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A B S T R A C T

This manuscript develops a simultaneous navigation and gravity estimation strategy around a small body. The
scheme combines dynamical model compensation with a mascon gravity fit. Dynamical compensation adds
the unmodeled acceleration to the filter state. Consequently, the navigation filter is able to generate an on-
orbit position-unmodeled acceleration dataset. The available measurements correspond to the landmarks-based
navigation technique. Accordingly, an on-board camera is able to provide landmark pixels. The aforementioned
position-unmodeled acceleration dataset serves to train a mascon gravity model on-board while in flight. The
training algorithm finds the optimal mass values and locations using Adam gradient descent. By a careful
choice of the mascon variables and constraints projection, the masses are ensured to be positive and within
the small body shape. The numerical results provide a comprehensive analysis on the global gravity accuracy
for different estimation scenarios.
1. Introduction

Small bodies exploration is of great scientific interest because these
objects are able to explain Solar System formation processes [1]. They
could also collide with Earth, thus it is pertinent to design and test
asteroid deflection techniques [2]. There are several small body mis-
sions planned in the 2020s decade. Two prominent examples include
Psyche [3] which will explore the metallic asteroid of the same name
and Hera [4] which will analyze in-situ the DART [5] impact on
Dydimos’s moon. Currently, OSIRIS-REx mission [6] is returning to
Earth with collected samples from asteroid Bennu.

In the vicinity of a small body, the spacecraft motion may be highly
perturbed from a Keplerian orbit. This is due to the strong effects of
inhomogeneous gravity and solar radiation pressure [7]. If unaccounted
for these perturbations can lead to escape or collision trajectories.
Therefore, they have to be taken into account in order to ensure safe
flight operations. However, before a small body mission launches, only
coarse information of the body shape can be inferred through Earth-
based radar and telescope measurements. While this is not a concern for
solar radiation pressure, it certainly is for the small body gravity field
determination. As a matter of fact, the inhomogeneous gravity is only
observable in the close neighborhood of the small body. A practical ex-
ample is the NEAR mission around the asteroid Eros. The Eros spherical
harmonics gravity was observable, relative to their uncertainty, up to
10th degree [8]. The gravity determination process largely relied on
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processing Deep Space Network (DSN) range and range-rate with long
(up to 30 days) optical observations arcs. Although this methodology
reduces the needs for on-board computation, it slows down the mission
timeline due to long data arcs, signal delays and DSN constrained
accessibility. Consequently, automating the gravity field determination
process has the potential to speed up the transition to low altitude
operations (with high scientific return). Moreover the dependence on
costly and constrained Earth-based infrastructure is reduced.

In the last decade, several publications [9–17] are proposing au-
tonomous gravity estimation strategies. Refs. [9,10] revisited NEAR
mission orbit determination and gravity field estimation by using linked
autonomous interplanetary satellite orbit navigation (LiAISON). This
technique exploits the gravity field asymmetries along with relative
satellite-to-satellite range and range-rate measurements to provide pre-
cise orbit determination. In particular, [10] demonstrates that Eros
gravity field is theoretically observable up to 9th degree by using a
suitable beacon-satellite configuration. Refs. [11,12] focus on close
formation satellites (namely swarm) for simultaneous navigation and
asteroid characterization. These works fuse landmarks-based and inter-
satellite ranging measurements within a centralized unscented Kalman
filter (UKF). The UKF estimates the swarm state and spherical har-
monics coefficients (amongst other variables of interest). Second-order
gravity and solar sail reflection coefficient degradation are inferred
in [13]. The parameters estimation is done through recursive least-
squares fitting of the unmodeled acceleration (which is inferred with an
vailable online 6 October 2023
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extended state observer). However, the simulations lack realism as per-
fect knowledge of the spacecraft position is assumed. Ref. [14] develops
a gravity model learning-based predictive control for orbit-attitude
station-keeping. A spherical harmonics gravity model is learned by
averaging UKF individual estimates of a satellite constellation (which
uses landmarks and laser-based navigation). Multiple satellites are able
to mitigate outliers and augment the convergence rate with respect
to a single satellite. The results also show the positive impact of
model learning in orbit control accuracy and torque demands. Two
different machine-learning approaches are used in [15,16]. Ref. [15]
utilizes Hopfield neural networks for spherical harmonics gravity esti-
mation. The results show that the neural network estimation is able
to provide similar performance as extended Kalman filtering (EKF)
with a lower computational cost. However, the navigation compo-
nent is simplified by assuming zero-mean white Gaussian noise of
position and velocity. Differently, [16] couples a dynamical model
compensated filter (which estimates a position-unmodeled acceleration
dataset) with a physics-informed neural network gravity representa-
tion. While marginal improvement with respect to a point-mass model
is achieved, it seems a promising data-driven technique for gravity field
determination.

The autonomous gravity estimation literature shows a clear pref-
erence for the spherical harmonics model [9–15] (except Ref. [16]).
The spherical harmonics model is generally valid only outside the body
circumscribing sphere (namely Brillouin sphere). This is of great con-
cern when planning low altitude operations (descent, landing or touch
and go) because the gravity prediction may be flawed in that domain.
In order to avoid spherical harmonics Brillouin sphere divergence,
alternative gravity models [18–23] (amongst others) can be employed.
For on-board execution and estimation, several considerations have
to be analyzed (e.g. computational efficiency) besides accuracy. The
polyhedron [18] and novel neural density fields [23] models provide a
high global accuracy but are expensive computationally. The ellipsoidal
harmonics model [19] reduces the size of the spherical harmonics
divergence domain but does not avert it. The mascon model [20] can
be adjusted to offer a balance between accuracy and computational
load. Machine-learning based models (also [23]) are recently proposed
in the form of Gaussian processes [21] and physics informed neural
networks [22]. These are a suitable data-driven options but are on
an early stage in terms of convergence outside the dataset domain
(e.g. lack of data close to the surface).

Under the previous considerations, this work explores the mas-
con model for autonomous gravity estimation. This model represents
the gravity field as the joint contributions of multiple simple shapes
(e.g. spheres) discretizing the small body. A typical research direction
consists on using mascon distributions that approximate the constant
density polyhedron model [24]. Alternatively, [20,25,26] use optimiza-
tion techniques to find the mascon distribution that fits a dataset.
Ref. [20] fits the Earth’s gravity field beyond 𝐽2 by assuming the point

asses are fixed a-priori. In [25], a genetic algorithm finds the optimal
oint masses locations and its values. In a similar spirit, [26] employs
Newton–Raphson algorithm to compute the optimal distribution of a

ow number of point masses. The previous works assume true position-
cceleration (or potential in [20]) datasets for their mascon trainings.
oreover, [20,25] datasets contain abundant and homogeneously dis-

ributed samples across the spatial domain while [26] relies on low
ltitude points. While these conditions are acceptable for gravity field
odeling analysis, they are possibly unfeasible during the on-orbit

cenario. Specifically, the data may be highly concentrated on a specific
rbital regime (though low altitude samples may be obtained with
dditional hardware [27] or ejecta observations). Even more crucial,
he dataset is also corrupted by navigation uncertainties. Following
he previous consideration, the on-orbit generation of the gravity ac-
eleration data poses a question on itself. To this end, the concept
f dynamical model compensation (DMC) could be tailored to this
726

pecific application. The DMC key idea is to estimate the unmodeled g
dynamics component (as an acceleration) along with the spacecraft
state. Operating as such, the persistent unknown dynamical bias is
removed from the filter process which is of high interest for precise
orbit determination [28,29].

