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A B S T R A C T

To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere,
multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail
formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable for-
mation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation
flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail
formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails.
First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are
determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically
derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming
a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are
illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly
drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dy-
namics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements,
and uncertainty in a sail's characteristic acceleration.
1. Introduction

The Earth's magnetic field is continuously subjected to strong in-
teractions with charged particles, leading to many complicated phenom-
ena such as magnetic reconnection. Magnetic reconnection is a poorly
understood phenomenon that occurs when magnetic field lines realign
and magnetic energy is converted to thermal and kinetic energy [1].

Most of what is known about magnetic reconnection comes from
theoretical studies and computer models. Laboratory experiments on
magnetic reconnection have been carried out, such as the Magnetic
Reconnection Experiment (MRX) at Princeton Plasma Physics Laboratory
(PPPL). But despite five decades of research, magnetic reconnection and
its overall operation remain poorly understood. Learning about magnetic
reconnection will allow for the prediction of this universal process which
affects our technological systems, including communications networks,
GPS navigation, and electrical power grids. The key to understanding this
physical process lies in the particle measurements of reconnection sites
via in situ observation. The reconnection sites are initially very small,
between 1000–10,000 km, and vary with solar activity. Furthermore,
reconnections last at most a few minutes per substorm occurrence, which
can happen once per three hours. For these reasons, in situ observation of
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magnetic reconnection is a challenging task [1,2]. Achieving long resi-
dence times in the geomagnetic tail is therefore particularly important for
studying the magnetic reconnection phenomena.

The Earth's magnetic tail is directed along the Sun-Earth line and
therefore rotates annually. Conventional magnetosphere missions
require a highly elliptical orbit with its apogee inside the geomagnetic
tail. The placement of the orbit apogee within a specific region of interest
allows for the maximization of time the spacecraft spends in that region.
An inertially fixed orbit is aligned with the geomagnetic tail only once a
year, which limits the continuous presence and duration of the science
phase to less than three months. Solar sail low-thrust propulsion, how-
ever, is capable of achieving long residence times in the geomagnetic tail
by continuously precessing the orbit apse line, as illustrated in Fig. 1.

McInnes andMacdonald propose the novel low-cost GEOSAIL mission
to explore the Earth's magnetosphere using a single low performance sail
[3–5]. In the GEOSAIL mission, the approximately 2000 m2 solar sail
would fly in a moderately elliptical orbit of size 10 RE � 30 RE that lies in
the ecliptic plane and would employ a simple Sun-pointing steering law
to precess the orbit apse line Sun-synchronously, allowing the orbit
apogee to remain in the geomagnetic tail throughout the entire year. This
edu (H. Schaub).
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Nomenclature

r Sail position vector [km]
μ Earth's gravitational constant ½km3=s2�
as Solar radiation pressure acceleration ½km=s2�
a� Acceleration due to Earth's nonsphericity ½km=s2�
a☾ Acceleration due to moon's gravity ½km=s2�
aʘ Acceleration due to sun's gravity ½km=s2�bns Sun-line unit vectorbn Sail normal unit vector
ar ; aθ; ah Solar radiation pressure acceleration along radial, along-

track, and cross-track direction ½km=s2�
œ Array containing classical orbital elements ½a; e; i;Ω;ω; f �T .

a: semi-major axis [km], e: eccentricity, i: inclination [rad],
Ω: right ascension of ascending node [rad], ω: argument of

perigee [rad], f: true anomaly [rad]
T Orbit period [s]
k Characteristic acceleration of solar sail ½km=s2�
½Ci� Rotation matrix about the i axis
O Local-vertical-local-horizontal (LVLH) frame
N Earth-centered inertial frame
½N O � Direction cosine matrix that transfers a vector from O to N

frame in chief's LVLH frame
λs Sun longitude measured from vernal equinox [rad]
c Denotes the chief solar sail
d Denotes the deputy solar sail

Acronym
SRP Solar radiation pressure
RE Earth radius

Fig. 1. Comparison of chemical and solar sail propulsion in geomagnetic tail exploration.
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particular orbit belongs to a general class of orbits discussed by Rose-
ngren and Scheeres in Ref. [14], where an explicit closed-form solution
for the motion of an object orbiting a planet subjected to SRP acceleration
is derived analytically, using Milankovitch orbital elements. Note that in
this paper, when an orbit is referred to as Sun-synchronous, it should not
be confused with a conventional Sun-synchronous orbit whose preces-
sion rate of longitude of ascending node equals the mean motion of the
Earth about the Sun.

