.

x2N �y2N

3
7775

Hence, the cost function in Eq. (7) may now be rewritten as
J � kϵk22. The center and the radius of the circular relativemotion are
found using the least-squares solutionx � �ATA�−1ATb. The radius
of the relative circular orbit is solved using R �

��������������������������
x2o � y2o −w

p
. For

the δf0 � −0.001 deg case shown in Fig. 2, the center and the orbit
radius of the deputy’s relative motion are �xo; yo� � �0;−6.33� km
and R � 2.98 km. For the formation size δf0 � −0.001 deg, they
are �xo; yo� � �0;−63.3� km and R � 29.8 km. The formation
stability of the natural leader–follower formation under gravitational
and SRP perturbations is examined for a formation established using
δ0 � � 0 0 0 0 0 −0.001 �T . The simulation is generated for
two different periods as illustrated in Fig. 3. The relative out-of-plane
motion degrades, but the effect is negligible, with a maxi-
mum out-of-plane separation of only 9 m. The formation remains
quasi-periodic even after six months, despite the secular drift in
the along-track direction. In reality, the achievement of the desired
differential elements is bound to have small errors. Thus, formation
reconfiguration is necessary after a few months.

IV. Sails Deployment into Mission Orbit

In this section, formation deployment into the GEOSAIL mission
orbit is discussed. This analysis is necessary for an accurate model-
ing of the formation establishment problem. It is assumed that a
dedicated launcher releases the two solar sails directly into the
11RE × 30RE mission orbit. Note that to obtain the GEOSAIL
mission orbit an auxiliary upper stage is required, regardless of the
selected launch vehicle. The requirement for the two sails to be
injected directly into the mission orbit narrows down the launch
vehicle options and increases mission cost. However, in terms of
flight dynamics, it is the most realistic option since the alternative
would require injecting the sails into lower orbits and performing
orbit raising to achieve the GEOSAIL mission orbit.
The two sails are released sequentially within the orbit plane at the

perigee of the operational mission orbit. Because the desired natural
formation is an in-plane relative motion, the deployment must be
conducted within the orbit plane, since correcting the out-of-plane
differential elements δi and δΩ is difficult even for a hybrid solar sail
with a SEP system. The chief is released along the local velocity

Fig. 2 Deputy’s relative motion in the chief’s LVLH frame for various

true anomaly offsets.
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direction. The deputy sail is released in a slightly different direction
than thevelocity to avoid close approaches. In this study, the deputy is
assumed to be released along a direction that is 1 deg off the local
velocity directionwhile lyingwithin the orbit plane. The springs used
in deploying the sails are assumed to be capable of generating an
impulsive velocity change of 5 m∕s relative to the auxiliary upper
stage. This value is a conservative value that is one order of magnitude
higher than the minimum requirement for the launch vehicle upper
stage [15]. Thus, upon deployment, the impulsive velocity changes
for the chief and deputy sails expressed in the V frame are
VΔvc � �Δvv Δvh Δvb �T � � 5 0 0 �T m∕s and VΔvd �
� 4.9992 0 0.0873 �T m∕s, respectively. The chief sail is released
first, followed by the deputy after a buffer time to further reduce the
chance of a close approach immediately after the deployment. The
importance of the order in which the sails are released is explained in
Sec. V. During the next three orbits, the sails deploy their reflective
surfaces and achieve the desired sun-pointing mission attitude. The
three-orbit coasting time allows the ground segment to perform orbit
and attitude determination before establishing the desired natural
formation. The postdeployment coasting period is necessary inorder to
power up the SEP system using the solar cells, though the coasting
durationmay vary. To determine the effects of the sails’deployment on
the orbit, Gauss’s variation-of-parameters equations are used. Because
the sails are deployed along the velocity direction, there is no out-of-
planevariations. Therefore, the threemain orbital elements that change
after deployment are [16]

Δa � 2a2v

μ
Δvv (8a)

Δe � 1

v

�
r

a
sin fΔvb � 2�e� cos f�Δvv

�
(8b)

Δω� 1

ev

�
−
�
2e� r

a

�
cos fΔvb�2 sin fΔvv

�
−
r sin θ cos i

h sin i
Δvh

(8c)

where θ � ω� f. For the chief sail that is released first at the orbit
perigee, the changes in the orbital elements are Δac ≈ 1236.67 km,
Δec ≈ 0.005075, and Δωc ≈ 0 deg. In this case, the buffer time
selected is 25 min. This buffer time directly affects the differential
orbital elements postdeployment and, consequently, affects the finite
burn for establishing the formation. Therefore, the deployment buffer

timemay be used as a knob to turn for the establishment of a particular
formation size. Releasing the deputy after 25 min leads to the deploy-
ment taking place at the true anomaly of f ≈ 3.5 deg. Using Eq. (4),
the changes in the deputy’s a, e, andω areΔad ≈ 1235.97 km,Δed≈
0.005071, and Δωd ≈ 0.021 deg. The corresponding differential
orbital elements immediately after deployment are summarized in
Table 1. To establish the desired natural formation proposed in Eq. (5),
δa, δe, and δω must vanish at orbit apogee.