This manuscript combines a dynamical model compensated un-
scented Kalman filter (DMC-UKF) with the training of a mascon gravity
model. Following previous works in small body navigation [9–11,14,
30,31], the spacecraft is assumed to be equipped with a camera that
tracks landmarks on the small body surface. The identified landmark
pixels on the image plane (which is out of the scope of this work)
constitute the DMC-UKF measurements. The DMC-UKF generates an
on-orbit position-unmodeled acceleration dataset over time. Then, this
dataset serves to fit a mascon gravity model using Adam gradient
descent. This paper extends and completes the authors initial commu-
nication of [14]. The major breakthrough is that the mascon training
has now the feature to find the optimal masses spatial distribution
(instead of just the masses values). Moreover, physical constraints such
as masses positiveness and its containment within the body shape are
explicitly accounted for. To resume, the main contributions of this work
are: (1) the autonomous gravity estimation of a mascon model which
does not diverge within Brillouin sphere; (2) the resulting mascon
distribution is physically consistent (positive masses within the body
shape) and, (3) the potential flexibility (to other gravity models) of
the proposed strategy since the dataset generation is decoupled from
gravity estimation.

The structure of the paper is as follows. Section 2 describes space-
craft dynamics around a small body. Section 3 presents the camera
model and DMC-UKF algorithm. Section 4 develops the mascon gravity
training algorithm and its integration with DMC-UKF. Section 5 shows
numerical results of interest. Section 6 concludes this paper and states
future research directions.

2. Dynamics around a small body

A spacecraft in the proximity of a small body is perturbed by
the gravity field, the Sun’s third body gravity and the solar radiation
pressure as

𝐫̈𝑁 = (𝐑𝐴
𝑁 )𝑇 𝐚poly + 𝐚𝑁⊙ + 𝐚𝑁SRP, (1)

here 𝐫𝑁 is the spacecraft position expressed in an inertial small body
entered frame 𝑁 ≡ {𝟎 ∶ 𝐢𝑁 , 𝐣𝑁 ,𝐤𝑁} where 𝟎 is the small body center
f mass and 𝐤𝑁 its major inertia axis. The Sun’s third body gravity
erturbation is 𝐚𝑁⊙ and the solar radiation pressure acceleration is 𝐚𝑁SRP.
he term 𝐚poly is the small body polyhedron gravity acceleration [18]
hich is assumed as the ground truth (it is further detailed in para-
raph 2.2.1). This vector is expressed in a rotating small body centered
rame 𝐴 ≡ {𝟎 ∶ 𝐢𝐴, 𝐣𝐴,𝐤𝐴}. Let us consider 𝐤𝐴 ≡ 𝐤𝑁 , thus the equatorial
lane is defined by 𝐢𝐴𝐣𝐴. In order to ease the notation, the superscript 𝐴
s omitted for any vector expressed in the rotating frame. The 𝑁 and 𝐴
rames are related through the direction cosine matrix 𝐑𝐴

𝑁 . By assuming
he small body rotates at a constant rate 𝜔𝐴 around its major inertia
xis (as is the usual case for small bodies), the direction cosine matrix
𝐴
𝑁 is

𝐴
𝑁 =

⎡

⎢

⎢

⎢

⎣

cos (LST0 + 𝜔𝐴𝑡) sin (LST0 + 𝜔𝐴𝑡) 0

− sin (LST0 + 𝜔𝐴𝑡) cos (LST0 + 𝜔𝐴𝑡) 0

0 0 1

⎤

⎥

⎥

⎥

⎦

, (2)

here LST0 is the small body initial local sidereal time and 𝑡 is the
lapsed simulation time.Following [10,14,30], the small body rota-
ional state 𝐑𝐴

𝑁 is assumed as known in this paper. This answers to the
urpose of purely assessing the relation between spacecraft state and

ravity field estimation. The reference frames are illustrated in Fig. 1.
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Fig. 1. Reference frames.
2.1. Solar perturbations

The Sun’s third body gravity 𝐚𝑁⊙ and the solar radiation pressure
𝐚𝑁SRP, are described as

𝐚𝑁⊙ = −𝜇⊙

(

𝐫𝑁𝐴 + 𝐫𝑁

‖𝐫𝑁𝐴 + 𝐫𝑁‖

3
−

𝐫𝑁𝐴
𝑟3𝐴

)

, 𝐚𝑁SRP =
𝐶𝑅𝑆𝑊⨁𝑟2⨁

𝑚𝑐‖𝐫𝑁𝐴 + 𝐫𝑁‖

3
(𝐫𝑁𝐴 + 𝐫𝑁 ),

(3)

where 𝐫𝑁𝐴 is the small body relative position with respect to the Sun
and 𝜇⊕ = 1.3271244⋅1020 m3∕s2 is the Sun’s standard gravity parameter.
The expression of the solar radiation pressure corresponds to the simple
cannonball model. The term 𝑚 is the spacecraft mass, 𝐶𝑅 its reflection
coefficient, 𝑆 is the exposed surface to the photons, 𝑊⨁ = 1366 W∕m2

is the mean energy flux received from the Sun at the mean orbital
distance of 𝑟⨁ = 1 AU and 𝑐 = 3 ⋅ 108 m∕s2 is the speed of light.

2.2. Small body gravity field

Throughout this paper, two models are used to characterize the
small body gravity. As previously mentioned, the polyhedron model
is assumed as ground truth (for validation) while mascon models are
utilized for gravity estimation.

2.2.1. Polyhedron model
Ref. [18] expresses the exterior gravity field generated by a constant

density polyhedron (described by faces and vertexes) as

𝐚poly = −
𝜇
𝑉

(

∑

𝑒∈edges
𝐄𝑒 ⋅ 𝐫𝑒𝐿𝑒 −

∑

𝑓∈faces
𝐅𝑓 𝐫𝑓𝑤𝑓

)

, (4)

where 𝑉 is the body volume, 𝐫𝑒 is the relative position of the evaluation
point with respect to the edge origin, 𝐄𝑒 is the dyad product resulting
from the edge and face normals, 𝐿𝑒 is the potential of the edge as a 1D
wire, 𝐫𝑓 is the relative position of the evaluation point with respect to a
vertex on a face, 𝐅𝑓 is the outer product of the face normal vector and
𝑤𝑓 is the solid angle of the face as viewed from the evaluation point.
The explicit details of the derivation can be consulted in Ref. [18].
This model is useful for validation because it is globally accurate for
the given shape with constant density. Although the constant density
assumption may not hold in a real scenario, it is considered acceptable
for synthetic simulations.
727
2.2.2. Mascon model
The mascon model characterizes the gravity field by adding the

contributions of several simple volume elements (namely mascons).
These can be homogeneous spheres with different densities. In this
work only the exterior (outside the body volume) component of the
gravity field is of interest, thus the mascon elements are denoted as
point masses. Then, the mascon gravity is

𝐚𝑀 = −
𝑛
∑

𝑘=0
𝜇𝑀𝑘

𝐫 − 𝐫𝑀𝑘

‖𝐫 − 𝐫𝑀𝑘
‖

3
, (5)

where 𝑛 + 1 is the number of point masses while 𝜇𝑀𝑘
and 𝐫𝑀𝑘

are,
respectively, the standard gravity parameter and position of each one.
In order to avoid singularities in the external gravity field evaluation,
the point masses shall be within the small body shape.

