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A computationally efficient algorithm is developed for onboard planning of n-impulse fuel-optimal maneuvers for
establishment and reconfiguration of spacecraft formations. The method is valid in circular and elliptic orbits and
includes first-order secular J, effects. The dynamics are expressed in terms of differential mean orbital elements, and
relations are provided to allow the formation designer to transform these into intuitive geometric quantities for
visualization and analysis. The maneuver targeting problem is formulated as an optimal control problem in both
continuous and discrete time. The continuous-time formulation cannot be solved directly in an efficient manner, and
the discrete-time formulation, which has an analytical solution, does not directly yield the optimal thrust times.
Therefore, a new flight-suitable algorithm is designed by iteratively solving the discrete-time formulation while using
the continuous-time necessary conditions to refine the thrust times until they converge to the optimal values.
Simulation results illustrate the performance for a variety of reconfiguration maneuvers and reference orbits,
including examples for the NASA CubeSat Proximity Operations Demonstration mission.

I. Introduction

PACECRAFT formation flying is a key area of research in
modern spacecraft dynamics and control. Numerous formation
flying missions have been conceived over the past two decades and
many have flown successfully. This concept enables several mission
types including sparse apertures, where multiple spacecraft take the
place of a large antenna or telescope, magnetic and electrical interac-
tion studies, and on-orbit servicing or inspection. One important area
of research in this field is the development of algorithms for establish-
ing or reconfiguring a formation. The present work is motivated by
the upcoming NASA CubeSat Proximity Operations Demonstration
(CPOD) mission. CPOD, sponsored by the NASA Office of the Chief
Technologist, is to demonstrate formation flying and docking of a
pair of three-unit CubeSats using miniaturized navigation and
propulsion. The algorithm defined in this paper is to form the basis of
the CPOD guidance system for onboard maneuver planning.
Formation establishment or reconfiguration is defined as the
process of taking a spacecraft formation from some initial configurat-
ion and transforming it to another configuration. This is necessary to,
for example, establish a synthetic aperture, initiate or change
proximity operations trajectories for inspection of a debris object, or
recover from a period of uncontrolled drift. The main problem
addressed in this paper is that of designing maneuvers, made up of n
impulsive thrusts, to take a spacecraft formation from some initial
trajectory to a desired trajectory with as little fuel as possible.
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This is by no means a new problem and it has been investigated by
numerous authors in the past. However, the previous methods suffer
from one or more of the following drawbacks:
1) They involve the computationally expensive and sensitive
solution of sets of nonlinear equations [1-13].

2) They assume a circular or near-circular reference orbit
[1-4.69.10.13-16].

3) They assume a set of impulse times and do not solve for the
optimal ones [15-22].

4) They minimize fuel use for each thrust axis independently
[14.17.18].

Some of these issues may not be critical for certain specific mission
profiles, but the goal of this paper is to design a general method for
optimal maneuver targeting in circular or elliptic reference orbits,
including the J, perturbation, which can be implemented onboard a
spacecraft with limited computational power.

This goal is accomplished by using an approach similar to
Lawden’s primer vector theory [23], as in [1-8,10,11]. However,
instead of solving the nonlinear equations directly, a suboptimal,
discrete-time formulation is iteratively refined, using the necessary
conditions of the continuous-time system to find the optimal impulse
times. The discrete formulation is analytically solvable with the use
of differential orbital elements as state variables. Similar discrete
solvable formulations have been used by Breger and How [17], Roth
[20], Saunders [16], Anderson and Schaub [21], and Gaias et al. [22],
where the problem is broken up into many segments and the overall
fuel cost is minimized, but these methods typically allow more
impulses than necessary and do not find the true optimal times.

Of the previous work, only Gaias et al. [22] include differential
drag in the analytical model, which is a primary consideration in low
Earth orbit. However, it is challenging to model this perturbation
accurately for general spacecraft formations because of its depen-
dence on the attitude and shape of both spacecraft and because of
problems with modeling atmospheric density and surface interac-
tions. It is possible, given accurate knowledge of on-orbit attitude
profiles, to estimate the differential ballistic coefficient of the space-
craft to aid the onboard maneuver planning process (e.g., as is the
case in the PRISMA navigation system [24]). However, in some
cases, attempting to simulate drag effects with uncertain attitude and
density knowledge can result in less accurate state propagation than if
drag were not included in the force model at all [25]. Therefore, the
present work does not address this perturbation, which implicitly
invokes the assumption that either the ballistic coefficients of the
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spacecraft in the formation are very similar or the orbit altitude is high
enough that differential drag effects are small.

The dynamic equations in this paper are developed in terms of
mean orbital element differences rather than Cartesian coordinates.
Differential orbital elements are a natural and convenient choice for
designing general formations [26,27] because they provide several
mathematical advantages over Cartesian coordinates for describing
relative motion: They vary slowly, because they are constants of the
unperturbed motion, and using mean elements allows for the explicit
inclusion of secular J, effects. Furthermore, using a set of nearly
nonsingular elements makes the solution uniformly applicable to
both circular and elliptic orbits. Finally, although they provide only
indirect insight into the shape, size, and location of the relative orbit,
they can be readily transformed into mission-useful quantities, such
as size, orientation, etc., for visualization and analysis [28,29]. Dif-
ferential elements (in the form of relative eccentricity/inclination
vectors [30]) have been successfully used for guidance and control of
the PRISMA [31] and TanDEM-X/TerraSAR-X [32] missions. In the
ARGON experiment, conducted during the extended phase of the
PRISMA mission, navigation was also performed by directly
estimating the relative eccentricity/inclination vectors, rather than
computing them from relative position and velocity [33].

From the overall system design standpoint, the best approach to
solving the problem is to use the most efficient mathematical form
(differential mean orbital elements) to describe the dynamics but
allow the formation designer to interact with more intuitive geometric
quantities. The maneuver targeting problem is formulated as an
optimal control problem in which the analytical solution to the un-
forced dynamics is given by the Gim—Alfriend state transition matrix
(STM) [34] and the control influence is given by Gauss’s variational
equations (GVEs) [35], reformulated in terms of the nearly non-
singular elements. Similar approaches have been used by previous
authors to solve feedback control problems using classical mean
orbital elements [17,18,36-39]. The formation designer can then
apply this method by defining a desired formation in terms of size and
orientation parameters and then converting to differential elements
for maneuver targeting.

