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STEREOGRAPHIC ORIENTATION PARAMETERS FOR
ATTITUDE DYNAMICS: A GENERALIZATION OF THE
RODRIGUES PARAMETERS

Hanspeter Schaub” and John L. Junkins'

A new family of orientation parameters derived from the Euler parameters
is presented. They are found by a general stereographic projection of the
Euler parameter constraint surface, a four-dimensional unit sphere, onto a
three-dimensional hyperplane. The resulting set of three stereographic
parameters have a low degree polynomial non-linearity in the
corresponding kinematic equations and direction cosine matrix
parameterization. The stereographic parameters are not unique, but have
a corresponding set of “shadow” parameters. These “shadow” parameters
are distinct, yet represent the same physical orientation. Using the
original stereographic parameters combined with judicious switching to
their shadow set, it is possible to describe any rotation without
encountering a singularity. The symmetric stereographic parameters are
nonsingular for up to a principal rotation of +360°. The asymmetric
stereographic parameters are well suited for describing the kinematics of
spinning bodies, since they only go singular when oriented at a specific
angle about a specific axis. A globally regular and stable control law using
symmetric stereographic parameters is presented which can bring a
spinning body to rest in any desired orientation without backtracking the
motion.

INTRODUCTION

While the Euler parameters (quaternions) describe an arbitrary orientation without a singularity
they form a once-redundant set. The fallog development studies a method to stereographically
project the Euler parameters onto a three-dimensignarplane and form aammily of sets of
three parameters called ttereographic parameters. This study is motiated by earlier wrk
done by Marandi and Motji Tsiotras, Shustet and Wenef*. In particular Wienet Marandi and
Modi introduce a set of three parameters similar to the Rodrigues parameters (singular at a
principal rotation of® = £18(°), which mave the singularity out to a principal rotatiom of
+36C°! Marandi, Modi and Tsiotras describe this modified set of Rodrigues parameters as the
result of a stereographic projection of a fdimensional unit sphere onto a three-dimensional
hyperplane. This paper willxplore the stereographic projection idea further and in a more
generalized &y, and shw that both the classical Rodrigues parameters and the MediéwW
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modified Rodrigues parameters can be considered a special case of the general symmetric
stereographic parameters. Indeed, the method presented can be used to construct a set of three
symmetric stereographic parameters whickehtaeir singular point gnvhere between a principal

rotation of 0 and 360, or to construct a set of three asymmetric stereographic parameters which
have their singular point determined by both a principal angle and an axis of rotation. Analogous

to the Euler parameters, the stereographic parameters are generally not unique. The Euler
parameters timeariation, for ag physical motion, generate a trajectory on the awefof the unit
constraint sphere sade. The reflection of the Euler parametersefigng all parameters signs)
generates a second trajectory on the opposite side of the sphere which corresponds to the same
physical rotation. Each set of stereographic parameters has a set ofwgham@oneters” which
correspond to the reflection set of Euler parameters. These tghsigoeographic parameters are
generally numerically diérent from the original parameters, yeyspically parameterize the same
rotation. The deelopments presented herein are of significant academic importance; using
stereographic projections it is easy to visualize the singularities of this infanitiéy fof three
parameter sets which include the classical and modified Rodrigues parameters.

The modified Rodrigues parameters, as introduced iepé&¥ Marandi and Modi, are studied in
further detail, since tlyepresent the Ilgest range of non-singular rotations for the symmetric
stereographic parameters. In combination with the corresponding set ofWshadometer$,a
globally regular and non-singulanfapune attitude control is established in feedback form.

THE EULER PARAMETER UNIT SPHERE

The four Euler parameters are well wmoand well studied in the literature. Hhean be
developed directly from Eules’ principal rotation theore?§. The anglebd is the principal rotation
angle and the unitectore is the principal line of rotation, the Euler parameters are defined as

® o
By = C0S B =€ Dsm§ i=123 QD
B'p = BR+p2+pi+pl =1 )

The four Euler parametef abide by the holonomic constrainven in Eqg. (2). This equation
defines a foudimensional unit sphere. The Euler parameter trajectories on this sphere completely
describe ap possible rotational motion withoutyasingularities or discontinuities. M@ver, note
that the Euler parameters are not unique. The mirror image traje@oty describes the identical
rotational motion ag$ (t) . The ngative sign means the rotation is accomplished about a principal
axis of the opposite direction through thegamd/e principal angle. Usually this non-uniqueness
does not pose grdifficulties since both sets V& identical properties, correspond to the same
physical orientation, and can be saetivuniquely once initial conditions are prescribed.