3. Dynamical model compensated UKF

This section starts describing the pinhole camera model which maps
3D points to pixels in the image plane. Then, the dynamical model
compensated unscented Kalman filter is stated. The DMC-UKF has the
task of generating a position-unmodeled acceleration dataset for gravity
estimation.

3.1. Pinhole camera model

On-board optical navigation is a state of the art technique to acquire
relative measurements with respect to a small body. From a high-level
perspective, the underlying process can be simulated using a pinhole
camera model. This model provides algebraic expressions that map 3D
points to pixels. Let us define the camera reference frame as 𝐶 ≡ {𝐫 ∶
𝐢𝐶 , 𝐣𝐶 ,𝐤𝐶} which, for simplicity, is centered at the spacecraft center of
mass 𝐫 (since the offset between camera aperture and center of mass is a
known constant) and 𝐤𝐶 is the optical axis pointing towards the viewing
direction (see Fig. 1). Then, the projection of a 3D point (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 ),
expressed in the 𝐶 frame, to virtual image plane coordinates (𝑢, 𝑣) is as
follows
[

𝑢

𝑣

]

=
𝑓
𝑧𝐶

[

𝑥𝐶
𝑦𝐶

]

, (6)

where 𝑓 is the camera focal length. Since the image is digital, the 3D
point maps to a pixel (𝑝𝑥, 𝑝𝑦) as

𝑝𝑥 =

{

ceil(𝑢∕𝑤𝑝) − 0.5 if 𝑢 ≥ 0,
𝑝𝑦 =

{

ceil(𝑣∕𝑤𝑝) − 0.5 if 𝑣 ≥ 0,
floor(𝑢∕𝑤𝑝) + 0.5 if 𝑢 < 0, floor(𝑣∕𝑤𝑝) + 0.5 if 𝑣 < 0.
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𝜒𝜒
Fig. 2. Illustration of the pinhole camera model.
Although the pixel should be an integer variable, its center is taken as
the practical measurement in order to reduce numerical dispersion. The
term 𝑤𝑝 is the pixel width which is determined by the camera sensor
size and its resolution. An important camera parameter is the field of
view FOV which quantifies how much is visible through the lens. The
FOV is characterized by horizontal and vertical angles related to the
focal length and sensor size as

FOV ≡ 2 arctan
( 𝑛𝑝𝑥𝑤𝑝

2𝑓

)

× 2 arctan
( 𝑛𝑝𝑦𝑤𝑝

2𝑓

)

, (7)

where 𝑛𝑝𝑥 and 𝑛𝑝𝑦 are, respectively, the horizontal and vertical number
of pixels. In Eq. (7), the focal length 𝑓 is the varying parameter that
controls the FOV size. The camera pinhole model geometry is illustrated
in Fig. 2.

3.2. DMC-UKF

The DMC-UKF jointly estimates the spacecraft state (position and
velocity) and the unmodeled perturbing acceleration. The dynami-
cal model compensation concept directly tracks the unknown dynam-
ics component through estimation of the unmodeled acceleration sig-
nal [28,29]. In this work, the previous concept is embedded in an
unscented Kalman filter [32]. The UKF is a suboptimal non-linear filter
for Gaussian distributions. Its main feature is the unscented transform
(UT) which approximates the result of applying a non-linear function
to a Gaussian distribution. To this end, the UT creates a symmetrical set
of samples (namely sigma points 𝜒𝜒𝜒𝐱) around the mean 𝐱̂ of the initial
Gaussian distribution 𝐱 ∼ 𝑁𝑛𝑥 (𝐱̂,𝛴𝛴𝛴𝐱𝐱) as

𝜒 [𝑖]
𝐱 = 𝐱̂ + sgn(𝑖) ⋅

(

√

(𝑛𝑥 + 𝜆)𝛴𝛴𝛴𝐱𝐱

)

|𝑖|
, 𝑖 = −𝑛𝑥 …0… 𝑛𝑥. (8)

Note that 𝑁𝑛𝑥 denotes a Gaussian distribution of dimension 𝑛𝑥. Then, in
order to approximate the distribution 𝐲 = 𝐟 (𝐱), the UT passes each sigma
point through the function 𝐟 . The sigma points outcome reconstructs the
final distribution in a Gaussian form 𝐲 ∼ 𝑁𝑛𝑦 (𝐲,𝛴𝛴𝛴𝐲𝐲) as

𝐲̂ =
𝑛𝑥
∑

𝑤[𝑖]
𝑚 𝐟 (𝜒𝜒𝜒 [𝑖]

𝐱 ), 𝛴𝛴𝛴𝐲𝐲 =
𝑛𝑥
∑

𝑤[𝑖]
𝑐 (𝐲̂ − 𝐟 (𝜒𝜒𝜒 [𝑖]

𝐱 ))(𝐲̂ − 𝐟 (𝜒𝜒𝜒 [𝑖]
𝐱 ))𝑇 , (9)
728

𝑖=−𝑛𝑥 𝑖=−𝑛𝑥
where, following [32], the weights are defined as 𝑤[0]
𝑚 = 𝜆∕(𝜆 + 𝑛𝑥),

𝑤[0]
𝑐 = 𝑤[0]

𝑚 +1−𝛼2+𝛽 and 𝑤[𝑖]
𝑚 = 𝑤[𝑖]

𝑐 = 1∕(2𝑛𝑥+2𝜆), 𝑖 ≠ 0. The variables
{𝛼, 𝛽, 𝜆} are tuning parameters controlling the spread of sigma points
(see Eq. (8)) and weights. Subsequently, the process propagation, state
to measurements mapping and the complete DMC-UKF algorithm are
presented.