The paper is laid out as follows. In Sec. II, the formation dynamics
are defined in terms of differential nearly nonsingular mean orbital
elements. In Sec. III, the minimum-fuel maneuver targeting problem
is defined, and the necessary conditions for optimality are derived.
Section IV discusses a computationally efficient algorithm for on-
board maneuver targeting, in which the discrete-time problem is
iteratively solved while using the continuous-time necessary condi-
tions to refine the thrust times until they converge to the optimal
values. Finally, Sec. V provides simulation results for a variety of
reconfiguration maneuvers and reference orbits. This includes
simulations for the CPOD mission, as well as a comparison to the
impulsive maneuver targeting method of Anderson and Schaub [21].

II. Formation Dynamics

A general spacecraft formation consists of two or more space
objects flying in close proximity to one another. The term “close” is
defined such that the relative motion between the objects can be
linearized about some reference orbit (this depends on the orbit of the
formation and the required accuracy of the motion). Spacecraft in the
formation can act either cooperatively or noncooperatively and the
reference orbit need not correspond to an actual physical object.
Without loss of generality, in this paper, the formation is assumed to
consist of only two spacecraft. One spacecraft, which defines the
reference orbit, is designated the “chief,” and it is uncontrolled. The
other spacecraft is designated the “deputy,” and it is controlled by a
three-component thrust input.

The dynamics of relative motion are defined in terms of differential
orbital elements, but formation configurations and visualizations are
presented in Cartesian coordinates as well, using the local-vertical/
local-horizontal (LVLH) reference frame. This frame, shown in
Fig. 1,1s defined with k, in the radial direction, k, in the orbit normal
direction, and k&, completing the right-hand system. The mapping
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Fig. 1 LVLH reference frame.

between differential orbital elements and LVLH coordinates can be
found in a number of references (e.g., [28,34,40]).

A. Formation Dynamics in Nearly Nonsingular Mean Orbital
Elements

The nearly nonsingular mean orbital elements of the reference
(chief) orbit are defined as

e=[a 2 i q q Q )

where a is the semimajor axis, A = M + w is the mean argument of
latitude, M is the mean anomaly, w is the argument of perigee, i is the
inclination, ¢; = e cos @ and g, = e sin w are the orbital frame
components of the eccentricity vector, e is the eccentricity, and Q is
the right ascension of the ascending node. This set of orbital elements
is chosen instead of the classical orbital elements because it is
not singular in the case of a circular orbit; however, it is still singular
in an equatorial orbit. This set of coordinates is very suitable for low-
Earth-orbit operations where equatorial orbits are vanishingly rare.
Compared with fully nonsingular elements, such as the equinoctial
elements, the associated mathematical formulations are greatly
simplified.

The transformation from the osculating elements ce’ to the mean
elements is defined by

o = g(e’) @3]
The full transformation is given by Brouwer’s analytical satellite
theory [41], and a first-order truncation is given by Schaub and

Junkins [42, Appendix F]. Including the effects of J,, the mean
elements evolve according to

@ = f(c) + g(B(e)u) 3

The unforced dynamics are given by a modified form of Lagrange’s
planetary equations (LPEs) for J, [35],

0
n+3 Jz(ﬁ) n[11(3cos2 i—1)+ (5cos?i—1)]

Sfle) = —% ( ) n(3cos’i—1)q, 4
3 ( )n(3c09 i—1)q,

-3 ( ) n cos i

where J, is the coefficient of the second zonal harmonic, R, is the
mean equatorial radius of the Earth, p is the semilatus rectum, » is the
mean motion, and 7 = V1 — €.



Downloaded by UNIVERSITY OF COLORADO on November 14, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.G000999

ROSCOE ET AL. 1727

The vector u is a thrust input defined in the LVLH frame
w=[u, u u]" ®)

whose effect on the osculating orbital elements is given by a modified
form (to use the nearly nonsingular elements) of GVEs B(ee’), given
in Appendix A. Because GVEs give the effect of accelerations on the
osculating elements, the osculating—mean transformation must then
be applied to determine changes in the mean elements. However, the
sensitivities of mean element changes with respect to osculating ele-
ment changes are of at most O(J,); therefore, for small accelerations,
it is reasonable to approximate Eq. (3) with [36,37]

&~ f(e) + B(e)u (6)

The motion of the deputy about the reference orbit is described by a
set of differential mean orbital elements, which are related to the
deputy’s mean elements by

o = ey — & 7

Assuming the differences between the deputy’s mean elements and
the reference elements are small, the dynamics of the differential
mean elements are found by linearizing Eq. (6) about the reference
orbit:

be = Adce + Bu 8)
where B represents the GVE evaluated on the reference orbit and

[é)
A= —f ©)]
0|,
is the Jacobian of the LPE evaluated on the reference orbit. The
definition of A is found in Appendix B.

B. State Transition Matrix for Differential Elements
The general solution to Eq. (8) is given by

Sce(t) = (1, ty)dce(ty) + /(D(t, 7)B(7)u(r) dr (10)

0

where ®(t,,1;) is the STM of A from #; to t,. The STM for the
differential nearly nonsingular mean orbital elements is derived by
Gim and Alfriend [34]. The STM found in that paper requires a small
modification because it uses the true argument of latitude 6 = f + w
instead of the mean argument of latitude A. For formations in near-
circular reference orbits, significant computation effort is saved by
using the small-eccentricity version of the STM given by Alfriend
and Yan [43].