Many magnetosphere missions require more than a single spacecraft
to achieve their scientific objective. Gong and Mu propose solar sail
formation flying for exploring the geomagnetic tail [6–10]. These studies
propose steered formation flying, where the deputy sails must continu-
ously change their orientations to maintain a desired unnatural relative
motion with respect to the chief solar sail, who employs a Sun-pointing
attitude to remain in a Sun-synchronous orbit.

Similar to Ref. [11], this paper takes a completely different approach,
namely natural formation flying, where all solar sails in formation
maintain a fixed or unsteered Sun-pointing attitude solely for the purpose
of precessing their orbit apse lines Sun-synchronously. This work, how-
ever, significantly improves upon the work in Ref. [11] by deriving the
general first-order necessary conditions for SRP invariant relative orbits.
These conditions lead to finding truely SRP invariant relative orbits, as
opposed to quasi-periodic relative orbits that experience a non-negligible
drift rate.
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This paper is organized as follows. Section 2 reviews how a solar sail
may be used to artificially precess the orbit apse line Sun-synchronously
[3,4]. In Section 3, averaging theory is used to determine the secular
variations in the orbital elements due to the SRP force resulting from Sun-
pointing attitude. In Section 4, the necessary conditions for achieving
SRP invariant solar sail formation flight in Sun-synchronous orbits are
derived. In Section 5, it is illustrated how the first-order necessary con-
ditions lead to quasi-periodic relative motions that experience some
relative drift due to truncation of the higher order terms. In Section 6,
numerical optimization techniques are employed to remove any relative
drift arising from the first-order approximation. Employing numerical
methods leads to the design of truly SRP invariant relative motions in
Sun-synchronous orbits. In Section 7, averaging theory is applied to
determine the sensitivity of the formation with respect to constant atti-
tude errors. A set of elegant analytic expressions for the orbital element
rates is derived that accurately predicts the long terms effects of uncer-
tainty in the sail's attitude on the orbital elements. The effects of uncer-
tainty in orbital elements and uncertainty in sail's characteristic
acceleration are explored in Section 8.

2. Equations of motion of solar sails in earth orbits

The general equations of motion for a solar sail in an Earth orbit is
written as

€r ¼ �μ

r3
r þ a� þ a☾ þ aʘ þ as (1)

where r is the position vector of the spacecraft relative to the Earth and
a�, a☾, aʘ, and as are the accelerations due to Earth's nonsphericity, lunar
gravitational effects, solar gravitational effects, and solar radiation
pressure respectively. The adopted inertial frame N ¼ fO; X; Y; Zg has
its origin O at the center of the Earth where the X axis points from the
origin to the equinox and Z points along the ecliptic north pole. The Y
axis completes the right-handed coordinate system. For a flat, rigid,
perfectly reflecting solar sail, the solar sail's acceleration due to the SRP
can be written as

as ¼ kðbns⋅bnÞ2bn (2)

where bn is a unit vector normal to the sail surface, bns is the Sun unit
vector, and the parameter k is the sail's characteristic acceleration, which
is defined as the acceleration experienced by the solar sail at a helio-
centric distance of 1 astronomical unit (AU) while the sail normal is
directed along the sun-line [12]. For the GEOSAIL mission, McInnes and
Macdonald propose flying a solar sail in the ecliptic plane using a simple
steering law consisting of the sail's normal vector continuously pointing



Fig. 2. Sail's orbit geometry and general orientation.
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along the Sun-line within the orbit plane such that the rotation of the
orbit apse-line is synchronous with the annual rotation of the Sun-line
[3–5]. The Sun-synchronized precession of the orbit apse-line allows
the orbit apogee to remain in the geomagnetic tail continuously, thus
enabling science data collection for long periods. The required charac-
teristic acceleration k to precess the orbit Sun-synchronously is depen-
dent on the shape of the orbit and is computed according to [3,4]

kða; eÞ ¼ 2
3
_λs

effiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ffiffiffi
μ

a

r
(3)

To describe the bn vector resulting from the Sun-pointing steering law
in the inertial frame N , a local reference frame must be defined. Let O ¼
fo; bor ; boθ; bohg define the sail's local-vertical-local-horizontal (LVLH)
reference frame with its origin point o at the sail's center of mass, wherebor points along the sail's position vector, boh is directed along the orbit
angular momentum vector, and boθ ¼ boh � bor completes the right-handed
coordinate system. As shown in Fig. 2(a), the α and ϕ angles track the
orientation of the sail's normal with respect to the O frame. Thus, the
sail's normal vector is expressed in the O frame as