V. Establishment of Natural Leader–Follower
Formation

Formation establishment is a constrainedTPBVP for a hybrid solar
sail system because of the SEP systems’ inability to generate thrust in
the direction of the sail’s reflective surface. As described in Eq. (5),
the desired formation is achieved upon nullifying the differential
elements according to δœ � � 0 0 0 0 0 δf �T at the orbit
apogee. The main elements that require adjustment for establishing
the desired formation area, e, andω since the deployment takes place
within the orbit plane. Although themain goal is to nullify δa, δe, and
δω, there is a small variation in δi because of lunar–solar effects, and
it must be corrected for establishing the desired formation. Further-
more, the sails may not be inserted into the same exact orbit plane
as designed nominally, causing variations in δi and δΩ. For these
reasons, the relative out-of-plane motion must be corrected, even
though the corrections are small relative to the corrections required
for nullifying the in-plane differential elements. Thevariation in δΩ is
negligible. Therefore, only δi is nullified for correcting the relative out-
of-plane motion in solving the TPBVP. Although it is important to
nullify all five differential elementsmentioned to achieve the proposed
natural formation, two differential elements are more important than
the others, namely, δa and δω. The identity δa ≡ 0 must hold for any
bounded relative motion, such as the proposed natural formation. A
nonzero δa causes the formation to drift apart due to each spacecraft
having a different orbit period. Achieving δa ≡ 0may not be possible
in reality, but jδajmust be minimized to have a quasi-periodic relative
motion. For the selected burn locations in this Note, only δω > 0 can
be nullified without violating the SEP physical constraint. This is
explained in more detail in Sec. V.A.

a) 3 months b) 6 months
Fig. 3 Deputy’s relative motion in the chief’s LVLH xy plane under perturbations.

Table 1 Postdeployment

differential element

Differential element Value

δa, km −0.7
δe −4.24 × 10−6

δω, deg �0.021
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Two solutions are proposed for solving the constrained TPBVP. In
the first solution, a one-burn maneuver performed at the deputy’s
perigee is considered. For the second solution, the first burn is
performed at the deputy’s perigee, and the second burn is performed
at the deputy’s apogee. To numerically solve the constrained TPBVP,
a predictor-corrector procedure is developed in the high-fidelity
FreeFlyer mission design software. The deputy’s thruster is assumed
to generate the constant thrust value of 0.01 N throughout the
maneuver. The thruster burn direction is expressed in the deputy’s
local V frame. The differential element δf only affects the formation
size, and it has no influence on the shape of the relative orbit.
Depending on the deployment strategy, enforcing a particular δf
valuemay lead to overconstraining the problem and to the divergence
of the predictor-corrector method for the selected number of burns
and burn locations in this study. Therefore, the δf is not explicitly
included in the predictor-corrector setup.

A. One-Burn Maneuver

Let T̂ and Δt denote the finite burn unit direction and duration,
respectively. The finite burn starts at the deputy’s perigee. Using the
predictor-corrector method, T̂ and Δt are modified until δœ �
� δa δi δω �T � � 0 0 0 �T is achieved at the next chief’s orbit

apogee. The differential element δe is not explicitly nullified in the
one-burn strategy. As evident from Table 1, the deputy must increase
its semimajor axis and eccentricity to nullify the negativevalues of δa
and δe. To increase both the semimajor axis and eccentricity by
burning at the orbit perigee, the deputy must burn along the velocity
direction (i.e., Δvv > 0). The corresponding increase in the apogee
radius, as a result of burning along velocity at the perigee, leads to an
increase in the deputy’s semimajor axis and eccentricity. Note that,
depending on the values of the desired a and e and the initial orbit, a
one-burn strategy at perigee does not always lead to achieving the
desired a and e. In such a case, both the perigee radius and the apogee
radius must be adjusted, which requires a two-burn strategy.
The required burn direction at perigee to nullify δω depends on the

sign of postdeployment δω. To correct for the positive δω value, the
deputy must decrease its argument of perigee as illustrated in Fig. 4a.
Inspecting Eq. (8c), to have Δω < 0, we must have

Δvb >
2a

2ae� r
tan fΔvv (9)

where Δvv > 0 and it is assumed that Δvh � 0. Therefore, to
decrease the deputy’s argument of perigee (i.e., to have Δω < 0) by

Fig. 4 Sign of δω after deployment and the direction of burn in the one-burn strategy.

a) Formation establishment via one-burn strategy at perigee b) 60 days of propagation after formation establishment