C. [Initial Differential Elements for General Formations

For the trajectory designer to make use of the dynamic formulation
in terms of differential orbital elements, relationships can be defined
to convert formation size and orientation parameters into nearly
nonsingular element differences. Sengupta and Vadali [29] define
one such set of parameters, based on the general solution to the
Tschauner—Hempel (TH) [44] or Lawden’s [23] equations, which are
summarized here for reference:

-2
Sa = V4 an
3n
1 2
52 ="2_ 50 cos i—ﬂp—l(ql cos Ay — ¢, Sin ap)
P l+n p
(12)

si =P cos fy (13)
p

8g; = —(1- q%)ﬂsin ag + qlqz&cos ag — qz(p—z—éﬂ cos i)
p p p

(14)

8g, = —(1 - q%)'ﬂcos ap + qlqz'ﬂsin ay —|—q1(&—6£2 cos i)
p p p

15)

_ —p3 sin Bo

0Q —
p sini

16)

where p; and pj relate to the amplitude of the in-plane and out-of-
plane motion, @, and f3, are the initial phase angles (with respect to
A = 0), p, determines how far offset the motion is in the along-track
direction, and v, is the along-track drift rate. Equations (11-16) are
used to specify the initial and desired formations for the reconfigu-
rations demonstrated in Sec. V.

To more closely approximate the well-known Hill-Clohessy—
Wiltshire (HCW) [45,46] trajectories for the case of an eccentric
orbit, a number of corrections are possible [29]. For example, setting

207d

Fp an

P2a =

in a leader—follower configuration modifies the along-track offset so
that the time-averaged deputy—chief separation is d. Similarly, setting

P2 = p(q1 cos ay — g, sin &) (18)

in an in-plane ellipse with d = O corrects the along-track bias so
that y(—ay) = 2p and y(z — ay) = —2p (this is just one possible
bias correction). For an in-plane ellipse with nonzero d, use
P2 = Pag + pap- Both of these equations reduce to the HCW
parameters for circular orbits.

III. Fuel-Optimal Targeting of r»-Impulse Maneuvers

The main problem addressed in this paper is that of finding optimal
minimum-fuel maneuvers, made up of n impulsive thrusts, for forma-
tion reconfiguration. In this paper, unlike some other formulations,
the minimum-fuel problem is stated in terms of the two norm of the
thrust input instead of one norm. In general, even if multiple thrusters
are available, it saves fuel to align the net thrust direction with one of
the thrusters (or pair of coaligned thrusters) when thrust is required in
more than one LVLH direction, due to the triangle inequality. The
fuel savings are greater for larger maneuvers because the extra fuel
cost is proportional to the total cost. That is, for smaller maneuvers, it
might make more sense, operationally, to spend the small amount of
extra fuel to use multiple thrusters to achieve a maneuver and not
disrupt the attitude of the spacecraft.

In this section, the minimum-fuel n-impulse maneuver targeting
problem is stated in both continuous- and discrete-time forms and the
necessary conditions for optimality are derived. Neither of these for-
mulations adequately solves the problem on its own, but recognizing
the duality of the continuous and discrete formulations under certain
conditions allows a convenient solution to be found. In the section
that follows, a computationally efficient algorithm for onboard
maneuver targeting is described, which uses an iterative refinement
of the discrete-time form of the problem to solve for the optimal thrust
times and impulse magnitudes.

A. Continuous-Time Optimal Control Problem

First, the minimum-fuel problem is defined in terms of the
continuous-time dynamics. The analysis is similar to a formation
flying application of Lawden’s primer vector [23] theory, which is
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described in detail by McAdoo et al. [47] and Jezewski [48]. A
number of previous authors have used primer vector theory to address
the formation reconfiguration problem in terms of Cartesian states
[1-8,10,11]. The difference in this formulation is that the primer
vector now depends on all six orbit element costates through GVEs,
which are time varying, instead of only on the three-component
velocity costate as in the Cartesian case.
The fuel cost for an n-impulse maneuver is defined as

[ﬂ

J= /}/(t) dt (19)

0
where y(7) is the impulse magnitude at time ¢, such that
y(@) = 710(t = 1)) + 126(t = 1)+ -+ +7,0(t — 1,,) (20)
and the thrust is defined by
u=yi 21

where §(¢ — t;) is the Dirac delta function and all y; > 0. Note that the
final impulse is constrained to occur at the final time, which is free.
According to the sifting property of delta function, this costis exactly
the sum of the impulse magnitudes

I=Y 7 22)
i=1

which is the total AV of the maneuver. The control goal is to
determine the optimal ¥;, ;, and @ to take the system from a fixed
initial state oce) to a desired final state 5ce, = Scef (fixed final state).

1. Necessary Conditions for Optimality

Incorporating the system dynamics defined in Eq. (8), the
Hamiltonian can be written as

H =y + AT (A + yBit) (23)

On an optimal trajectory, the costate equation is

A= —Hgs, = -ATA 24)

and both the costate and its derivative must be continuous, where the
subscript indicates partial differentiation. The solution to the costate
equation is given by

A1) = @ (19, 1)A(to) (25)

(see proof in Appendix C). Because the control direction & appears
linearly in H, the optimal control cannot be determined directly from
the stationary condition. Applying Pontryagin’s minimum principle,
the control direction that minimizes the Hamiltonian is

i=-BTA=—-p (26)

where p is defined as the primer vector, a formation flying analogue
to Lawden’s primer vector [23]. As mentioned earlier, the difference
between this formulation and previous primer vector-based
formation flying analyses is that p now depends on all six orbit
element costates through GVEs, the time-varying B matrix, instead of
only on the three-component velocity costate.

Applying the necessary condition for the control direction, the
Hamiltonian then becomes

H=(1-p"py+ATAse 27

Optimal control theory requires that both the Hamiltonian and the
costate must be continuous throughout an optimal trajectory ([49]

Chapter 5). Because H must be continuous, the coefficient of y must
be zero when each impulse is applied:

lpl=p=1, Vi=g (28)

At other times, for the trajectory to be optimal, p <1 or else
Pontryagin’s minimum principle would imply that the trajectory is
nonoptimal because some additional nonzero y exists, which would
decrease the Hamiltonian. In addition, A and therefore p must be
continuous across the impulses. Because p < 1 before and after each
impulse, then p = 0 at those points (this includes the final impulse
because ?, is free and must also obey Pontryagin’s minimum
principle). That is,

p’p=0, Vi=uy (29)

assuming without loss of generality that #; # 0. If #; = 0 and this
condition is not satisfied, then there exists a #; < 0 that will have a
lower cost.