O bn ¼
O
2
4 cos α cos ϕ
cos α sin ϕ
�sin α

3
5 (4)

where the left-superscript indicates the frame that the bn vector is
expressed in. As illustrated in Fig. 2(b), the sail's normal bn points along
the Sun-line within the ecliptic plane such that the identity ω ¼ λs andbn⋅bns ¼ 1 hold. This leads to orbit apse-line always pointing along the sun-
line bns. The SRP acceleration as expressed in the LVLH frame may be
written as

O as ¼ kðbns⋅bnÞ2O bn ¼
O
2
4 ar
aθ
ah

3
5 ¼

O
2
4 k cos α cos ϕ
k cos α sin ϕ
�k sin α

3
5

The sail's assumed orientation results in having ϕ ¼ π� f and α ¼ 0.
Substituting these identities to Eq. (4), the sail's normal vector may be
further simplified to
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O bn ¼
O
2
4�cos f
sin f
0

3
5 (5)

The direction cosine matrix ½N O � ¼ ½N bor
N boθ

N boh� is used to transfer
the sail's normal O bn from the reference frame O to the inertial frame N
to be used in Eq. (1). Thus the sail's normal expressed in the N frame is

N bn ¼ ½N O �O bn (6)

The sunlight direction expressed in the inertial frame N can be
written as

N bns ¼
N
2
4�cos λs
�sin λs
0

3
5 (7)

where the longitude of the Sun λs is determined through

λs ¼ λs0 þ _λst (8)

Finally, the SRP acceleration N as is determined by substituting Eq. (6)
and Eq. (7) into Eq. (2). The mission orbit considered in this paper is a 11
RE � 30 RE orbit that lies in the ecliptic plane. The corresponding orbit
period is T ¼ 5:4457 days. The orbital elements for the mission orbit are
a ¼ 130751:8 km, e ¼ 0:4634, i ¼ 0 deg, ω ¼ 0 deg, and Ω ¼ 0 deg.

3. Average effects of SRP in Sun-synchronous orbits

In this section, averaging theory is used to determine the secular
variations in the orbital elements due to the SRP perturbing force in Sun-
synchronous orbits. Classical averaging theory was mainly developed in
order to study nonlinear non-autonomous systems and it's a powerful tool
in determining the long-term dynamics of artificial and natural satellites
in orbital mechanics [13–18]. The Gauss Variational equations are given
as follows [19]

_a ¼ 2a2

h

�
e sin far þ p

r
aθ
�

(9a)
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_e ¼ 1
h
ðp sin far þ ½ðpþ rÞcos f þ re�aθÞ (9b)

_i ¼ r cos θ
h

ah (9c)

_Ω ¼ r sin θ

h sin i
ah (9d)

_ω ¼ 1
he

ð � p cos far þ ðpþ rÞsin faθÞ (9e)

_M ¼ nþ b
ahe

ððp cos f � 2reÞar � ðpþ rÞsin faθÞ (9f)

After substituting the SRP perturbing acceleration in Eq. (2) into Eq.
(9), we have

_a ¼ 2a2k sin fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þμp (10a)

_e ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þμp ðeþ cos f Þsin f

μð1þ e cos f Þ (10b)

_ω ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þμp ð2e cos f � cos 2 f þ 3Þ

2eμð1þ e cos f Þ (10c)

_M ¼ nþ kða2ð1� e2ÞÞ3=2ð2e cos f þ cos 2 f � 3Þ
2a2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þμp ðe cos f þ 1Þ (10d)

Note the appearance of the true anomaly variable f in all terms. To
remove the short-term variations and extract the secular variations, we
average each element separately as follows [13],

_a ¼ 1
2π

∫ 2π
0 _a dM ¼ 1

2π
∫ 2π
0 γ _adf (11a)

_e ¼ 1
2π

∫ 2π
0 _e dM ¼ 1

2π
∫ 2π
0 γ _edf (11b)

_ω ¼ 1
2π

∫ 2π
0 _ω dM ¼ 1

2π
∫ 2π
0 γ _ωdf (11c)

_M ¼ 1
2π

∫ 2π
0

_M dM ¼ 1
2π

∫ 2π
0 γ _Mdf (11d)