3.2.1. Process propagation
Let us express the DMC-UKF state in the inertial small body centered

frame 𝑁 as 𝐱 = [(𝐫𝑁 )𝑇 , (𝐯𝑁 )𝑇 , (𝐚𝑁 )𝑇 ]𝑇 . The term 𝐚𝑁 is the unmod-
eled acceleration acting on the spacecraft. Accordingly, the DMC-UKF
process dynamics is

𝑑
𝑑𝑡

⎡

⎢

⎢

⎢

⎣

𝐫𝑁

𝐯𝑁

𝐚𝑁

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐯𝑁

(𝐑𝐴
𝑁 )𝑇 𝐚𝑀 (𝐫) + 𝐚𝑁⊙ (𝐫) + 𝐚𝑁SRP(𝐫) + 𝐚𝑁

𝟎

⎤

⎥

⎥

⎥

⎦

, (10)

where the Sun’s third-body gravity and solar radiation pressure param-
eters are assumed to be known. Accordingly, the unknown dynamics
corresponds to the small body gravity (unmodeled components in 𝐚𝑀 )
which is compensated by the unmodeled acceleration 𝐚𝑁 . Its time
variation is assumed as null (𝐚̇𝑁 = 𝟎), thus representing a zeroth-order
Gauss Markov process (white noise). This implies that the measure-
ments sampling rate should be fast enough in order to keep track of
the inhomogeneous gravity signal. Other works in the literature have
embedded first [28] and second-order [29] Gauss Markov processes.
However, the scope of these works is different from the present one.
They indirectly account for the unmodeled gravity component by fitting
an acceleration signal while here the modeling error is directly tackled
by recursive updates of the gravity model.

The outcome of the process is the a-priori DMC-UKF state which
is obtained by propagating Eq. (10) using a simple forward Euler
integration rule

𝐱− = 𝐱0 +
𝑁int−1
∑

𝑘=0
𝐱̇(𝑡0 + 𝑘𝛥𝑡int)𝛥𝑡int, (11)

where 𝑁 is the number of integration points and 𝛥𝑡 the time step.
int int
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3.2.2. State to measurement mapping
The available measurement 𝐳 comprises the 𝑛𝐿 visible landmarks

ixels at the observation epoch

= [𝑝𝑥1 , 𝑝𝑦1 ,… , 𝑝𝑥𝑛𝐿 , 𝑝𝑦𝑛𝐿 ]
𝑇 . (12)

n order to map the DMC-UKF state to the measurement, the relative
ositions (expressed in the camera frame 𝐶) between spacecraft and
isible landmark is computed as

𝐫𝐶𝑙 = 𝐑𝐶
𝐴(𝐫𝑙 − 𝐑𝐴

𝑁𝐫𝑁 ), (13)

here 𝐑𝐴
𝑁 is the direction cosine matrix from inertial to the rotating

mall body centered frame (see Eq. (2)). The direction cosine matrix
𝐶
𝐴 represents the orientation of the camera with respect to the rotating

mall body frame. Because this work does not account for attitude de-
ermination, the matrix 𝐑𝐶

𝐴 is assumed to be perfectly known (provided
y the attitude determination system). Finally, each landmark pixel can
e mapped as

𝑝𝑥𝑙
𝑝𝑦𝑙

]

=
𝑓
𝑤𝑝

⎡

⎢

⎢

⎣

𝛥𝑥𝐶𝑙 ∕𝛥𝑧
𝐶
𝑙

𝛥𝑦𝐶𝑙 ∕𝛥𝑧
𝐶
𝑙

⎤

⎥

⎥

⎦

. (14)

where the pixel is not discretized in order to better quantify the
difference with respect to the actual discrete measurement.

3.2.3. DMC-UKF algorithm
The implementation of the DMC-UKF step follows [32] and is

described in Algorithm 1. Let us consider the current DMC-UKF state
Gaussian distribution 𝐱0 ∼ 𝑁9(𝐱̂0,𝛴𝛴𝛴𝐱𝐱0 ). Let us also compress the
Eq. (11) process integration and Eq. (13)–(14) state to measurement
map as 𝐟 and 𝐠 respectively. When measurements are available, the
DMC-UKF state is updated as follows. Step 2 computes the a-priori state
estimate 𝐱− ∼ 𝑁9(𝐱̂−,𝛴𝛴𝛴−

𝐱𝐱) by doing the UT of the initial distribution
with the process. Step 3 inflates the a-priori state uncertainty with
the process noise covariance 𝛴𝛴𝛴𝐟 𝐟 (it quantifies the mismatch between
truth and process dynamics). This uncertainty is a tuning parameter of
the algorithm. Step 4 computes an a-priori measurement distribution
𝐳− ∼ 𝑁3(𝐳̂−,𝛴𝛴𝛴−

𝐳𝐳) by mapping the a-priori state into measurement space
with the UT. Step 5 inflates the a-priori measurement covariance with
the covariance matrix𝛴𝛴𝛴𝐳𝐳. This matrix accounts for measurement noise.
The step 6 computes the cross-correlation matrix 𝐇𝐱𝐳 between state
and measurement. The cross-correlation matrix 𝐇𝐱𝐳 is used in step 7 to
compute the Kalman gain 𝐊. Finally, the incoming measurement 𝐳 is
used in the Kalman update linear equation (see step 8) to compute the
a-posteriori DMC-UKF state distribution 𝐱 ∼ 𝑁9(𝐱̂,𝛴𝛴𝛴𝐱𝐱). This procedure
is sequentially repeated each time measurements are available.

Algorithm 1: DMC-UKF step
1 begin
2 Apply the UT (see Eq. (8)-(9)) to Eq. (11) process:

𝐱− ∼ 𝑁9(𝐱̂−,𝛴𝛴𝛴−
𝐱𝐱) ≡ 𝐟 (𝑁9(𝐱̂0,𝛴𝛴𝛴𝐱𝐱0 ));

3 Add the process uncertainty: 𝛴𝛴𝛴−
𝐱𝐱 ← 𝛴𝛴𝛴−

𝐱𝐱 +𝛴𝛴𝛴𝐟 𝐟 ;
4 Apply the UT (see Eq. (8)-(9)) to Eq. (13)-(14) state to

measurement mapping: 𝐳− ∼ 𝑁3(𝐳̂−,𝛴𝛴𝛴−
𝐳𝐳) ≡ 𝐠(𝑁9(𝐱̂−,𝛴𝛴𝛴−

𝐱𝐱));
5 Add the measurement uncertainty: 𝛴𝛴𝛴−

𝐳𝐳 ← 𝛴𝛴𝛴−
𝐳𝐳 +𝛴𝛴𝛴𝐳𝐳;

6 Compute the cross-correlation matrix between state and

measurements: 𝐇𝐱𝐳 =
9
∑

𝑖=−9
𝑤[𝑖]

𝑐

(

𝜒𝜒𝜒 [𝑖]
𝐱 − 𝐱̂−

)(

𝜒𝜒𝜒 [𝑖]
𝐳 − 𝐳̂−

)𝑇
;

7 Compute the Kalman gain: 𝐊 = 𝐇𝐱𝐳𝛴𝛴𝛴−1
𝐳𝐳 ;

8 Update the state with incoming measurements from
Eq. (B.5):
𝐱 ∼ 𝑁9(𝐱̂,𝛴𝛴𝛴𝐱𝐱) ≡ 𝑁9(𝐱̂− +𝐊(𝐳 − 𝐳̂−),𝛴𝛴𝛴−

𝐱𝐱(𝐈 −𝐇𝐱𝐳𝐊𝑇 ));
9 end
729
4. Mascon gravity estimation

The mascon gravity model estimation process is described in this
section. The goal is to minimize the mean squared percent error (MSE)
of the fitted model with respect to the acceleration dataset. This should
be achieved while taking into account mascon physical constraints. To
do so, Adam gradient descent is combined with a constraints projection
step.