Continuity of the Hamiltonian also requires that H = H~ for
each impulse,

0=H"—H =ATA@Soet —5ee”) = A'BB Ay, (30)
Together, Egs. (29) and (30) then imply the two conditions

B™A)T(BTA) =0, Vi=t (31

B™AH(B2)=0, Vi=r (32)

In Lawden’s primer vector theory, the B matrix is constant and these
constraints reduce to the familiar p = 0 condition. For the final time
free problem, the last condition is given by

0= H(,) = ALA(t,)50e; = —Anbce, (33)

where A, = A(t,). This implies that the optimal final time occurs
when the derivative of the costate is perpendicular to the desired state
(or, equivalently, when the costate is perpendicular to the derivative
of the desired state).

2. Computation Difficulties

The continuous-time optimal control problem is challenging to
solve because of the nonlinearity of the problem. When the necessary
conditions are applied, the result is a set of coupled nonlinear
differential equations. Even if the state and costate dynamics are
enforced explicitly, these still result in a set of coupled nonlinear
algebraic equations. Techniques exist in the literature to solve this
problem using the traditional primer vector formulation (e.g.,
additional ones until the optimal maneuver is obtained. However,
these techniques do not apply directly to the present problem because
the primer vector now depends on all six elements of the costate
through the time-varying GVEs and it is more challenging to obtain a
compatible initial estimate for the costate, especially when adding an
additional impulse. Furthermore, all of these techniques require a
multidimensional nonlinear solver, which will be subject to
convergence and multiple solution issues, and it simply may not be
practical to implement such an algorithm onboard a small spacecraft.

B. Discrete-Time Optimal Control Problem

Instead of expressing the minimum-fuel problem in terms of the
continuous dynamics, it can be stated as a discrete-time optimal
problem:
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1 N
Jy= EZu{,uk (34)
k=1

subject to the discrete dynamics

(S(ﬁk+| = d)kﬁoek + Fkuk (35)

where
D, = D(t141, 1) (36)
Ly = @1, 1) B(1) 37

for impulsive control. The STM defined in Eq. (10) is ®(#;41, ;).
The cost in Eq. (34) is the sum of the squares of the impulse
magnitudes at the N discretization points, which is slightly different
than the costin Eq. (22). However, if N = n and the ¢, were placed at
the optimal times ¢#;, then minimizing Eq. (34) would be equivalent to
minimizing Eq. (22).

A number of previous authors have also used discrete-time
formulations such as this to address the reconfiguration problem
because they use different cost functions, make simplifying assump-
tions about the reference orbit, or use alternate methods to derive the
thrust input or optimality conditions. However, some of them do
arrive at the same solution under certain conditions and choices of
thrust times. The main difference in this paper compared with previ-
ous methods is that the discrete formulation is solved iteratively so
that the thrust times converge to the optimal times of the continuous
formulation.

1. Necessary Conditions for Optimality
The Hamiltonian for the discrete-time problem is

1
Hd = Eu{uk + A£+| (q)ké(fk + Fkuk) (38)

For an optimal control sequence, the costate equation is

Aszd

Soey,

— (I)lAlH»l (39)

The optimal control is given by the stationary condition

O = Hﬁk = Uy +FZAk+] (40)
ue = —T{ Ay 41)
Because @, isinvertible, the combined state—costate system can be
written as
5GT]< _ (I);l BkB{q){ 5(ﬁk+l (42)
A || O 7 Apia
Zk L 7 Zk+1

where B, = B(t;) ([49] Chapter 2). Proceeding backward in time,
the solution to Eq. (42) is

21 = EI,N+IZN+1 (43)
defining
= &n flz] HN
= = = ¥, 44
PN [521 &x» s} k “4)

Expanding the first component of z; gives
doe; = @(t;,0)50ey = &j100e; + EpAyy (45)

where dce; = Sce(t,), because the first impulse does not necessarily
occur at = 0. Note that the desired state in the discrete formulation
is specified at #y, ;. Assuming €, is invertible, Ay, can then be
written in terms of the initial and desired final state:

Ayi = ER[P@(11,0)5a) — & 50¢] (46)

(€]

2. Matrix Singularities

Note that, because the unperturbed STM contains orbit-periodic
terms with in-plane and out-of-plane motion decoupled, there will be
cases when &, is singular for certain thrust times if only two impulses
are used (or nearly singular for perturbed orbits). In these cases, not
all components of the final costate are uniquely determined by
Eq. (45), and a minimum-norm solution for Ay

AN+1 = g{Z.m (gllmgfz’m)_l 9m (47)

will give the optimal control, where €, ,, and @,, have had their
linearly dependent equations removed, such that &, ,, has full row
rank m < 6 ([52] Appendix A). However, if the thrust times are
nowhere near the continuous optimal thrust times #;, the solution may
not be practically feasible (i.e., it could result in unrealistically large
impulses).

IV. Design of Computationally Efficient Algorithm for
Onboard Maneuver Targeting

The solution to the minimum-fuel #-impulse maneuver problem is
given by the continuous-time optimal control formulation, rather than
the discrete formulation, in general. This is because the thrust times in
the discrete formulation are specified a priori by the choice of
discretization times. If a fine discretization time spacing is used, the
optimal thrust times may be found but more thrusts will occur than
necessary because the control is determined by the costate that
evolves according to the continuous dynamics and cannot simply
become zero for several time steps when the optimal trajectory should
have a coast arc.

However, the discrete-time optimal control problem is relatively
simple to solve: It involves a number of large matrix multiplications
and the inversion of a 6 X 6 matrix. The key to designing a com-
putationally efficient algorithm for onboard maneuver targeting is
recognizing the link between the discrete and continuous formula-
tions. Because the state transition matrix solution to the dynamics is
known explicitly and the control is impulsive, there is no need for the
discretization times to be close together or equally spaced, and the
final time ¢y, | can be arbitrarily chosen to be the same as the final
control time 7. As mentioned previously, if the #; are placed exactly
at the optimal times ¢;, then the discrete optimal control sequence is
also optimal in the continuous formulation.