Fig. 5 Deployment and formation establishment as seen in the chief’s LVLH frame.
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burning at perigee, the condition of Δvb > 0 must hold. This is the
main reason why the chief solar sail is deployed first, because if
the order of the deployment is switched, the deputy must then
increase its ω to correct for δω < 0. At perigee, this can only be
achieved if the deputy executes a radially inward maneuver
(i.e., Δvb < 0), which violates the SEP system’s physical constraint
as shown in Fig. 4b. For the deployment scenario considered in
Sec. IV, the predictor-corrector method converges to a burn unit
direction

VT̂ � � 0.00901 −0.00413 0.99995 �T and burn dura-
tion of 4011.092 s (≈67 min). As expected, the burn direction is
radially outward (along the binormal direction ôb) and has a positive
component along the velocity direction. The nonzero normal com-
ponent is required to correct for the small nonzero δi that is caused
by the lunar–solar perturbations. The net change in velocity is
0.3343 m∕s. The total propellant used by the deputy is approxi-
mately Δm � 1.64 g. Figure 5a illustrates the entire scenario
consisting of the formation deployment and the establishment of the
desired formation using the proposed one-burn maneuver at perigee.
As noted earlier, the chief sail is released first along the velocity
direction. After 25 min, the deputy sail is released along a direction
that is 1 deg off the local velocity direction. Because there is a
difference between the orbit periods of the two sails due to nonzero
δa, the deputy experiences a secular drift in the along-track direction
during the next three orbits before the finite burn begins at the
deputy’s perigee. To analyze the formation’s stability, the established

formation is propagated for 60 days as illustrated in Fig. 5b. Despite
the presence of the perturbations, the formation remains useful
throughout the two-month period.

a) Formation establishment via two-burn strategy at perigee 
and apogee

b) 60 days of propagation after formation establishment

Fig. 6 Deployment and formation establishment as seen in the chief’s LVLH frame.

a) First burn propellant expenditure b) Second burn propellant expenditure

Fig. 7 Histogram for deputy’s finite burn duration and propellant expenditure.

Fig. 8 Histogram for postmaneuver δf values.
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B. Two-Burn Maneuver

Typically, changing the orbit semimajor axis and eccentricity
requires adjusting both the perigee radius and apogee radius. Thus, a
two-burn maneuver may be needed, depending on the postdeploy-
ment differential elements. In this case, the first burn is performed at
perigee followed by the second burn at apogee. The two-burn strategy
allows the deputy to nullify all four nonzero differential elements,

namely, δa, δe, δi, and δω. A sample two-burn solution for the same
initial condition used in the one-burn scenario is shown in Fig. 6a.
The established formation is propagated for 60 days to determine
formation stability under perturbations.
As shown in Fig. 6b, the relative trajectory remains quasi-periodic

during the 60 day propagation period. Note that the closest approach
of 4.6 km occurs at the next perigee, following the deployment of the

a) Postdeployment δ a

δ e

δ i

δω δω

δ i

δ e

δ ab) Postmaneuver

c) Postdeployment d) Postmaneuver

e) Postdeployment f) Postmaneuver

g) Postdeployment h) Postmaneuver

Fig. 9 Histograms for postdeployment and postmaneuver differential orbital elements.
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deputy sail. The required finite burn unit direction and duration for
the first burn at perigee are VT̂1 � � 0.0125 −0.7161 0.6979 �T
and Δt1 � 4108.741 s (≈68.5 min). For the second burn at
apogee, the finite burn unit direction and duration are

VT̂2 �
�−0.0335 −0.7447 −0.6665 �T andΔt2�1444.163s (≈24 min).
The net velocity changes for the two burns are 0.2571 and
0.0905 m∕s, respectively. The propellant expenditures for the first
burn and the second burn are approximately Δm1 � 1.68 and
Δm2 � 0.59 g, respectively. Both burn directions satisfy the SEP
physical constraint. Inspecting the second component in both burn
unit directions, it is clear that the transfer trajectory is an out-of-plane
transfer orbit. The maximum out-of-plane point in the transfer
trajectory is 3 km.
From the perspective of ground system support, it is best to

minimize the number of maneuvers to lower the cost of staffing and
expensive communication network coverage. Thus, the one-burn
strategy has an advantage over the two-burn strategy in terms of the
cost of mission support. Furthermore, the net velocity change for the
one-burn maneuver is slightly more efficient than the two-burn
maneuver (by approximately 13.3 mm∕s). Themain drawback of the
one-burn maneuver is that it is not always possible to establish the
desired formation using a single burn, especially when large errors
are introduced during deployment.