Because the Euler parameters satisfy one holonomic constrajnfothrea once redundant set
of equations. Three parameters ardiceht to describe a general rotation.wéwer, the problem
with ary set of three parameters is that, as is wellwkmosingularities will occur at certain
orientations. Difierent three-parameter sets distinguish themeseby haing different geometric
interpretations and, especiallyarzing their singular behdor at different orientations. Also of
significance, most three-parameter sets introduce transcendental nonlinearities into the
parameterization of the direction cosine matrix and related kinematical relationshigsekithe
classical Rodrigues parameters and other sets discussed heobre iov degree polynomial
nonlinearities in both the direction cosine matrix and associated kinematieetifal equation,
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without approximation. The Euler parameter description represents an \atragtilarization
which has no singulariyat the cost of hdng one a&tra variable.

STEREOGRAPHIC PROJECTION OF THE 4D UNIT SPHERE

If a minimum parameter representation is desired, the four Euler parameters can be reduced to
ary parameter set of three by an appropriate transformatiwrexmple, the 3-1-3 Euler angles
or the Rodrigues parameters amrywcommonly used sets that are easily transformed from the
Euler parametef”é. Marandi, Modi and Tsiotras found a set of modified Rodrigues parameters by
means of a stereographic projection of the fdiorensional unit sphere onto a three-dimensional
hyperplane. ® describe the stereographic projection, imagine a three-dimensional sphere being
projected onto a tardimensional plane (analogous to the Earth map projection problem). A
certain point is chosen in the 3D space called a projection poirt.a8N2D mapping plane is
chosen. Egry point on the unit sphere is then projected onto the mapping planeniggiealine
from the projection point through the point on the unit sphere and intersected with the mapping
plane.

Bi
/‘ mapping
g line
projection

point \ }g ; (Bo’Bi)

@0) ®/2

<« Bo
’ Boza+]_
zero
I~ rotation
/—Pd2
unit /

cirele \

< 1

Figure 1. lllustration of a Symmetric Stereographic Projection onto Hyperplane
Orthogonal td3 axis.

Figure 1 shars only a 2D to 1D stereographic projection @ the illustration simple. The
results though can easily bepanded to a foudimensional sphere since theeaxare orthogonal
to each otherWith all these projections the Euler paramgigiis eliminated since the mapping
hyperplane normal is thBy axis. Thg are calledsymmetric projections since the non-singular
principal angle range is symmetric about the zero rotation aAgiemetric stereographic
projections are projections onto gperplane with a normal other than fgaxis, which do not
have a symmetric principal angle range. The case where the Euler par@qeberor (3 is
eliminated is discussed later in this paper



Placing the projection point on tBg axis yields a symmetric situation wherein the zero rotation
is in the center of the nonsingular principal angle range. The mapping line is placed a distance of
+1 from the projection point. The parameters are scaled by this arbitrary distanceingoaha
distance of 2 between the projection point and the mapping plaokl wimply scale all the
parameters by attor of 2.

Keep in mind that the Euler parameters are defined in terralfodf the principal rotation
angle®. The point (1,0) on the circle corresponds to a zero rotation. The point (0,1) corresponds to
a +180 rotation. Studying Figure 1 it becomegddent that the reduced parameters gotof
infinity when a point on the circle is projected which lies directly in the plane perpendicular to the
g axis through the projection point. Theawnes that need to be intersected are parallel to each
other causing the intersection point to weoto infinity The corresponding principal rotation
obviously yields the angle at which the reduced set of parameters will go singular! By placing the
projection point at dferent locations on th@, axis, the maximum principal rotation angle is
varied. If the projection point is outside the unit circle, no singularity will odxithe projection
is no longer one-to-one. Clearly this is not a desirable feature because of the ambiguity this lack of
uniqueness wuld introduce (gien the projected coordinates, we cannot uniquely orient the
reference frame).