In that case, the control at each ¢; is the same in both the continuous
and discrete formulations:

u = _BiT(I)T([ns li)An = _yiBITCI)T([nv li)ln (48)

since Ay, = Ay, N = n, and B; = B(¢;). Evaluating this equation
at each control time, A, can then be found by solving the linear system

—7131(1’:(%11) u;

7B, @' (1,.1,) u,
T = (49)
_YnBrZz- u,

This system is guaranteed to have an exact solution because all of the
necessary conditions for optimality of the continuous formulation are
satisfied under these assumptions.
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A. Criteria for Improving a Suboptimal Trajectory

If the 7, are not placed at the optimal times, then the discrete
optimal control sequence will not be optimal in the continuous
formulation, but it will still represent a feasible solution because it
satisfies the final state constraint. In this case, Eq. (49) may not have
an exact solution. However, if the #; are close to the optimal times,
then a least-squares solution of Eq. (49) will give an approximation of
the final costate, but it will not satisfy the necessary conditions for
optimality. By examining the resulting primer vector magnitude
history it is possible to use the analysis of Lawden [23], Lion and
Handelsman [50], and Jezewksi and Rozendaal [51] to improve the
trajectory. That analysis identifies two important criteria for
improving a suboptimal trajectory:

1) Moving an impulse: If p # 0 at any impulse, move the impulse

time slightly in the direction of increasing p.

2) Adding an impulse: If p > 1 somewhere other than near an
impulse, add another impulse at the time of maximum p.

3) However, those methods always begin with two impulses and
add more as required for optimality, whereas this algorithm
may begin with a suboptimal solution with too many impulses.
Therefore, one additional criterion is defined for removing an
impulse:

Removing an impulse: If p <1 and p = 0 at any impulse,
remove the impulse.

The improved trajectory is determined by resolving the discrete
optimal control problem with the new impulse times #;. In any case,
the maximum number of impulses required for the optimal maneuver
is six. This is determined from a result by Neustadt [53] and Potter
and Stern [54], which states that, for a linear system, the maximum
number of impulses necessary to realize an optimal transfer is the
number of constraints on the state variables at the final time.
Practically speaking, four impulses are usually sufficient for an in-
plane maneuver, because the out-of-plane coupling is of O(J;).

B. Initial Estimate for Optimal Thrust Times

To obtain an initial estimate for the optimal thrust times, solve the
discrete optimal control problem using a large number of impulses
(e.g., 12 or more). Note that the total maneuver duration used to
generate the initial estimate is implicitly assumed to be the approx-
imate maximum maneuver duration. The final solution obtained
using this algorithm is a local optimum in the vicinity of this maneu-
ver duration. That is, the final optimal maneuver may have a duration
of less than or slightly greater than the original duration, but the
algorithm will not find optimal maneuvers with durations multiple
orbits greater than the initial estimate. For maneuvers without large
along-track (i.e., anomaly) changes, one to two orbits are typically a
sufficient duration. For pure along-track maneuvers, or maneuvers
with large along-track changes, the optimal maneuver duration is
actually infinite, and so the maximum maneuver duration must
instead be dictated by mission constraints; this algorithm then finds
the closest locally optimal maneuver (see Sec. V for an example of a
pure along-track maneuver).

After solving the discrete optimal control problem using a large
number of impulses, examine the resulting impulse magnitude history
and select the times of any local maxima as estimates for the optimal
thrust times. This technique quickly identifies the likely optimal
number of impulses, and it eventually converges to the continuous-
time optimal solution. In practice, though, it may not be necessary to
determine the optimal thrust times exactly. Thrust magnitude and
alignment errors, minimum impulse limits, finite thrust approxima-
tions, onboard navigation and timing inaccuracies, and other error
sources mean that there is a point at which the improvement in going
from a suboptimal to an optimal trajectory is below the threshold
realizable by the actual system. Therefore, it is possible to define an
algorithm that incrementally improves a suboptimal trajectory until the
improvement in fuel cost (or the changes in thrust application times) is
below some threshold, at which point the problem is considered
“solved.” The solution is the optimal number of impulses 7, their
application times {f{,f,, ...,1,}, and the final costate Ay, that
yields the optimal impulses through Eqgs. (39) and (41).

For example, the impulse magnitude history for a 24-impulse in-
plane reconfiguration is shown in Fig. 2 (for a circular, unperturbed
reference orbit). The optimal number of impulses appears to be three
and the candidate optimal thrust times (¢, t,, and #3) are identified at
the peak impulse locations. After resolving the discrete problem
using the new impulse times, the least-squares solution of Eq. (49)
results in the primer magnitude history shown in Fig. 3, with the
impulse locations indicated as circles (note that the primer magnitude
at each impulse is not exactly equal to one, as expected). The
preceding criteria indicate that the trajectory can be improved by
slightly decreasing #; and f, and increasing 73, which results in the
refined primer magnitude history shown in Fig. 4 once the discrete
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Fig. 6 Optimal planar three-impulse maneuver, e = 0.

problem has been resolved. Continuing to refine the thrust times in
this fashion eventually results in the optimal primer magnitude
history of Fig. 5, which corresponds to the trajectory shown in Fig. 6.
The total AV fuel cost required for each of these iterations is listed in
Table 1 along with the corresponding two-impulse solution from
Vaddi et al. [14].

C. Algorithm Summary

In summary, the algorithm can be implemented as follows:
1) Generate an initial candidate primer magnitude history.
a) Solve Eq. (46) using 12 or more impulse times.
b) Determine the impulse history using Eqgs. (39) and (41).
¢) Examine the impulse magnitudes and determine the times of
any local maxima. These are the initial candidate impulse
times {t{, ...,1,}.
d) Resolve Egs. (46), (39), and (41) using the times from the
previous step.
e) Solve Eq. (49) for 4,,.
f) Determine the primer magnitude history from Eqgs. (25)

and (26).
2) Apply the criteria for improving a suboptimal trajectory
identified in Sec. IV.A to update the impulse times {¢,, ..., 1,}.