The averaging must be performed with respect to the mean anomaly
variableM. Because the equations in Eq. (10) are all expressed in terms of
true anomaly, a change of variable is required before performing the
integration. This change of variable is given by,

dM ¼ n
h
r2df ¼ γ df (12)

Performing the integration, the secular variations of orbital elements
due to the SRP force are written as,

_a ¼ 0 (13a)

_e ¼ 0 (13b)

_ω ¼ 3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

p
2e

ffiffiffi
μ

p (13c)
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_M ¼ n� 3
ffiffiffi
a

p ð1þ e2Þk
2e

ffiffiffi
μ

p (13d)

Note that if the characteristic acceleration is governed by Eq. (3), then
Eq. (13) simplifies to the following expressions,

_a ¼ 0 (14a)

_e ¼ 0 (14b)

_ω ¼ _λs (14c)

_M ¼ n� 1þ e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p _λs (14d)

The average value of _a is zero which is a classical result; the semi-
major axis experiences no secular change as a result of SRP perturba-
tion. It turns out that the eccentricity experiences no secular variation for
a solar sail in a Sun-synchronous orbit. The only two elements that
experience secular variations are the argument of perigee ω and the mean
anomalyM. Note that if k ¼ 0 (no reflectivity), we would have _ω ¼ 0, and
_M ¼ n, which are the classical results from the two-body problem. The
results in Eq. (13) are critical for determining the necessary conditions to
fly a drift-free solar sail formation in a Sun-synchronous orbit. The next
section details how Eq. (13) may be used to derive first-order necessary
conditions for SRP invariant relative motion in Sun-synchronous orbits.

4. Necessary conditions for SRP invariant relative motion

For the relative motion of two solar sails in Sun-synchronous orbits to
remain invariant to the relative effects of SRP, the following two secular
drift rates must be matched,

_ωd ¼ _ωc (15a)

_Md ¼ _Mc (15b)

Assuming that two solar sails are flying in close-proximity and have a
negligible difference between their characteristic accelerations, the first-
order approximation of the deputy's average rates can be written in terms
of the chief's average rates using,

_ωd ¼ _ωcðac; ec; kcÞ þ δ _ω ¼ _ωc (16a)

þ∂ _ω
∂a

���
ac ;ec ;kc

δaþ ∂ _ω
∂e

���
ac ;ec ;kc

δeþ ∂ _ω
∂k

���
ac ;ec ;kc

δk (16b)

_Md ¼ _Mcðac; ec; kcÞ þ δ _M ¼ _Mc (16c)

þ∂ _M
∂a

���
ac ;ec ;kc

δaþ ∂ _M
∂e

���
ac ;ec ;kc

δeþ ∂ _M
∂k

���
ac ;ec ;kc

δk (16d)

where the partials are all evaluated with respect to the chief's orbital
elements and can be expressed using,

∂ _ω
∂a

���
a;e;k

¼ 3ð1� e2Þk
4e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þμ

p (17a)

∂ _ω
∂e

���
a;e;k

¼ � 3ak

2e2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
�
1� e2

�
μ

q (17b)
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∂ _ω
∂k

���
a;e;k

¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

p
2e

ffiffiffi
μ

p (17c)

∂ _M
∂a

���
a;e;k

¼ �3ða2ð1þ e2Þk þ 2eμÞ
4a5=2e

ffiffiffi
μ

p (18a)

∂ _M
∂e

���
a;e;k

¼ 3
ffiffiffi
a

p ð1� e2Þk
2e2

ffiffiffi
μ

p (18b)

∂ _M
∂k

���
a;e;k

¼ �3
ffiffiffi
a

p ð1þ e2Þ
2e

ffiffiffi
μ

p (18c)

Inspecting Eq. (16), in order to match the chief and deputy secular

rates to the first-order approximation, the first variations of δ _ω and δ _M
must vanish. Therefore, the first-order necessary conditions for SRP
invariant relative orbits are determined by,

δ _ω ¼ ∂ _ω
∂a

���
a;e;k

δaþ ∂ _ω
∂e

���
a;e;k

δeþ ∂ _ω
∂k

���
a;e;k

δk ¼ 0 (19a)

δ _M ¼ ∂ _M
∂a

���
a;e;k

δaþ ∂ _M
∂e

���
a;e;k

δeþ ∂ _M
∂k

���
a;e;k

δk ¼ 0 (19b)

The differential elements δa, δe, and δk are used to determine the
deputy's averaged elements using,

kd ¼ kc þ δk (20a)

ad ¼ ac þ δa (20b)

ed ¼ ec þ δe (20c)