The angle®g is the principal angle of rotation where the stereographic parametear ¥
encounters a singularityhis anglebg determines the placement of the projection paint

Pg
a = cos— 3)

The transformation from the Euler parameters to a general set of three symmetric stereographic
parameterg is defined as:

B, .
Zi_Bo-a i =123 (4)
The condition for a symmetric stereographic parameter singulevitient in Eq. (4), is
o)
a=B,= cos - (5)

If a< 1 this condition is satisfied at an infinite set of orientations. If the projection point is on the
unit sphere suafce, thena = -1 and a singularity is only achkied at® = +36C°. The irverse
transformation from the general stereographic paramétershe Euler parametef is

al'g+ 1+ (1-a)

|3 =
O 1+ 6)
{—an/hf&(l—aﬂ _
B = ¢ *T*Z i=123
1+Q°¢

This equation holds for both the symmetric and asymmetric stereographic projections. Since the
Euler parameters are not unique, itadidr to rewrite Eq. (4) in terms ofB,. For the general case
these ne stereographic parameteif%correspond to the mirror image of the Euler parameters and



are generally not numerically equalgof Eq. (4). Havever, the resulting csarctorgS will describe
the same orientation as the original parameters and are herein referred to as thegshadbof
¢ and are denoted with a supersc8pt

-B, B
= = 7

__Bo_a Bo+a

Using Eq. (6) the shadopoint ;S can be epressed directly as a transformation of the original
parameterg and the projection poirat as:

—a+ /1477 (1-a%)

= (8)

a+2al'¢+,/1+7'7(1-89)

The fact that the shadopoint \ectorgS generally has a dérent behaior than the originak
will be useful when describing a rotation. Thefahéntial kinematic equations fot, by
differentiating Eq. (4), are found to be

B B.Bo
¢ = - 9
2 Bo_a (Bo_a)z ( )

By making use of the didrential kinematic equations of the Euler param@ters

B B, =B, —B, —B4|[ 0
By _ 1|By By ~Bg By ||@1
B, 2|By By By By @
b, By B, B, By||Ws

o

[y

(10)

and the definition of the stereographic parametarsngin Eq. (4), the diérential kinematic
equations for the stereographic parameters can be found. Their general fersnlengtly and
not shavn here due to space limitations. The most important special cases are discusged belo

Viewing Figure 1, it becomesviglent that a set of three symmetric stereographic parameters
cannot hae the singularity point m@d bgond a principal rotation o£360°. Going bgond
+360° would mean finding a projection point thabwd map the entire unit sphere more than
once, i.e. not a one-to-one map onto the projection plane. Therefore the symmetric parameters are
better suited for igulator or “moderately lge” departure motion problems, than for spinning
body or lage angle manewv cases.

Note that for the zero principal rotation, the asymmetric stereographic parameters are not equal
to zero. The projection of tH&) parameter ontf; =a+ 1 is not zero becaugy is one at the zero
principal rotation.

Asymmetric stereographic parametergéha qualitatiely different singular beldor from the
symmetric stereographic parameters. The Euler pararfigteontains information about the
principal rotation angle only (i.e., the directionefloes not déct ). Eliminating 3y during a
symmetric projection causes the singularity to appear at a certain principal rotation angle only
independent from the principal axis of rotatien Consequently symmetric projectionsveaa
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symmetric range of nonsingular principal rotation®d4-< ® < +dg} about the zero rotation,
regardless of the direction @f.

mapping
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Figure 2: lllustration of a Asymmetric Stereographic Projection onto Hyperplane
Orthogonal tdB; axis.

For an asymmetric projection, one of the Euler parameigrf,, or 33 is eliminated. Each one
of these parameters contains information about both the principal rotation angle and the direction
of e. Therefore singularities will only occur at certain angles about the i-th axis (corresponding to
Bi). Figure 2 illustrates an asymmetric stereographic projection \Bhereliminated. All possible
projections points now lie on thef; axis, and the mappingyperplane perpendicular {§ is
defined a3j = a+1. Since the zero rotation is no longer in the center of the nonsingular principal
angle range, thealid range of principal angles is non-symmetric. A singularity will occdrat
or ®g,, where these tw principal angles are unequal in magnitudeze@ia singular principal
rotation anglebg; which lies betweert18C°, the corresponding projection poants defined as:

cDSl

a = cos—- (11)

The second singular principal rotation an@k is then found as:

O, = 2m- D (12)

The transformation from Euler parameters to the corresponding asymmetric stereographic
parameters is the same agegi in Eq. (4), witl3g andp; switched. A singularity n@ occurs when
Bj equalsa. If the projection poina lies inside the foudimensional unit sphere, this may occur at
several orientations.