VI. Monte Carlo Analysis of Sails Deployment

In this section, a Monte Carlo simulation is performed for the
scenario in which the sails are deployed along the local velocity
direction with some pointing error. The main purpose of this analysis
is to assess the solution space for solving the constrained TPBVP of
formation establishment when the sails are deployed in slightly
perturbed directions than nominally planned. Additionally, since not
every formation size is attainable for a given deployment strategy (δf
is not enforced), it is crucial to determine what formation size is
achievable for a perturbed deployment scenario. This is to minimize
the chance of causing dangerous close approaches after deployment.
Because the springs are assumed to be identical, only the direction of
the deployment is perturbed; the magnitude of the modelled im-
pulsive burn is kept unchanged for both sails. To perturb the direction
along which the sails are deployed, a cone error model is used to
apply the maneuver direction error. In this error model, the perturbed
maneuver direction creates a cone centered about the nominal direc-
tion. Let VΔv be the deployment nominal impulsive burn expressed
in the V frame. AD frame based on the nominal burn VΔv is defined
as follows:

V
d̂1 � VΔv̂ � Δv

kΔvk (10a)

V
d̂2 �

d̂1 × ôh

kd̂1 × ôhk
(10b)

V
d̂3 � d̂2 × d̂1 (10c)

Thus, the direction cosine matrix �VD� � � V d̂1
V d̂2

V d̂3� trans-
fers a vector from the D frame to the V frame. A perturbed burn
direction is created using two consecutive rotations of the nominal
Δv vector through the cone angle ϵ and the clock angle ψ . Let E
denote the frame that the perturbed burn direction is expressed in after
two consecutive rotations are applied to the nominal burn direction
Δv̂. The direction cosine matrix used to perturb the nominal burn
direction is �ED� � �C2�ϵ���C1�ψ��. Thus, the perturbed burn vector
Δvp expressed in the local V frame is written as

VΔvp � kΔvk�VD��ED�TEΔv̂ (11)

where EΔv̂ � ϵ̂1 � � 1 0 0 �T . The clock angle ψ is randomly
chosen using a uniform distribution between zero to 360 deg. The
cone angle ε is randomly selected using aGaussian distributionwith a
zero mean and range of 3 deg �3σ�. The number of samples for this
Monte Carlo analysis is set to 1000 cases. For 83% of the cases run,
the numerical solver converges to a solution with burn directions
satisfying the physical constraint of the SEP system. Out of the 170
failed cases, 68 cases fail due to the divergence of the predictor-
correctormethod. The remaining failed cases are due to the predictor-
corrector method converging to maneuver plans that violate the
maneuver direction constraint. The histograms in Fig. 7 show the
postdeployment and the postmaneuver values of the differential
orbital elements δa, δe, δi, and δω. In both cases, the formation is
propagated to the apogee before reporting the orbital elements. As
shown in Fig. 7a, the mean δa postdeployment is approximately
500mwith amaximumdifference δa of 2.1 km.As evident in Fig. 7b,
the δa values have converged to only a fewmillimetres after the two-
burn maneuver. On average, the burn duration for first finite burn is
69.2min,while the average for the second finite burn is 24.2min. The
corresponding propellant usage for each burn is shown in Figs. 8a and
8b. The average propellant usages for first and second burns are
Δm1 � 1.69 and Δm2 � 0.59 g, respectively.
As mentioned earlier, δf is not included in the predictor-corrector

solver. Therefore, δf may take on a wide range of values. Figure 9
shows the histogram for δf values for all the cases in which the
predictor-correctormethod converges to a solution. For 812 cases out
of the 830 valid solutions, the jδfj > 0.001 deg, which indicates a
safe formation size since jyminj � 3.4 km for jδfj � 0.001 deg. As
can be seen from the center of the histogram, most cases end up with
δf ≈�0.005 deg, which corresponds to a formation with a center at
�x0; y0� � �0;�31.7�, a radius of R � 14.9 km, and a closest
approach of ymin � �16.7 km.

VII. Conclusions

A natural in-plane leader–follower formation is proposed for
GEOSAIL mission formation flying using hybrid solar sails that
combine solar sailing with a solar electric propulsion (SEP) system.
The main advantage of a natural formation is that it only requires the
sails to maintain a simple sun-pointing steering law upon establish-
ment of the desired formation. Another advantage of the natural for-
mation is the fact that both small and large formations are achievable.
Because the SEP system is only used for the purpose of establishing
the formation, only a small and light SEP system is required. It is
shown that the desired formation may be established via a modest
0.01 N SEP thruster with an ISP of 2500 s. The constrained two-point
boundary value problem of formation establishment is numerically
solved using two low-thrust maneuver strategies taking place at
perigee and apogee shortly after injection into theGEOSAILmission
orbit. A Monte Carlo analysis is performed to assess the solution
space for the formation establishment problem when the sails are
injected into slightly different mission orbits due to launch vehicle
upper-stage pointing error. It is shown that the natural formation may
be established more than 83% of the time even when the sails are
injected into slightly different mission orbits.
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