As evident in Eq. (19), there are two constraints ðδ _ω ¼ 0 and δ _M ¼ 0Þ
that the deputy states must satisfy for a SRP invariant relative motion
with respect to a chief solar sail flying in a Sun-synchronous orbit. These
two constraints are functions of three variables (δa, δe, and δk). There-
fore, there is only one free variable to choose; once a variable is chosen,
the other two free variables are prescribed such that both SRP invariant
conditions in Eq. (19) are satisfied. For instance, if the deputy solar sail
has a fixed characteristic acceleration, there is only one unique orbit
that the deputy can occupy that leads to a SRP invariant relative motion
with respect to the chief flying in a Sun-synchronous orbit. The concept
of SRP invariant relative orbits are analogous to J2 invariant relative
orbits that were introduced by Alfriend and Schaub in Refs. [20–22]. A
trivial solution in the families of SRP invariant relative orbits is the
leader-follower or string of pearls formation for two solar sails that have
the same characteristic acceleration. When two solar sails are in a
leader-follower formation (ad ¼ ac and ed ¼ ec) and have the same
characteristic acceleration, the secular rates are identically matched, as
evident in Eq. (13).

5. Analytical design of SRP invariant relative motion

Given the chief's averaged elements and characteristic acceleration,
an SRP invariant formation is established using the procedure in Fig. 3,
assuming that the free variable is δk. After choosing a δk value that is
Given a value Apply Invarian

Solve for ̇ = 0 and

Oscula ng to Averaged

Compute the chief’s 
averaged elements 

Fig. 3. Procedure to design a SRP invariant sola
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within the deputy's reflectivity modulation capability, the two invariant
conditions in Eq. (19) are solved for the averaged element differences
between the deputy and chief solar sails. The averaged deputy's elements
are then determined using Eq. (20). The deputy's osculating elements will
then be solved using an iterative process.

A few quasi-periodic relative orbits that are designed using the pro-
cedure described are illustrated in Fig. 4. For each case, the formation is
propagated for 10 orbits (approximately 55 days). As expected, the first-
order SRP invariant relative motion conditions do not provide fully
invariant solutions for the nonlinear motion. However, these conditions
do achieve almost invariant conditions with only small amounts of drift
and distortions apparent in Fig. 4. To illustrate one example numerically,
let us assume that two sails have a relative characteristic acceleration of
δk ¼ 0:00003kc, then the relative osculating orbital elements δa ¼ �
27:088 [m], δe ¼ 1:0947� 10�5, δω ¼ � 0:00017453 [rad], and δM ¼
0:00017453 [rad] lead to the relative trajectory shown in Fig. 4(f). Larger
δk values lead to faster drift rates since the linear first-order assumption
for deriving the necessary conditions is more accurate for smaller δk
values. This is evident when comparing the δk values of the relative
trajectories in Fig. 4(e) and (f), where δk value used in Fig. 4(e) is
approximately an order of magnitude smaller than the δk value used to
generate Fig. 4(f).

Note that similar to the Interplanetary Kite-craft Accelerated by Ra-
diation Of the Sun (IKAROS) mission, which was launched by the Japan
Aerospace Exploration Agency (JAXA) in 2010, it is assumed that the
deputy sail is capable of changing its reflectivity and consequently its
characteristic acceleration. The IKAROS mission successfully demon-
strated reflectivity modulation technology to control the sail's attitude
[23]. To change the surface reflectance, liquid crystal panels on the sail are
switched on to produce specular reflection and switched off to create
diffuse reflection. With the capability of changing the sail's surface
reflectivity, the characteristic acceleration of a sail can be adjusted.

In Section 6, numerical optimization is employed to remove the
secular drifts shown in Fig. 4. The numerical approach allows the design
of truly SRP invariant solar sail formations in Sun-synchronous orbits.

6. Numerical design of SRP invariant relative motion

The employment of numerical optimization to remove the relative
drifts between solar sails has two advantages over the method proposed
in Section 5:

� It allows the design variables to be osculating elements, thereby side
stepping averaged-osculating mapping that can potentially introduce
errors into the design of a drift-free formation.

� It allows for the inclusion of other perturbations in the design of a
formation. Because of the high altitudes of orbits required to study the
geomagnetic tail, it may be necessary to include the third-body effects
of the Moon and Sun in the formation design problem.