4.1. Gravity fitting problem

This paragraph begins by defining a loss function based on the avail-
able dataset. Then, the mascon model configuration and the constraints
projection step are described.

4.1.1. Dataset and loss function
The mascon model is fitted using the on-orbit position-acceleration

dataset generated by the DMC-UKF. Let us stack the DMC-UKF esti-
mates in the vectors 𝐫data

𝐒 and 𝐚data
𝐒 as

𝐫data
𝐒 =

⎡

⎢

⎢

⎢

⎣

𝐫̂1
⋮

𝐫̂𝑚

⎤

⎥

⎥

⎥

⎦

, 𝐚data
𝐒 =

⎡

⎢

⎢

⎢

⎣

𝐚𝑀 (𝐫̂1) + 𝐚̂1
⋮

𝐚𝑀 (𝐫̂𝑚) + 𝐚̂𝑚

⎤

⎥

⎥

⎥

⎦

. (15)

The position and unmodeled acceleration are rotated from the inertial
to the rotating small body frame as 𝐫̂𝑗 = 𝐑𝐴

𝑁 (𝑡𝑗 )𝐫̂𝑁𝑗 and 𝐚̂𝑗 = 𝐑𝐴
𝑁 (𝑡𝑗 )𝐚̂𝑁𝑗 .

The acceleration dataset comprises the sum of the unmodeled one
with the current mascon model prediction at the position estimate.
In order to ease the notation, let us use 𝐫data

𝐒 = [𝐫𝑇1 ,… , 𝐫𝑇𝑚 ]
𝑇 and

data
𝐒 = [𝐚𝑇1 ,… , 𝐚𝑇𝑚]

𝑇 from now on to denote the individual components
f the dataset.

The loss function 𝐿 is to be defined in terms of the discrepancy be-
ween the mascon prediction and the dataset. In [33], it is highlighted
hat the use of percent errors (instead of absolute residuals) helps to
egularize the gravity solution (as samples are accounted for relative to
heir magnitude). Following that logic, let us define the gravity percent
rror 𝛿𝑎 as

𝑎𝑗 =
‖𝐚𝑀 (𝐫𝑗 ) − 𝐚𝑗‖

‖𝐚𝑗‖
, (16)

where 𝐚𝑀 is the mascon model prediction. Then, a straightforward
hoice of loss function is the mean squared gravity percent errors

= 1
𝑚

𝑚
∑

𝑗=1
𝛿𝑎2𝑗 . (17)

4.1.2. Mascon model setup
The mascon distribution should fulfill two basic physical con-

straints. The masses shall be enclosed within the body shape (interior
constraint) and their values should be positive. The first one avoids
singularities in the exterior gravity field evaluation. The second ensures
that the gravity field is always attractive, thus avoiding local repulsive
regions near negative masses (as it is the case in the preliminary
work [17]). Although these conditions may seem simple, they are
not necessarily guaranteed in a numerical optimization framework.
Another additional condition emerges if the total mass is to be known
(as it is assumed in this work).

It is more convenient to implicitly encode constraints within the
mascon model if possible (rather than explicitly tackling them in the
optimizer). In particular, the masses positiveness and total mass can
be directly enforced by choosing adequate decision variables. The
consistency of the mascon distribution with the total mass is ensured
by clearing one of the mascon masses from the optimization as

𝜇𝑀0
= 𝜇 −

𝑛
∑

𝜇𝑀𝑘
. (18)
𝑘=1
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The masses positiveness is encoded by changing the decision variable
from the gravity parameter 𝜇𝑀𝑘

to its square-root √𝜇𝑀𝑘
. It should be

noted that this does not guarantee 𝜇𝑀0
≥ 0 as it is cleared from the

optimization (see Eq. (18)). This issue has to be tackled within the
mascon fitting algorithm along with the interior constraint.

According to the previous development, the mascon distribution
variables can be stacked in the vector 𝐲𝐒𝑀 as

𝐲𝐒𝑀 =

[√

𝜇𝜇𝜇𝐒𝑀
𝐫𝐒𝑀

]

,
√

𝜇𝜇𝜇𝐒𝑀
=

⎡

⎢

⎢

⎢

⎣

√𝜇𝑀1

⋮
√𝜇𝑀𝑛

⎤

⎥

⎥

⎥

⎦

, 𝐫𝐒𝑀 =

⎡

⎢

⎢

⎢

⎣

𝐫𝑀1

⋮

𝐫𝑀𝑛

⎤

⎥

⎥

⎥

⎦

, (19)

here
√

𝜇𝜇𝜇𝐒𝑀
and 𝐫𝐒𝑀 stack the 𝑛 square-root masses and positions of

the distribution. The position of the 0th mass 𝐫𝑀0
is also cleared from

he optimization, thus being a fixed parameter. A convenient placement
ay be 𝐫𝑀0

= 𝟎 (which is the one used). Using the previous stacked
ariables, a compact prediction of the dataset is obtained as

𝑀 (
√

𝜇𝜇𝜇𝐒𝑀
)2 + 𝐚𝐒𝑀0

= 𝐚𝐒𝑀 , (20)

here the squared vector denotes the element-wise product (
√

𝜇𝜇𝜇𝐒𝑀
)2 =

𝜇𝜇𝜇𝐒𝑀
⊙

√

𝜇𝜇𝜇𝐒𝑀
. The matrix 𝐀𝑀 exclusively depends on the relative

istance between the evaluation points and each mass. The vector 𝐚𝐒𝑀0
is an offset arising from clearing the 0th mass and assuming its location
fixed. The terms 𝐀𝑀 and 𝐚𝐒𝑀0

are

𝐀𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
𝛥𝐫11
𝛥𝑟311

+
𝛥𝐫10
𝛥𝑟310

… −
𝛥𝐫1𝑛
𝛥𝑟31𝑛

+
𝛥𝐫10
𝛥𝑟310

⋮ ⋱ ⋮

−
𝛥𝐫𝑚1
𝛥𝑟3𝑚1

+
𝛥𝐫𝑚0
𝛥𝑟3𝑚0

… −
𝛥𝐫𝑚𝑛
𝛥𝑟3𝑚𝑛

+
𝛥𝐫𝑚0
𝛥𝑟3𝑚0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐚𝐒𝑀0
= −𝜇

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝐫10
𝛥𝑟310
⋮

𝛥𝐫𝑚0
𝛥𝑟3𝑚0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝛥𝐫𝑗𝑘 = 𝐫𝑗 − 𝐫𝑀𝑘
is the relative position between the 𝑗th data

point and 𝑘th mass. Note that the vector 𝐚𝐒𝑀0
does not depend on any

element of the mascon distribution decision variable 𝐲𝐒𝑀 .