=a (13)
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Using Eq. (1), the condition for a singularity becomes Eq. (13), where theiiatinds for the
Bij parameter which &as eliminated. Since trsen function is bounded betweeri, a singularity
will never occur if |g| <a. If the projection poiné is moved to the sphere sade, namely ta1,
then a singularity may occur with a rotation aboutitiiebody axis only! The reason for this is
evident in Eq. (12). Sincais £1 and thesin function is bounded withiti1, the only vay Eq. (13)
is satisfied is ifie| = 1. Becausee is a unit \ector the other tw direction components must be
zero if || = 1. Thus if the body is spinning about an axis other than the i-th body axis, a
singularity will nerer occur Therefore these asymmetric stereographic parameters are\adtracti
for spinning body problems, where an object is rotating mainly about a certain axis. The principal
rotation angle is n@ not bounded as with the symmetric stereographic parametertscén grav
beyond+36(C°. Simply choose the normal of the projectigqpérplane to beafr remweed from the
rotation axis and place the projection panin the fowrdimensional unit sphere sade and the
probability of encountering a singularity is virtually nil.

For both the symmetric and asymmetric stereographic parameteirsy ize projection point
on the sphere sate means the singularity can only occur a tlistinct orientations. If the
projection point lies inside the sphere, there generalgtean infinite set of possible singular
orientations.

The inverse transformation from asymmetric stereographic parameters to Euler parameters is the
same as gen in Eq. (6). These asymmetric parameters akbibie the same shado point
behaior as the symmetric parameters do with the same transformate@migiEq. (8). Therefore,
if a singular orientation is approached with the asymmetric stereographic parameters, one can
switch to the shadw point to aoid the singularity

CLASSICAL RODRIGUES PARAMETERS

The Rodrigues parametegishave a singularity a® = +18C°. This corresponds to a point on the
two-dimensional unit circle in Figure 1 of #1). The corresponding symmetric stereographic
projection has the projection poiatat the origin and the mapping line (& = 1. It becomes
evident why the classical Rodrigues parameters must go singutr=at180 when describing
them as a special case of the symmetric stereographic parameters. The transformation from the
Euler parameters to the Rodrigues paramefessfound by settingg = +18C in Egs. (3-4). The
well knowvn result is shwn in Eq. (14) belw.

B.

% = g, i =123 (14)

The inverse transformation from the Rodrigues to the Euler parameters is found by using the
same®gin Eq. (6) and is gen as:

Bp= —— B = i=123 (15)

The diferential kinematic equation in terms of the classical Rodrigues parameteverisirgi
vector form as:



q= 30+ +aa (16)

An explicit matrix form of Eq. (16) is gen belov®.

1407 Gy0,— 03 Gy03+ G| [0,
9= 350,0,+03 1+05 Gylg—0y|| @, (17)

G301 —0p O30y +0d; 1+ qg @3

Using the definitions of the Euler parameters in Eq. (1), the Rodrigues parameters can also be
expressed directly in terms of the principal rotation adgknd the principal line of rotatiog

q= gtan% (18)

From Eqg. (18), it is oldous wty the classical Rodrigues parameters go singulaf @f’. For
completeness the direction cosine ma@iis given in explicit matrix forne:

1+02-05-05 2(00y+0s)  2(Gy03—ay)
5| 2(9,0,-03) 1-9f+05-03 2(dy05+0;) (19)

C(ap0x03) = ————5—
1+q§+q§+q3 5 5 5
2(Q3q1+q2) 2(q3qZ_ql) 1_q1_q2+Q3

and in \ector forn?:

Cla) = — o ((1-d"q) ! +2q0" - 2[d]) (20)
1+gq

Eq. (20) and its Werse can also be written as the Caylimnsforn?>’:
C(a) = (1-[a) (1+[a) (21a)
[@ = @-c)+o™ (21b)
and the kinematic dérential equation shen in Egs. (16-17) has the “Cayl’e‘orm5:
d1g) = S0~ [@) @ - @) (22)
dt al = 5 q q
The tilde matrix[q] is defined by-[qx...] as gien in Eq. (23).