Note that the third-body effects of the Moon and Sun on the relative
motion of a two-craft formation in this orbit regime are shown to be small
based on the previous study [11]. Next, the problem formulation is dis-
cussed in detail. The formation design problem is then solved numeri-
cally using nonlinear programming techniques. MATLAB's constrained
nonlinear optimization routine, fmincon with active set algorithm, is
employed to solve the optimization problem. The formation design
problem may be summarized as follows. Given the chief's osculating
t Condi on Averaged to Oscula ng Propagate

Compute the deputy’s 
oscula ng elements itera vely

and ̅ in
 ̇ = 0
r sail formation in Sun-synchronous orbits.



Fig. 4. SRP invariant relative motions designed using first-order analytic conditions expressed in chief's LVLH frame.

K. Parsay, H. Schaub Acta Astronautica 139 (2017) 201–212
elements œc0 ¼ ½ ac0 ec0 ωc0 Mc0 �T at epoch t0, we must determine
the deputy's osculating elements œd0 ¼ ½ ad0 ed0 ωd0 Md0 �T at epoch
t0 such that the relative motion is SRP invariant. Let l denote the sail's
mean longitude, defined as,

l ¼ ωþM (21)
206
The total relative change in mean longitude over an arbitrary number
of complete revolutions is defined as,

Δl ¼ ∫ tf
t0

�
_ldðtÞ � _lcðtÞ

�
dt (22)

The variable Δl indicates how much the deputy has drifted apart with
respect to the chief over a given time span. Given the chief's osculating



Fig. 5. Families of truly SRP invariant relative orbits expressed in chief's LVLH frame.

Table 1
Optimized initial conditions for SRP invariant relative motions shown in Fig. 5(a).

Parameters Chief Deputy Unit

a 131874.57700657 131875.27700657 km
e 0.46798169 0.46566884
ω 0

�
0

� degree
M 180� 179:92684586� degree
k 0.12220198 0.12142995 mm=s2

Table 2
Optimized initial conditions for SRP invariant relative motions shown in Fig. 5(a).

Parameters Chief Deputy Unit

a 131874.57700657 131875.37700657 km
e 0.46798169 0.46531466
ω 0

�
0

� degree
M 180

�
179:92684586

� degree
k 0.12220198 0.12131202 mm=s2

Table 3
Optimized initial conditions for SRP invariant relative motions shown in Fig. 5(a).

Parameters Chief Deputy Unit

a 131874.57700657 131875.47700657 km
e 0.46798169 0.46497128
ω 0� 0� degree
M 180

�
179:92684586

� degree
k 0.12220198 0.12119774 2
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elements œc0 , a two-craft formation design algorithm is proposed
as follows,

minimize J ¼ jΔlj
with respect to ad0 ; ed0

subject to r€c ¼ �μ

r3c
rc þ asc

r€d ¼ �μ

r3d
rd þ asd

free variables kd;Md0 ;ωd0

(23)

In this formulation, it is assumed that the free variable is the deputy's
characteristic acceleration kd while the ad0 and ed0 osculating elements
are left to be determined numerically, such that the relative motion is
SRP invariant. The algorithm allows for the minimization of the relative
drift between the two sails through a search of the osculating element
space. Theminimization of total relative change in mean longitude over a
specific time span is equivalent to matching the average longitude rates.
The first-order SRP invariant relative motion conditions using osculating
elements are used to provide an initial guess for the deputy's elements,
since nonlinear programming problems require an initial guess to solve
the problem. These first-order conditions provide a very good initial
starting point for the nonlinear optimizer to converge onto a truly
invariant relative motion solution. With general initial conditions, the
optimizer did not always converge to an invariant relative motion. The
problem formulation in Eq. (23) can be modified to have either the semi-
major axis or eccentricity as a free variable rather than the characteristic
acceleration. Hence, the formulation may be equivalently rewritten as

minimize J ¼ jΔlj
with respect to ed0 ; kd

subject to r€c ¼ �μ

r3c
rc þ asc

r€d ¼ �μ

r3d
rd þ asd

free variables ad0 ;Md0 ;ωd0

(24)

In Eq. (24), the free variable is chosen to be the deputy's semi-major
axis ad0 while the algorithm searches for the corresponding ed0 and kd
that leads to an SRP invariant relative motion. The deputy's mean
anomaly Md0 and ωd0 are the other free variables that can be tweaked to
control the differential elements δM and δω for designing formation
207
geometries of different size and shape. Although ωd0 is a free variable,
there are lower and upper bounds for how much ωd0 can change with
respect to the Sun's longitude angle λs. This is due to the Sun-synchronous
condition that each sail must satisfy. Therefore, the deputy's ωd0 must
remain close to the Sun's longitude angle λs.