4.1.3. Mascon constraints projection
The remaining constraints are the masses interiority within the body

shape and the positiveness of 𝜇𝑀0
. In order to handle these constraints,

if the loss is convex, it is possible to solve for the unconstrained problem
and project the solution to feasible space. The idea is that the closest
feasible point to the unconstrained minimum is the optimal solution to
the constrained problem. This theory can be formally expressed as

𝐲′ = argmin
𝐲

𝐿(𝐲),

argmin
𝐲∈

𝐿(𝐲) = argmin
𝐲∈

‖𝐲 − 𝐲′‖,
(21)

where 𝐲′ denotes the unconstrained minimum and  is the feasible
domain. When related to the problem under consideration, it is very
likely that Eq. (17) loss is not convex in 𝐲𝐒𝑀 space. However, if
small steps are given towards minimum, the projection of Eq. (21)
can be applied after each step being valid since the local minimum
neighborhood is possibly convex.

Depending on the problem, Eq. (21) projection can be as complex
as directly solving the constrained optimization. Nonetheless, it is very
useful for the mascon model under consideration. This is due to the fact
that the remaining constraints are highly decoupled in terms of decision
variables. Let us consider the positiveness of the 0th point mass. This
mass becomes negative if the sum of the remaining 𝑛 masses exceeds 𝜇.
It is more intuitive to visualize the situation in space in √𝜇𝑀𝑘

because
the constraint represents a hypersphere of radius

√

𝜇. Then, each time
he mass distribution abandons that hypersphere, the projection sends
he distribution back to the closest point lying on its surface. This is
730

a

expressed as

√

𝜇𝜇𝜇𝐒𝑀
=

⎧

⎪

⎨

⎪

⎩

√

𝜇𝜇𝜇′
𝐒𝑀

if 𝜇𝑀0
≥ 0,

(
√

𝜇∕‖
√

𝜇𝜇𝜇′
𝐒𝑀

‖)
√

𝜇𝜇𝜇′
𝐒𝑀

if 𝜇𝑀0
< 0,

(22)

hich is equivalent to reduce all masses in the same proportion until
𝑀0

= 0.
The interior constraint is more difficult to tackle given the complex

hape of a small body. Both an interior condition and a function
omputing the closest point on the surface are needed. These can be
erived from a small body shape polyhedron model. From [18], the
olyhedron normalized Laplacian ∇2𝑈poly = −

∑

𝑓∈faces 𝑤𝑓 expression
etermines if a point is interior to the shape. If the point is interior
he normalized Laplacian equals −4𝜋 while it vanishes for an exterior
oint. The term 𝑤𝑓 is the solid angle of a polyhedron face as viewed
rom the evaluation point. When a violation occurs, the closest point
n the polyhedron surface can be computed in a discretized form. Since
he polyhedron shape is characterized by discrete surface features based
n vertexes and faces, the distance of the exterior point with respect to
hem (or a derived variable) can be computed. Then, the closest point
n the surface can be extracted. In this case, the projection condition
s

𝑀𝑘
=

⎧

⎪

⎨

⎪

⎩

𝐫′𝑀𝑘
if

∑

𝑓∈faces
𝑤𝑓 (𝐫′𝑀𝑘

) = 4𝜋,

argmin
𝐫𝑓

‖𝐫𝑓 − 𝐫′𝑀𝑘
‖ if

∑

𝑓∈faces
𝑤𝑓 (𝐫′𝑀𝑘

) = 0,
(23)

here 𝐫𝑓 refers to the center of each polyhedron face (such to only
oop over the faces). Since evaluating all the polyhedron faces is
omputationally expensive, a low resolution polyhedron shape model
ay be used.

.2. Mascon optimization

A first-order technique to find the mascon distribution that mini-
izes Eq. (17) is gradient descent. It also works well with the con-

traints projection of Eqs. (22)–(23) if these are checked after each
pdate. Gradient descent requires an initial mascon distribution that is
etailed below. It is also beneficial to adapt the training process, thus
dam gradient descent is tailored for this application.

.2.1. Initial mascon distribution
In order to start the training process, gradient descent needs an

nitial mascon distribution. In the authors previous work [17], where
nly the mass value is fitted, the body shape is divided into eight
ctants. Then, an equal number of masses (𝑛+ 1)∕8 is randomly placed
ithin each octant. This initial distribution is also used in this work

see Fig. 3). Its main advantage is that the points tend to distribute
ell within the shape. Regarding the masses values, it is decided to

tart by concentrating the total mass at the origin (yellow point in
ig. 3). Accordingly, the remaining 𝑛 masses are null. This may seem
s a non-sensible choice, compared to assign 𝜇∕(𝑛 + 1), but it provides
onsistency for trainings with different 𝑛. Additionally, it demonstrates
ow the gravity determination evolves from a basic Keplerian model.

.2.2. Adam gradient descent
The key idea behind gradient descent is to reach the local mini-

um by taking repeated steps opposed to the loss gradient. Still, how
his basic concept is implemented has a huge impact in the solution
onvergence. The recent need for efficient neural network training
which is an optimization process) has led to modified versions of the
lassic gradient descent algorithm. One approach that has spread out
ithin the machine-learning community is the Adam optimizer [34].
he Adam optimizer adapts the per-parameter learning rate while also

dding a momentum alike term. The per-parameter adaptation is very
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1

1

Fig. 3. Initial mascon distribution for 𝑛 = 100.

convenient in this application because 𝜇𝑀 and 𝐫𝑀 have a different
relative impact on the acceleration prediction.

A vital step to use gradient descent is the loss function gradient ∇𝐿
expression with respect to the decision variables. The derivation of the
term ∇𝐿, for Eq. (17) loss, is detailed in Appendix A. Then, the Adam
training loop is detailed in Algorithm 2 (see [34] for specific details).
The Adam optimizer estimates the loss gradient first 𝐦 and second 𝐯
moments in step 6–7. The update rule in step 8 effectively adapts the
learning rate per each parameter based on the gradient moments. Note
that step 8 is an element-wise division. The adaptation allows to explore
parameters that may not receive updates in classic gradient descent.
The momentum component appears by the gradient moving average in
the update. The mascon constraints projection Eqs. (22)–(23) is checked
after each update. If the constraints are violated, the projection step
sends the decision variables to feasible space. Adam gradient descent
uses the hyperparameters {𝜂, 𝛽1, 𝛽2, 𝜖}. The variable 𝜂 is the classic
learning rate. The terms 𝛽1, 𝛽2 ∈ [0, 1) control the exponential decay
rates of the gradient moments. Lastly, 𝜖 is a small number that ensures
numerical stability in the update rule (it precludes divisions by zero).