0 -a3 @,
[a] =|a; 0 -q; (23)
—d, d; O

Let the \ector gS (defined with B) denote the shado point of the classical Rodrigues
parameters. Solving Eq. (6), or starting with Eq. (14), theViatig definition for thegS is found.
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S i=123 (24)

Eqg. (24) shws that for the Rodrigues parameters, the shapoint vector components are
identical to the original Rodrigues parameters, with identialkies and properties. Therefore the
shadev point concept is of no practical consequence in this case; the classical Rodrigues
parameters are unique!

Bi
unit (Bo:By) s
Ci rcl\e‘ < G =G
a=0
S
Po
(-BoB) mapping
line

Figure 3: Original and “Shadwe Point” Projection of the Classical Rodrigues
Parameters.

Having the projection poird at the origin causes this géat, dgenerate phenomenon. Figure 3
illustrates wly both sets of Rodrigues parameters are identical. The classical Rodrigues parameters
are the only symmetric stereographic parameters whitbiethis lack of distinction between the
original parameters and their shadpoint counterparts. This pres simultaneously to be an
advantage and a disaantage.

MODIFIED RODRIGUES PARAMETERS

The modified Rodrigues parameters presented by Marandi and Modi, and Tsioteashmo
projection point to theal left of the unit sphere at (-1,0,0,0) and project the Euler parameters onto
the lyperplane aBy = 0. This pushes the singularity as &vay from the zero-rotation as possible.
The parameters will mo go singular atb = +36(°. This set of parameters is able to describe an
type of rotation gcept a complete velution back to its original orientation. Carrying out the
stereographic projection witkbg = +360°, the transformation from Euler parameters to the
modified Rodrigues parametezatorg and the imerse transformation arevgin as:

B
o= ' i=123 25
= TR, (25)
1-0'o 20,
= — o= i =123 26



Using Eq. (1) agin, the modified Rodrigues parameters can be writfen as

o = etan (27)

This formula immediately keals the singularity at a principal rotation ¥86C°, double the
range of the classical Rodrigues parameters. It is interesting th& and® =+360° correspond
physically to the same body orientation. Thastfhas both theoretical and practical consequences
in “avoiding” the singularity

. -0
o= 2[' WDJF [o] +00T}oo (28)

The kinematic dierential equations in terms ofare gven in Eq. (28). Theare \ery similar to
Eqg. (16) ecept for one dra term. This terms mak the equations only slightly more complicated,
but not ary more non-linear

The eplicit matrix form for the elements of Eq. (28) ivem as:

2_ 2 2
. (1+0 —02—03) 2(0102—03) 2(0 o +02) W,
o= 4 2(0,0,+0,) (1—02+0§—0§) 2(0,0,-0,) W, (29)
2(0 c —02) 2(0 o +01) (-0 —0§+0§) e

The direction cosine matrix in terms of the modified Rodrigues parar%e&rrbe shan to be:

2_ 2 2 2
. 4(0]-05- 03) +2 80,0,+40,% 80,0,-40,%
= - _ _ 2 2_ 2 2
C (o) roTo) 5| 80,0,-40,5 4(-07+0,-0%) +% 80,0,+40,% (30)
gL 2_ 2, 2 2
80,0, +40,% 80,0,-40,% 4 (—01 -0t 03) +2
$=1-0'0
or more compactly inactor form a%
4(1-0 0) 8 ~. 2
C(o) = I-———— [0l +———[o] (31)
(1+0'0) (1+0'0)

The modified Rodrigues parameterctor g is transformed into classical Rodrigues parameters
as:

q=U Do (32)
- M-o'oO

\q

Naturally, this transformation goes singular at a principal rotation1®C°, because|g|| - 1
and||g|| - « as® - +180°.

Comparing Eq. (27) and Eqg. (18) it is immediatelydent that both the classical and the
modified Rodrigues parametegactors hee the direction of the principal rotatioeator e, but a
different magnitude. The transformation from modified to classical Rodrigues parametars sho
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in Eqg. (32) can be veritten in terms of the principal angle of rotatidn

tan

N S

(33)

o
1
q

tan

IS

Using the image setp (t) of Euler parameters, the shadpoint of the modified Rodrigues
parameter ector g is found4,

o = = 7 (34)

Contrary to the classical Rodrigues parameters, these modified Rodrigues parameter shado
points are not numerically equal to the original parameters. Whijegtreerate xactly the same
direction cosine matrix, tlyeare not generally a mirror image of one anotNehile generally
0°#-g, note that eerywhere on the unit spherg’s = 1 that, in fct, 0° = -g = -B,. This
simple obseration has significant practical consequences.