3) Resolve Egs. (46), (39), and (41) using the updated
impulse times.
4) Solve Eq. (49) for 4,,.
5) Determine the updated primer magnitude history from
Eqgs. (25) and (26).
6) Evaluate the primer magnitude history for optimality (con-
vergence condition).
7) Repeat steps 2—6 until convergence.
This algorithm is more computationally efficient than attempting
to solve the continuous-time optimal control problem directly
because it requires only matrix multiplications and the solution of

two linear systems of equations at each iteration. State and costate
propagation is performed using the Gim-Alfriend STM, which is
defined analytically, and does not require any numerical integration.
In addition, the iteration can be terminated before convergence and
still return a useful solution because every suboptimal set of impulses
represents a feasible solution (i.e., it satisfies the boundary condi-
tions) to the reconfiguration problem. In practice, alternate algorithm
convergence conditions can be used: For example, if the improve-
ment in total fuel cost from one iteration to the next is small, terminate
the iteration even if the optimality conditions are not satisfied. This
also means that if the algorithm needs to be terminated due to a
maximum allowable number of iterations, the final solution can still
be used if the total fuel cost is acceptable.

V. Simulation Results

Next, the ability of the algorithm of Sec. IV to target general
reconfiguration maneuvers is demonstrated. Several example maneu-
vers are considered for circular and elliptic orbits, with and without
J,. Maneuvers planned with J, included in the dynamics are simu-
lated with J,—Js. Example maneuvers are also simulated for the
reference orbit of the CPOD mission.

A. Circular Orbit

Circular orbits are an important case to consider for any formation
flying algorithm because of the breadth of interest in the aerospace
community for applications and theory in such orbits. Classical
orbital element methods fall short in this respect because the refer-
ence orbit parameters become singular for e = 0, reducing to a set of
five independent quantities, whereas the deputy still requires six
quantities to describe its relative orbit. Because this paper uses the
nearly nonsingular elements, the algorithm described here is uni-
formly applicable to both circular and elliptic orbits without modi-
fication (except when i = 0). The first circular orbit example
is described in the preceding section, a reconfiguration from a
p1 = 200 m, ay = Oin-plane ellipse to a p; = 400 m, @y = = /4 in-
plane ellipse, simulated without perturbations. The reference mean
orbital elements are listed in Table 2 (circular case).

1. Pure Along-Track Maneuver

Another important case to consider is a reconfiguration between
two leader—follower formations, a pure along-track or anomaly
change, also known as a “V-bar maneuver.” This maneuver is chal-
lenging to design because the optimal maneuver times are spaced
infinitely far apart. This is because the optimal maneuver uses the
natural anomaly drift of the dynamics to create the desired anomaly
change by introducing a small semimajor axis difference. For
example, considering only tangential thrust, the optimal two-impulse
maneuver is

Table 1 Total fuel cost for maneuver

Maneuver AV, m/s
Two-impulse from [14] 0.3316
24-impulse 0.2050
Suboptimal three-impulse 0.1694
Partly refined three-impulse 0.1669
Optimal three-impulse 0.1658

Table 2 Reference mean orbital elements

Orbital element Circular Elliptic
a, km 6803.1366 15,000
Ao, deg 0 120
i, deg 97.04 45
q1 0 -0.25
q> 0 0.43301
Q, deg 270.828 90
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AV, = = —AV, (50)

where AV and AV, are the two tangential impulses, spaced an
integer number N, of orbit periods T apart, and Ad is the desired
change in along-track position. Because the total fuel cost is inversely
proportional to the duration, the optimal maneuver has an infin-
itesimal fuel cost and infinite duration.

However, this algorithm still finds the suboptimal maneuver for a
given maneuver duration. The optimal primer histories for the two- and
five-orbit cases of a 100 m along-track maneuver are shown in Fig. 7,
and the resulting maneuver trajectories are shown in Fig. 8. The primer
in the two-orbit case satisfies the necessary conditions for optimality,
but extrapolating the primer magnitude into the future clearly shows
that it is not globally optimal. The same would be seen if the primer
magnitude in the five-orbit case was extrapolated as well. Note that the
(locally) optimal maneuver times are not spaced precisely an integer
number of orbits apart because the optimal thrusts have a small radial
component as well, as shown in the magnified plots of Fig. 8. The fuel
cost for the five-orbit maneuver is 2.387 mm/s, whereas the cost for a
purely tangential five-orbit maneuver is 2.4 mm/s. The cost for the
two-orbit maneuver is 5.967 mm/s.

2. Out-of-Plane Maneuver

Next, out-of-plane motion is added and a maneuver is designed to
reconfigure a formation from a p; = 200 m, ay = 0 in-plane ellipse

4 T T T T =
2-Orbit Maneuver ,
3.5 O 2-Orbit Optimal Times e
— — — Extrapolated Primer Magnitude| : : ’
3 ||~ — 5-Orbit Maneuver el .
° O 5-Orbit Optimal Times /’
© B B B ; B
c : : : / :
2 ’
s 2f ST R
a') ’
E 15} P 1
o ’
—Q

Time, Fraction of Period
Fig.7 Primer history for pure along-track maneuver.

to a p; =400 m, ag = n/4, p3 =200 m, f, = 3z/4 formation
(referred to as a safety ellipse), in a circular orbit with J, included in
the dynamics. An initial estimate for the candidate optimal thrust
times is obtained from the discrete-time optimal impulse profile in
Fig. 9. The iterative refinement of the primer history is shown in
Fig. 10, which results in a three-impulse optimal maneuver.
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Fig. 11 Optimal three-impulse maneuver to safety ellipse, e = 0 with J,-Js.

Fig. 12 Optimal three-impulse maneuver to safety ellipse, e = 0 with

Ja=Js.

400

In this case, the optimal primer magnitude is equal to one for the
entire maneuver, which is still a valid solution of the degenerate type
discussed by Prussing [1]. The optimal thrust times cannot be
immediately identified by examining the final primer history, but they
are still determined by this algorithm because it converges to the
optimal times from a series of compatible suboptimal solutions. The
optimal three-impulse trajectory is shown in Figs. 11 and 12 and the
total fuel cost for the maneuver is 0.3093 m/s. Using the method of
Vaddi et al. [14], the three-impulse fuel cost is 0.5566 m/s.