Algorithm 2: Adam optimizer with constraints projection
1 begin
2 𝐲[0]𝑀 ← 𝐲𝑀0

(Initialize the decision variable);
3 𝐦[0] ← 𝟎, 𝐯[0] ← 𝟎 (Initialize biased first and second-order

gradient moments);
4 for 𝑖 ← 1 to 𝑖max do
5 ∇𝐿[𝑖−1] ← ∇𝐿(𝐲[𝑖−1]𝑀 ) (Compute loss gradient);
6 𝐦[𝑖] ← 𝛽1𝐦[𝑖−1] + (1 − 𝛽1)∇𝐿[𝑖−1],

𝐯[𝑖] ← 𝛽2𝐯[𝑖−1] + (1 − 𝛽2)(∇𝐿[𝑖−1])2 (Update biased
moments);

7 𝐦̂[𝑖] ← 𝐦[𝑖]∕(1 − 𝛽𝑖1), 𝐯̂
[𝑖] ← 𝐯[𝑖]∕(1 − 𝛽𝑖2) (Correct bias);

8 𝐲[𝑖]𝑀 ← 𝐲[𝑖−1]𝑀 − 𝜂𝐦̂[𝑖]∕(
√

𝐯̂[𝑖] + 𝜖) (Update decision variable);
9 Apply Eq. (22) (0th mass positiveness);
10 for 𝑘 ← 1 to 𝑛 (Loop through masses) do
11 Apply Eq. (23) (Interior constraint);
12 end
3 end
4 end

It is also convenient (for the sake of numerical stability) to internally
normalize some training variables. In particular, the masses are divided
by 𝜇∕(𝑛 + 1). To normalize the position, a tenth of the body shape
elongation on each direction is used. Note that each position coordinate
is scaled differently (which helps to treat elongated small bodies).
Finally, the gravity acceleration for each 𝑗th sample is normalized
731
by its own norm ‖𝐚𝑗‖. Then, its internal mascon prediction and data
are 𝐚𝑀 (𝐫𝑗 )∕‖𝐚𝑗‖ and 𝐚𝑗∕‖𝐚𝑗‖ respectively. This easily allows to obtain
the gravity percent error of Eq. (16) by computing the norm of the
discrepancy between the previous vectors.

4.3. Simultaneous navigation and gravity estimation scheme

The simultaneous navigation and mascon gravity estimation scheme
links the previous paragraphs with Section 3 DMC-UKF. Recall that
the first step is to generate a position-unmodeled acceleration dataset
using Algorithm 1 DMC-UKF. Then, the dataset is used to fit a mascon
distribution using Adam Algorithm 2. Still, how to manage this strategy
over time is to be chosen. In this work, it is chosen to process the data in
1-orbit batches. This means that the DMC-UKF fills the dataset during
one orbit. At the end of this orbit, the mascon distribution is fitted
with the previous data. Subsequently, the trained mascon distribution is
uploaded to the DMC-UKF and the data batch is emptied. This process
is repeated until the final orbit as shown in Fig. 4.

The strategy is implemented using the Basilisk1 (BSK) software. BSK
is an open source astrodyn cacta amics simulation tool [35] composed
of Python modules coded in C/C++. This offers the convenience of
managing the simulation with Python scripts while benefiting of the
background C/C++ execution speed. The BSK implementation of the
simultaneous navigation and mascon gravity estimation is illustrated
in Fig. 5. It consists of a ground truth simulator and a flight software
process. The ground truth simulator uses a fixed time step 4th order
Runge–Kutta method to integrate Eq. (1) spacecraft dynamics. The
flight software process encompasses the landmarks pixel generator
(pinholeCamera), the DMC-UKF and the mascon optimizer. The pixel
generator and DMC-UKF are processed at the same frequency while the
mascon optimizer is executed after each orbit.

5. Results

This section tests the simultaneous navigation and mascon grav-
ity estimation scheme through numerical simulations. The results are
divided into three subsections. In the first place, only the mascon
optimizer with true data. This validates the fitting of the mascon
distribution. Subsequently, the simultaneous navigation and gravity
estimation results are presented. Finally, a propagation analysis is done
with the results of previous subsections.

Due to the extensive data available from NEAR mission, the asteroid
433 Eros is chosen as the target small body. Eros has a standard gravity
parameter 𝜇 = 4.4627547⋅105 m3∕s2 and a rotational period 𝑇𝐴 = 5.27 h.
Its ground truth gravity field is modeled using a polyhedron shape with
7790 triangular faces.2 Eros heliocentric orbital parameters are {𝑎 =
1.4583 AU, 𝑒 = 0.2227, 𝑖 = 10.829◦, 𝛺 = 304.4◦, 𝜔 = 178.9◦, 𝜈0 = 246.9◦}
and its orientation is defined by {RA = 11.369◦,dec = 17.227◦, LST0 =
0◦}. The orbiting spacecraft is physically characterized by a mass 𝑚 =
750 kg, a reflection coefficient 𝐶𝑅 = 1.2 and a solar radiation pressure
exposed area 𝑆 = 1.1 m2.

5.1. On-orbit data impact on gravity estimation

This paragraph analyzes the mascon gravity estimation algorithm
of Section 4. The differences between a dense and an on-orbit dataset
are emphasized. Using the previous data, the global gravity accuracy
of a complete mascon training and a static one (just fit the masses) are
stated.

1 http://hanspeterschaub.info/basilisk/
2 https://sbnarchive.psi.edu/pds3/near/NEAR_A_5_COLLECTED_MODELS_

V1_0/data/msi/

http://hanspeterschaub.info/basilisk/
https://sbnarchive.psi.edu/pds3/near/NEAR_A_5_COLLECTED_MODELS_V1_0/data/msi/
https://sbnarchive.psi.edu/pds3/near/NEAR_A_5_COLLECTED_MODELS_V1_0/data/msi/
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Fig. 4. Illustration of the gravity estimation process.
Fig. 5. Diagram of simultaneous navigation and gravity estimation in the Basilisk simulation framework.
Recall that the Adam optimizer (see Algorithm 2) requires choosing
four hyperparameters and the number of iterations. The hyperparame-
ters are tuned ad hoc as {𝜂 = 10−3, 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10−6} while
1000 iterations are used. These values are used throughout the rest of
the manuscript.

5.1.1. Training datasets
The dataset plays a fundamental role in the mascon gravity accu-

racy. Just using on-orbit data is challenging because the relevant low
altitude features are missed. This may distort the maximum potential
accuracy of the mascon gravity model. In order to obtain a bigger
picture, a dense dataset homogeneously covering the small body is also
considered. Furthermore, the accuracy gap between the dense and on-
orbit dataset can be shrunk by the inclusion of low altitude data. This
could be associated to ejecta (or gravity trackers [36]) measurements
though these are not simulated realistically.