Bi
(Bo:By)
Gj
Ro
\ unit
circle
~—— mapping
line
op

Figure 4: Original and “Shade Point” Projection of the Modified Rodrigues
Parameters.

The shadw pointsc® have some interesting properties. iy singular at the zero rotation and
go to zero at a360° principal rotation! This is thexact opposite of the qualitaé behaior of o.
The reason for this betiar becomeswadent in Figure 4. At a zero rotation, the shadmwint will
intersect the mapping line at infini#t a rotation o&180C° the shadw points will be the ngative
of their original \alues. W& note thato® is distinguished fromo merely for book-keping
purposes. flansforming initial conditions (frorfC] or ) for ary given case, could initiate motion
on eithero (t) or o>(t) .
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When the attitude parameters switch to the “shédset, their desatives naturally switch to.
Let 6® = (0'0), then their relationship is\g@n by

dos= L (d5-2(1+0% [Blo- (1-0% 2) (35)

Using o together with the shadovector o5, it is possible to describany rotation without
singularities and with only three parametens, With one discontinuity at the switching point. If
the original g (t) trajectory approaches the singularitydat= +36C°, the \ector g (t) can be
switched to the shadotrajectoryc®(t) . This transformation isery simple as is seen in Eq. (34).
Rather than waiting until [0 (t)| - « or |g>(t)| - » to switch, havever, the most covenient
switching suréce is thes'o = 1 sphere; the unit sphere which corresponds to a principal rotation
of £180°. The Euler parametdd, is zero gerywhere on this sphere. This causes the shadmnt
to hare the same unit magnitude as the original with the transformation b&irg-o. Thus
whenever o (t) exits (enters) the unit sphere’(t) enters (gits) at the opposite side of the
sphere.

Switching at theo'o = 1 surface can be ery elgantly accomplished when finding by
extracting the Euler parameters from the direction cosine matrix. Singgp (,>0 and the
resulting set of parameters willvadys hae o'o<1 (Ref. 1). Switching on th@y = O sphere
(Whereo'o = 65 6° = 1) keeps the combined set of original and shagoints bounded within
the unit sphere.

Unit Sphere

Figure 5: lllustration of the Original and ShaddViodified Rodrigues &ameter

This bounded beki#or of the combined set is illustrated in Figure 5\ahoThe grg line
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represents the (t) trajectory and the black line the corresponding siaiajectory ofoS(t) .

The motion starts out at a zero rotation with the ¢jre at the origin and the black line at infinity
After a while the principal angle of the object ysobeg/ond 180 and the grg line exits the unit
sphere. At the same time the shadparameters (black line) enter the sphere at the opposite
position. If the body rotates back to the original orientation, the shpdmameters approach zero
as the original parameters gd tf infinity. Any tumbling motion wuld give rise to a qualitately
identical discussion of (1) anda®(t) .

EXAMPLE OF ASYMMETRIC STEREOGRAPHIC PARAMETERS

A sample set of asymmetric stereographic parameteprn is constructed by eliminating the
Euler parametef; and settingx equal to -1. Adjusting Eq. (4), theatorn is defined as:

Bo B, Bs

nl—m n2—81+1 n3—m (36)
Using Egs. (11) and (12) the singular principal rotations about thevedsijtaxis becomebg;
= -18C¢ anddg; =+54C. As mentioned earlietthe direction at which a singular orientation is
approached is important with asymmetric stereographic parameters. Hegatwmenprincipal
rotation of 180 about the first body axis causes a singulafitpositive principal rotation of 180
would yield an identical pfsical position, yet causes no singularf®nly after a +540does this
representation go singujaven though this position is the same as £18Mhis non-symmetric
principal angle range is due to tlaef that the zero rotation poirtl(,0,0,0) does not lie on tlflg
axis. Naturally the singularities couldralys be @oided by switching the vector to its shade
set through

o
HT

S

n” = (37)

1=

Differentiating Eq. (36) and using Eq. (10), thdeténtial kinematic equation foreetor n is
found to be:

(-1-nj+n3+ny) 2(ng=n) 2NN, +ng)  |[o
n=7 2(ng-nyny 2(nng+ny)  (-1+nZ-n3+nd| o, (38)
-2(nng*+n,)  (1-ni-n3+nd)  2(n,-n,ny |1

=

3

Note that Eq. (38) contains no transcendental functions in it and is similar queliitéd Eq.
(29). Because is an asymmetric stereographic parame¢etof hovever, there is less symmetry
in the matrix. This lack of symmetry is lia#d with the absence of a symmetric principal rotation
angle range. Therefore, Eq. (38) cannot be written in a more congudot &s \as the case with
the symmetric stereographic parameters.