3. Comparison to the Method of Anderson and Schaub [21 ]

The same maneuver to reconfigure a formation from a p; =
200 m, ay =0 in-plane ellipse to a p; =400 m, ay = /4,
p3 =200 m, f, = 3n/4 safety ellipse is now generated using the
method of Anderson and Schaub [21]. That method, which is
designed for general formation flying applications including those in
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Fig. 13 Thirty-six-impulse maneuver to safety ellipse compared with optimal three-impulse maneuver.
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Fig. 15 Primer history for maneuver to V-bar, e = 0.5.

the geostationary regime, uses a discretized approximation to gener-
ate a near-fuel-optimal impulsive control sequence with impulses
applied at equal spacings in true anomaly. The method is applicable
in general circular, elliptic, and equatorial orbits because it uses a set
of completely nonsingular elements that does not suffer from the
same i = 0 singularity as the nearly nonsingular element set used in
this paper.

Using an anomaly discretization of 10 deg, the resulting 36-
impulse trajectory is shown in Fig. 13 (labeled “PVA Trajectory”),
along with the optimal three-impulse trajectory of the previous exam-
ple. In the formulation of Anderson and Schaub [21], the anomaly
parameter is not directly controllable, which is the reason for the
along-track discrepancy between the two trajectories. The main goal
of that method is to reach a formation with a desired size and
orientation without specifying a target anomaly. The total fuel cost for
the 36-impulse maneuveris 0.3106 m/s, compared with 0.3093 m/s
for the optimal three-impulse maneuver.

B. Elliptic Orbit

As mentioned previously, the algorithm presented in this paper is
also applicable to formations in elliptic reference orbits, with no ap-
proximations or loss of fidelity. To demonstrate, the next simulation
shows the design of a maneuver in a reference orbit with an eccen-
tricity of e = 0.5, froma p; = 1 km, ay = n/4, p; = 1 km, f, =
317 /4 eccentric safety ellipse to a p, = 1 km average V-bar position.
The actual TH parameters are defined using the eccentric modifica-
tions described by Sengupta and Vadali [29]. The reference mean
orbital elements are listed in Table 2 (elliptic case).

An initial estimate for the candidate optimal thrust times is ob-
tained from the discrete-time optimal impulse profile in Fig. 14. The
iterative refinement of the primer history is shown in Fig. 15, which
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Fig.17 Optimal three-impulse maneuver to V-bar, e = 0.5 with J,—J,.
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Table 3 CPOD reference mean orbital elements

Orbital element Value
a, km 6803.1366
Ao, deg 0

i, deg 97.04
qi 0.005
q2 0

Q, deg 270.828

results in the three-impulse optimal maneuver shown in Figs. 16 and
17. In this case, the initial candidate maneuver has four impulses, but
one is removed during the iterative refinement. In fact, the algorithm
initially removed the first impulse but then failed to converge to an
optimal primer profile, and so the impulse was added back and the
final impulse was removed instead. This illustrates one of the primary
advantages of this algorithm, which is that each iteration of the
solution represents a feasible control trajectory, even if it does not
satisfy the continuous-time optimality conditions. Therefore, even if
the algorithm had failed to correct the initial candidate maneuver, the
resulting set of impulses would still accomplish the desired maneu-
ver. In this case, the difference in fuel cost between the two trajec-
tories was small. The total fuel cost for the maneuver is 0.4559 m/s.
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C. CPOD Maneuvers in Near-Circular Orbit

The NASA CPOD mission is designed to perform rendezvous,
proximity operations, and docking with a pair of identical three-unit
CubeSats and is currently scheduled for launch in the fall of 2015.
The mission baseline is modeled as a near-circular (e = 0.005),
425 km sun-synchronous orbit (reference mean orbital elements are
listed in Table 3). The maneuver targeting algorithm presented here is
to be used as the basis of the CPOD guidance system. The mission

Fig.20 Optimal five-impulse CPOD maneuver to initiate walking safety
ellipse with J,—J.
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Fig. 18 Primer history for CPOD maneuver to initiate walking safety
ellipse.
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Fig. 21 Primer history for CPOD maneuver to safety ellipse.
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will employ passively safe trajectories for rendezvous and standby
between active operations.

1. Initiate Walking Safety Ellipse

The first CPOD maneuver simulated in this section is the initiation
of arendezvous trajectory, that is, reconfiguring from a safety ellipse
displaced some distance away from the chief to a walking safety
ellipse (defined as a safety ellipse with nonzero v,). In this case,
p1 =500 m, ayg =0, p3 =300 m, fy =x/2, d =2 km, and the
target v; = —400 m/revolutions. The iterative refinement of the
primer history is shown in Fig. 18. The initial candidate maneuver has
three impulses and two additional impulses are added, resulting in
another solution of the degenerate type in which the optimal primer
magnitude is equal to one for the entire maneuver. The final five-
impulse optimal maneuver is shown in Figs. 19 and 20, and it has a
total fuel cost of 23.87 mm/s.

2. Maneuver to Safety Ellipse

The final maneuver simulated is the initiation of a safety ellipse
(pr =150 m, ay =0, p3 = 150 m, fy = n/2, d = 100 m) from a
V-bar standoff position (d = 500 m). The iterative refinement of the

-100
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Fig. 23 Optimal two-impulse CPOD maneuver to safety ellipse with
J=Js-

primer history is shown in Fig. 21, which results in a two-impulse
optimal maneuver. The resulting two-impulse optimal maneuver is
shown in Figs. 22 and 23, and the total fuel cost is 0.1903 m/s.

VI. Conclusions

The dynamic formulation and optimal control equations presented
here provide the information necessary to set up the complete for-
mation reconfiguration algorithm derived in this paper. This algo-
rithm is suitable for implementation onboard a spacecraft with
limited processing power because it only involves the solution of
linear systems, as opposed to more complex methods that require the
solution of nonlinear systems. Fuel-optimal n-impulse reconfigura-
tion maneuvers are designed by iteratively solving a discrete-time
maneuver targeting problem, which satisfies the state constraints but
does not necessarily use the optimal number of impulses or impulse
times, using the continuous-time necessary conditions for optimality
to refine the impulse times until they converge to the optimal values.
Simulation results show that this method, which is uniformly appli-
cable to both circular and elliptic orbits of nonzero inclination, and
includes J, effects, produces accurate maneuvers with significantly
lower fuel costs than comparable suboptimal, practically imple-
mentable methods.