An example of the algorithm proposed in Eq. (24) is illustrated in
Fig. 5. A family of truly SRP invariant relative orbits are illustrated in
Fig. 5(a). In these examples, the deputy's semi-major axis is varied such
that 0⩽δa0⩽1 km, while keeping δM0 constant. In Fig. 5(b), the δM0 is
varied while keeping δa0 constant. For both simulations, it is assumed
that δω0 ¼ 0 ðωd0 ¼ ωc0 ¼ λs0 Þ. Each trajectory is propagated for 10 orbits.
As evident in both Fig. 5(a) and (b), the relative motion does not expe-
rience any relative drift, unlike the secular drifts that arise in Fig. 4 due to
the first-order approximation of the SRP invariant relative orbit condi-
tions. The optimized initial conditions for a few of the SRP invariant
relative orbits illustrated in Fig. 5(a) are tabulated in Tables 1–3, corre-
sponding to the three largest formations, respectively.
mm=s



Fig. 6. Verification of averaged orbital element rates resulting from changes in the nominal Sun-pointing attitude.
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7. Effects of uncertainty in attitude

Averaging theory is applied to determine the secular drifts in terms of
the presence of a constant attitude error. This is mainly motivated by the
fact that the solar sails are assumed to maintain a Sun-pointing attitude at
all times for the purpose of precessing their orbit apse lines Sun-
synchronously. Assuming that the sail's normal vector has an attitude
error with respect to the nominal Sun-pointing attitude described by the
two constant angles δα and δϕ, we have,

ϕ ¼ ϕnominal þ δϕ ¼ π � f þ δϕ (25a)
208
α ¼ αnominal þ δα ¼ δα (25b)

After substituting the new ϕ and α into Eq. (2) and substituting the
result into the Gauss variational equations, the osculating orbital ele-
ments are averaged with respect to mean anomaly in order to remove the
short-period variations,

_a ¼ 1
2π

∫ 2π
0 _a dM (26a)

_e ¼ 1
2π

∫ 2π
0 _e dM (26b)



Fig. 7. Sensitivity of orbital elements to constant attitude error.
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_i ¼ 1
2π

∫ 2π
0
_i dM (26c)

_Ω ¼ 1
2π

∫ 2π
0
_Ω dM (26d)
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_ω ¼ 1
2π

∫ 2π
0 _ω dM (26e)

_M ¼ 1
2π

∫ 2π
0

_M dM (26f)

Upon taking the integration and simplification, the average orbital
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element rates for a solar sail in Sun-synchronous orbits with a constant
attitude error are determined to be,

_a ¼ 0 (27a)

_e ¼ �3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

p
2

ffiffiffi
μ

p cos δα sin δϕ (27b)

_i ¼ 3ek cosω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μð1�e2Þ

a

q sin δα (27c)

_Ω ¼ 3ek cscisinω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μð1�e2Þ

a

q sin δα (27d)

_ω ¼ 3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� e2Þ

p
2e

ffiffiffi
μ

p cos δα cos δϕ� 3ek cotisinω

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μð1�e2Þ

a

q sin δα (27e)

_M ¼ n� 3a2ð1þ e2Þk
2a3=2e

ffiffiffi
μ

p cos δα cos δϕ (27f)

The main advantage of deriving the average orbital element rates is
their elegant simplified form, which immediately reveals a great deal
Fig. 8. Sensitivity of argument of perigee to errors in semi-major axis,
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about the long-term dynamics of the system. Additionally, they are more
computationally efficient than the full osculating equations of motion. To
verify the validity of Eq. (27), these approximate analytic expressions are
compared to the full osculating Gauss variational equations in Eq. (9) for
ðδϕ; δαÞ ¼ ð1�

; 1� Þ. As illustrated in Fig. 6, the averaged equations
correctly predict the secular growth in the orbital elements resulting from
the errors in the sail's Sun-pointing attitude.