The direction cosine matrix in terms pfcan be found to be:
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4(nf-n3-n) +3*  8nn +4n,s -8n,n,+4n,>

1
C(n) R - 8n,N,+4n,% 4(n§+n§—n§) -5 8NN, +4n, 2 (39)
(1+n'n)
- 8 N, +4n,% 8n,n,-4n,  4(nf-n3+nd) -3
£=1-n'n

Analogously asymmetric stereographic parameters could bevatkrby projecting onto a
hyperplane orthogonal to tifls or 35 axis, or actually annon{3; axis. All these parameterowld
have a similar singular bekeor.

To illustrate the use of the asymmetric stereographic paramegtéos describing a spinning
body, a sample motion as generated. The motioragvachieed by forcing the follewing 3-1-3
Euler angle time history upon the body

0,(0 =t  8,(1) = (1—c032t)g 0,(1) = (sin2t)g (40)

The body is mainly spinning about the third body axis while oscillating about the other tw
Therefore the stereographic parametstern will never go singularsince a singularity can only
occur with a pure rotation about the first body axis.

Legend
— - nl
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Figure 6: Spinning Body Description with Asymmetric Stereograplacameters.

As Figure 6 shas, the asymmetric stereographic parametease smooth and continuous at all
time. The sample motion performs 1.5akitions without encountering rsingularity

To compare the asymmetric with the symmetric stereographic parameter description for this
spinning bodythe polar plot in Figure 7 &g generated. The magnitude of each paramettonis
plotted \ersus the principal rotation angpeAs epected, the symmetric stereographic parameters
go singular at certaip, namely+18C for the classical Rodrigues parameters 4860 for the
modified Rodrigues parameters. On the other hand, the asymmetric parasntien wremains
bounded at all times.
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Figure 7. Comparison of Symmetric and Asymmetric Stereograpaiareters.

Figure 8 shws the time history of the principal rotation angpefor this spinning body
maneuer. Because of the oscillations about the first and second bodypayass reduced during
some portions of the manezrvBecause the magnitude of the symmetric stereographic parameters
depends only on the principal rotation angle, these “backing up” phases are not visible on the polar
plot in Figure 7. Havever, the magnitude of the asymmetric stereographic parameters depends on
both the principal rotation angle and the direction of the principal rotation axis. Xfiténs the
more irrggular features of the| plot in Figure 7.
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Figure 8: Principal Rotation Angle ime History of Spinning Body Maneav
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While some loss in symmetry and gdace of the equations results, asymmetric sets of
stereographic parameters are able to represent the motion of a spinning body without switching
between the shadoand the original parameters,dikhe modified Rodrigues parametersuld
require.

GLOBALLY STABLE CONTROL USING MODIFIED RODRIGUES PARAMETERS

The combined set of modified Rodrigues parameters and theirvshammnterparts lend
themseles \ery well for reyulator type control design. Adopting the switching acefo’o = 1
has a surprising benefit in designing contraldaConsider the dynamics of a generally tumbling
rigid body The Llyapuna functiorf

V(w 0) = %,TJ(,M 2Klog (1+0'0) (41)

will not have ary discontinuities at the switching sack, since both the original and its
shadev ¢ point hae unit magnitude there! (w, o) is by inspection only zero if botts and o
are zero. As a consequence, it is easy to establish a globally syablenty controller with a
three rotation parameter set whichvereencounters a singularity!in Eq. (41) denotes the 3x3
inertia matrix in body axis. The scaldris a positre feedback @in. For this nonlinear gulator
type problem, thex@ernal control torque is found by setting the time deaitive of Eq. (41) equal
to

V = -0'Pw (42)
with P being a positie definite matrix, and using Eqg. (28) and Egl@guation of motion:
Jo = - [w] Jw+u (43)

to solwe for the torquer. Using the logrithm of 'o in Eq. (41) results in a globally stabilizing
feedback control la for the torqueu which islinear in bothw ando (Ref. 2,5).

u=-Pw-Kog (44)