The primary advantages of this algorithm over previous primer
vector formulations of the optimal reconfiguration problem are that it
does not require the direct solution of the optimal control problem, it
includes the effects of eccentricity and J,, and it produces a feasible
solution at each iteration step. However, it still has certain limitations.
First, numerical difficulties can be encountered when solving
Eq. (49), especially when generating an initial candidate primer vec-
tor history and adding or removing impulses. Because this equation is
only guaranteed to have an exact solution when the impulse times are
optimal, the approximate solution may not be accurate if the impulse
times are far from the optimal times. Typically, a poor initial set of
candidate impulse times can be improved by changing the total
maneuver interval or the initial number of impulses. Second, it does
not include any constraints along the reconfiguration trajectory,
which would be necessary to enforce close approach requirements,
for example. In the CubeSat Proximity Operations Demonstration
mission, optimal maneuvers generated by this algorithm need to be
checked for close approaches before implementation. Therefore,
adding constraints to the optimal control problem will be the subject
of future research. Finally, the nearly nonsingular orbital element set
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is still singular in the case of equatorial orbits, and it would be
desirable to modify the algorithm to use equinoctial elements instead.

Appendix A: Gauss’s Variational Equations for Nearly
Nonsingular Elements
The nearly nonsingular form of Gauss’s Variational Equations
(GVEs) is derived from the classical form of Battin [35] using the
relationships

ecos f=gq; cos 4 g, sin 0 (A1)
e sin f = g, sin 6 — g, cos @ (A2)
n—1 —e
—_—=— A3
he h(1 +1n) (A3)
"=1-g-¢ (A4)

In terms of nearly nonsingular elements, the orbit equation is

2
an
1 + g, cos 6 4 g, sin 0 (A5)
The nearly nonsingular form of GVEs is then expressed as
d 2a?
d—f a |:(q1 sin 6 — g, cos O)u, —|— ] (A6)
di nr
= [h(l v )(ql cos 6 + g, sin 0) ——]u,
p+r . r sin 0 cos i
—_ sin @ — Ou, —————— A7
Y+ (g1 sin 6 — g5 cos O)u, neng o AD
di rcosé
== A8
i~ h (A8)
d in 0 1
D PR 4 l(p + Py cos 0+ rqyu,
rq, sin.H c'os iuh (A9)
h sin i
dg —p cos @ 1 .
d_12 =y +E[(P + r)sin 0 + rq,u,
_rq sin.9 c.:os iuh (A10)
h sin i
dQ rsind
== All
At hsini " (ALD

The rows of the matrix B comprise the coefficients of u,, u,, and u,,
for each equation, as in

=[b;] = [aﬁ] (A12)

ou;

Appendix B: Differential Form of Lagrange’s Planetary
Equations
The Jacobian of the LPEs is formed by populating the columns of
A with the partial derivatives with respect to each of the nearly
nonsingular mean elements:

=wﬂ=[ﬁﬂ (BI)

Defining the constant parameter € as in Schaub et al. [36],
R\2
e=J, (—5) n (B2)
p

the nonzero elements of A are

%—ﬂ—&[nﬁcos i—1)+ (5cos?i—1)] (B3)

oa 2a
‘3-6_7? = _736 3y + 5)sin 2i (B4)
% = %};[3;7(3 cos’i — 1) +4(5cos’i — g, (BS)
g_chi = j—’;pn(a cos’i—1) +4(5cos’i—1Dlg  (B6)
aaf;“ = &(5 cos?i—1)g, (B7)
% = %% sin 2i (BY)
aaf—qql'=_n—32€(50082i— Dq14, (B9)
Zf—qqzl:_Tk(l 4q2)(500$ i—1) (B10)
%: &(SCOS i—1)gq, (B11)
%:%ql sin 2i (B12)
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%:%(1-{—4’1—?)(&:%%—1) (B13)
%:%(mm— 1q142 (B14)
a;—::%cosi (B15)

Yo _ g (B16)

% = —)1_62qu cos i (B17)
%:_n—geq cos i (B18)

Note that the only time-varying quantities in this matrix are g; and ¢,
whose time derivatives are

41 = —qr@ (B19)
4 = q o (B20)
with
3
w:f(5cos2i—1) (B21)

on the order of J,. The solution to these equations is periodic with a
period of O(J5'),

q1(t) = q1,9 cos(@(t = ty)) — a0 sin(@(t — 1y)) (B22)

q2(1) = q10 sin(@(t — 1)) + g2 cos(o(t — 1)) (B23)
where ¢q; ¢ and g, are their values at 7. Therefore, the matrix A is

composed of only constant and slowly varying periodic terms.

Appendix C: Solution of the Costate Equation

Consider a system of the form

¥ = A()x (C1)
A=—-AT()A (C2)

It turns out that
xT(t)A(t) = constant (C3)

is an invariant of this dynamic system. To show this, differentiate x” 4
and substitute Eqs. (C1) and (C2) to find

T
WD 13 4xth =x AT A +TT-AT@H] =0 (Ch

Next, assume state transition matrices have been developed for
both states, yielding

x(ty) = ®(t, 1)x(1)) (C5)

Aty) = (1, 1DA() (C6)

To find the analytical relationship between the STM ¢(t,, #;) and
d(1,, 11), substitute Eqs. (C5) and (C6) into the invariant property in
Eq. (C3):

xI(1)A1) = X" ()M = xT (1) D (12, 1) (12, 11)A(1))
Isxs
(CN
This leads to
I = @ (12, 1) (1. 1) (C8)
>¢(1.1) = O (15, 1) = T (11, 1) (C9)

Thus, finally, the STM solution of the A(¢) trajectory is

A1y) = D7 (11, 1) A(1)) (C10)
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