Next, the averaged rates for the orbital elements in Eq. (27) are used
to generate the contour plots in Fig. 7. These plots illustrate the net
change in the orbital elements over an orbit due to constant errors in the
sail's orientation. The net change in eccentricity over an orbit is shown in
Fig. 7(a). As expected from Eq. (27b), the effects of the δϕ attitude errors
are dominated over the span of small δα values. Even for very small δϕ
values, the eccentricity experiences a change of approximately 0.0001.
The net change in the orbit inclination is shown in Fig. 7(b). The varia-
tion in inclination is completely dominant by the out-of-plane variation
in the sail's attitude δα. Errors in the ϕ angle will only affect the incli-
nation for substantially high δϕ values. These effects creep in through the
variations in the e and ω orbital elements as evident by Eq. (27c). Similar
to inclination, Fig. 7(c) shows that the effects of out-of-plane angle δα are
dominant over the in-plane angle δϕ in changing the right ascension of
the ascending node. As expected, the argument of perigee is affected
more by the in-plane variation relative to the right ascension of the
ascending node. Fig. 7(f) illustrates the net change in the longitude of
orbit's perigee ðϖ ¼ ωþ ΩÞ. Based on these figures, one can conclude
eccentricity, and the sail's characteristic acceleration (reflectivity).



Fig. 9. Effects of δω error on leader-follower formation.
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that, uncorrected attitude errors can quickly lead to the divergence of the
nominal orbit or cause secular growth in the relative geometry between
two solar sails.

8. Effects of uncertainty in elements and reflectivity

In this section, we evaluate the effects of errors in the orbital elements
and reflectivity on the Sun-synchronous condition, which requiresω ¼ λs.
The metric chosen is howmuch change ω experiences over an orbit given
uncertainty in other orbital elements and reflectivity. To do this, the first
variation of the rate of change in the argument of perigee δ _ωða; e; kÞ,
given in Eq. (19a), is used to determine the net change in argument of
perigee over one orbit using Δω ¼ T � δ _ω, where T is the orbit period.

The contour plot shown in Fig. 8(a) illustrates the effects of uncer-
tainty in the semi-major axis and eccentricity on the argument of perigee.
The effects of unmodeled errors in characteristic acceleration and un-
certainty in semi-major axis are shown in Fig. 8(b). Fig. 8(c) illustrates
the change in argument of perigee due to errors in eccentricity and
characteristic acceleration. As evident, the combined effects of un-
certainties in eccentricity and characteristic acceleration can lead to
changes in the argument of perigee as large as 0.1� over an orbit.
Depending on the objective of the mission, this difference in argument of
perigee may not be tolerable for the relative motion, especially for mis-
sions such as Magnetosphere Multi-Scale (MMS), where the spacecraft
are expected to maintain a tight formation of a certain size and shape.
MMS mission requires four spacecraft to form a regular tetrahedron of a
particular size around the orbit apogee [24,25]. The tetrahedron for-
mation must change its size, ranging from 400 km to 7 km in terms of
averaged side length. Fig. 9(a) illustrates the effects of uncertainty in the
differential elements, namely the argument of perigee, on the relative
motion geometry. As evident in the figure, an uncertainty in the argu-
ment of perigee of the size δω ¼ 0:05∘ significantly changes the shape of
the nominal leader-follower formation, leading to about a 100 km error
in the along-track (y) direction. Using Fig. 9(b), one can conclude that an
uncertainty in reflectivity larger than 0.1% leads to significant changes in
the size and shape of the formation, which may not satisfy the re-
quirements for tight formations such as the one being flown in the
MMS mission.

9. Conclusion

In this paper, the effects of SRP perturbations in Sun-synchronous
orbits are studied in detail using the averaging theory, which leads to
211
the identification of the secular variations in the orbital elements. Next,
the analytic first-order necessary conditions for a SRP invariant relative
motion are derived, assuming that all solar sails in the formation main-
tain a Sun-pointing attitude. Numerical simulations are used to verify the
validity of the conditions derived. It is shown that the first-order neces-
sary conditions lead to a quasi-periodic formation, as opposed to truly
SRP invariant relative motion. This is a direct result of the first-order
linear approximation used to derive the necessary conditions. Next, the
problem of formation design is explored in detail using numerical opti-
mization for the two-craft formations. It is shown how the slow secular
drifts resulting from the analytic first-order conditions can be removed
using numerical techniques. This leads to the design of truly SRP
invariant solar sail formations. Next, the average effects of small constant
inaccuracies in the Sun-pointing attitude on the average rates of orbital
elements are derived analytically. The sensitivity analysis with respect to
the sail's characteristic acceleration is investigated and it is shown that
larger than 0.1% uncertainty in the characteristic acceleration of a sail
leads to a significant changes in the size and the shape of a
tight formation.
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