The control lav in Eq. (44) is alid for ary arbitrary departure motioa. Corventional sets of
three parameters omld encounter singular orientations. Another problem withvetional
parameter sets is that hikeave no inherent mechanism to accommodate tumbling situations when
the object has performed a principal rotatiopdrel £180° away from the desired state. When this
happens, it wuld probably be desirable to “help” the object complete thauton, rather than to
attempt to force it back theay it came. The only set of parameters that can “almost” handle this
scenario is the classical set of Rodrigues parametery.faihdecause thego singular near the
“up-side-davn” orientation at®=+18C. The combined set o6 and gs, hovever, are well
behaed up to and well lyond ® = +18C°. Sinceo(t) and o>(t) satisfy &actly the same
differential equation Eq. (29), it is wibus that switching to the incoming “shaddrajectory”
using the transformation of Eq. (34) [i.e., upon encountesitag> 1] can be accomplished easily
with little programming or computational cost. Switchingodt = 1 males it possible for the
control lav to let the object go past the “up-sideaad orientation and then let it rotate back to the
origin the short \ay, as we illustrate in arxample belov.

The angular &locity w feedback is required for global stabilignd theP matrix should be
chosen to achie satishctory damping of the nonlinear oscillations.
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The results of a single-axis spin maneuusing the control V& in Eq. (44) are presented. The
inertia J used vas 12000 kgﬁ] the feedback @jns were chosen 46300 andP=1800. Initial
angular elocity was +60/s. Figure 9 belM shavs the time history of the principal angle of
rotation. The object clearly spinsylmand the “up-side-den” point of ®=+18C and then returns
back to the origin by continuing the motion and completing tleluton. The w feedback
sufficiently dampens the system to yeat excessie oscillations about the origin.
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Figure 9: Principal Angle of Rotation of Spin Manesvy

The angular glocity, shavn in Figure 10, decreases steadily from %6@nd cowerges to zero.
Where thed goes bgond 180 there is a discontinuity in the slope ©f
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Figure 10: Angular \&locity of Spin Maneuer.

The correspondingxéernal control torque is presented in Figure 11. gdaorque is demanded
initially because of the lge initial angular glocity w. As w decreases, so does the torque. There
is a discontinuity where the modified Rodrigues parameter switch from the original to the shado
point trajectory This is because the position ermreversed its sign, dring the object tavards
the origin about the otheray. However, the control torque does not jump to aatee value
because of the feedback. It Eeps the torque posig; i.e. the controller is still sking down the
spin, een during the switching.
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Figure 11: External Control ®rque of Spin Maneuer.

The position error and the associated torque discontinuity due to switching to th& shado
trajectory may be troublesome for highlyxilde bodies. Huwever, this is easily addressed in
practice by replacing the instantaneous switch by a smooth one. Also, introducing a simple digital
filter will effectively smooth out such jump discontinuities.

It is conceptually easy to introduce a reference trajectory and design analogous tracking-type
feedback control with, using the methods of reference 5, global stability guaranteed. This is useful
in achieving global control shaping, and also to permit selection of feedbaiok guficiently
large to reject disturbances.

CONCLUSION

A new family of stereographic parameters has been presented including the general trans-
formation from and to the Euler parameters. The general stereographic parameters are not unique
and hae a corresponding set of shadpoint parameters whose singular babais different
from the original parameters.

The classical Rodrigues parameters are a special set of the symmetric stereographic parameters
where the original parameters and their skhadmints coincide. The modified Rodrigues
parameters are also a special case of the symmetric stereographic paramefersve tiee
largest non-singular principal angle ranget86C°. Their associated shadgoints are singular at
the zero rotation and zero agd= +36C°. This combined set of stereographic parameters and their
shadev point parameters are able to describg mtation without encountering a singulayibat
with one discontinuity

The asymmetric stereographic parameterge ttheir singular orientations defined both by an
axis and a principal rotation angle. Theotgingular angles do notV&equal magnitude as with
the symmetric stereographic paramefeymmetric parameters do allaotations bgond £36C°
and are therefore attragtito spinning body type problems.

The globally stable controlapresented implicitly “knavs” when an object has rotatedybad
+18C from the taget state, and to let it complete th&adletion back to the desired state. This
control implicitly seeks out the smallest principal rotation angle to thettatate. This controlua
was deeloped by making use of the modified Rodrigues parameter and theiwgbhaidts.
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