The on-orbit dataset is based on a spacecraft with initial orbital el-
ements as {𝑎0 = 34 km, 𝑒0 = 0.001, 𝑖0 = 45◦, 𝛺0 = 48.2◦, 𝜔0 = 347.8◦, 𝜈0 =
85.3◦}. This dataset is composed of position-acceleration components
sampled each 60 s along 10 orbital periods (∼ 982 data points per orbit).
Since the idea is to mimic conditions to be found in the subsequent
paragraph 5.2, two considerations are made. The first one is that the
gravity estimation process follows the sequential approach of Fig. 4.
This means that each orbit batch is fitted sequentially by using the
solution of the previous orbit as the starting point for the next one.
The second consideration is the removal of points where no landmarks
are visible due to lighting conditions (≈ 20% reduction of the samples).
Alternatively, the dense dataset is generated by randomly placing data
(same number of samples as the on-orbit) between the surface and up
to 30 km radius. The training with the dense dataset also follows the
sequential batch processing.

The dense and on-orbit datasets are depicted in Fig. 6. The afore-
mentioned low altitude samples that may complement the on-orbit
dataset are also shown. The low altitude data is generated randomly but
its spatial diversity is limited. In particular, the low altitude samples are
related to the spacecraft first orbit arc. A sample is randomly drawn for
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an orbit point which defines its sample latitude and longitude. Then, a
random radius ranging from the surface up to 18 km is assigned. When
considering this additional data, 50 samples (≈6% of an orbit batch)
are assumed available since the beginning of the estimation process.

5.1.2. Global gravity accuracy
It is of interest to evaluate the fitted mascon distributions, using

Fig. 6 datasets, gravity accuracy. For this purpose, 55 166 evaluation
points are placed between the small body surface up to a radius
of 50 km. These evaluation points are uniformly distributed within
altitude bands of 1.2 km (containing each ∼ 1400 points). Then, the
mean gravity percent errors (see Eq. (16)) for these altitude bands
are used as a global gravity accuracy metric. An example of this
metric is shown in Fig. 7. In order to create that figure, a mascon
distribution with 𝑛 = 100 masses has been trained under different
datasets (dense, on-orbit and on-orbit with low altitude samples). The
low altitude samples are referred as ejecta in the legends. Furthermore,
static mascon distributions (just fitting

√

𝜇𝑀 ) are also trained. The
error with a simple Keplerian gravity is included as a reference. Several
conclusions can be derived from Fig. 7. The mascon training under
the dense dataset is highly accurate with a maximum mean gravity
error of ≈ 1% very close to the surface. Instead, the use of the on-orbit
dataset increase the altitude bands error in an order of magnitude with
respect to the dense dataset. The inclusion of the low altitude samples
has a positive effect in driving down the on-orbit errors. Lastly, the
trainings using static mascon distributions show to be less accurate
than the complete ones. For the static distributions, the inclusion of
low altitude samples increase accuracy in that domain but degrades
the high altitudes. When these low altitude vanishes (on-orbit), the
complete and static mascon distribution achieve similar accuracy in
the low altitude domain. This also highlights that the complete mascon
training requires more information to acquire its maximum potential.
Each line in Fig. 7 compresses considerable information. To illustrate
what these lines are representing, Fig. 8 plots the gravity error with
respect to each evaluation point altitude. For the sake of clarity, this
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Fig. 6. Dense (𝑙𝑒𝑓 𝑡) and on-orbit (𝑟𝑖𝑔ℎ𝑡) datasets. Black ≡ points removed; red ≡ low altitude samples. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
𝛴𝛴
Fig. 7. Mean gravity error with respect to altitude for dense and on-orbit datasets.

Fig. 8. Gravity error with respect to altitude for dense and on-orbit datasets.

is only done for the complete mascon distribution trainings with the
dense and on-orbit datasets (and the Kepler model).

Another question that emerges is the effect of the number of masses
𝑛 on the gravity accuracy. To answer this query, 𝑛 is varied between
100 and 1000 under the previous training conditions. Since a new
variable (𝑛) is added to the analysis, the gravity error is compressed to
the global one (mean gravity for the entire evaluation set). The result
is shown in Fig. 9. It can be observed that the training varying both
the mascon distribution position and mass is relatively indifferent to
𝑛. On the contrary, 𝑛 seems to be relevant (up to 𝑛 = 400) when only
the mascon masses are trained. This occurs for both the dense dataset
733
Fig. 9. Global gravity error with respect to number of masses for different mascon
setups and training datasets.

and the on-orbit one with low altitude samples. Additionally, training
the mascon distribution positions does not seem to grant a distinctive
advantage for the pure on-orbit dataset.

5.2. Simultaneous navigation and gravity estimation

Next the results with the simultaneous navigation and mascon
gravity estimation scheme (see Fig. 5) are presented. The simulated
orbit corresponds to the one shown in Fig. 6 (right). In this case, several
parameters for the DMC-UKF are to be provided.

The DMC-UKF tuning parameters follow the ones used in [32] which
are {𝛼 = 0, 𝛽 = 2, 𝜆 = 10−3}. The DMC-UKF is initialized with true initial
position and velocity while the unmodeled acceleration is assumed null.
Moreover, the unmodeled acceleration is reinitialized to a null value
after a gravity fit is completed or a measurement outage arises. The
initial state covariance and process noise are

𝛴𝐱𝐱(𝑡0) =

⎡

⎢

⎢

⎢

⎣

102𝐈 (m)2 𝟎3×3 𝟎3×3
𝟎3×3 102𝐈 (mm/s)2 𝟎3×3
𝟎3×3 𝟎3×3 12𝐈 (μm/s2)2

⎤

⎥

⎥

⎥

⎦

,

𝛴𝛴𝛴𝐟 𝐟 =

⎡

⎢

⎢

⎢

0.12𝐈 (m)2 𝟎3×3 𝟎3×3
𝟎3×3 12𝐈 (mm/s)2 𝟎3×3

2 2 2

⎤

⎥

⎥

⎥

.

(24)
⎣
𝟎3×3 𝟎3×3 2 𝐈 (μm/s )

⎦
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𝛴𝛴
Fig. 10. DMC-UKF position error and uncertainty estimation for scenario B2. Gray area ≡ measurement outage.
In Kalman filters, adequate tuning of the process noise is key for
accuracy. In this case, 𝛴𝛴𝛴𝐟 𝐟 is determined ad hoc via experimentation. It
is noticed that the process uncertainty associated to 𝐚 is the parameter
that requires a finer tuning.

Regarding measurements, navigation data of 100 surveyed land-
marks is assumed available. These are placed at the face centers of Eros
polyhedron model. The landmarks are tracked by the on-board camera
with 4:3 aspect ratio, a sensor size of 17.3 × 13 mm and a resolution of
2048 × 1536 px. Consequently, the pixel width is 𝑤𝑝 = 8.447 μm. The
camera focal length is 𝑓 = 25 mm which is derived by a static position
determination analysis in Appendix B. Landmark measurements are
sampled each 60 s. The DMC-UKF uncertainty on each measurement
pixel is tuned to be the unity, thus

𝛴𝐳𝐳𝑗 =

[

12 (px)2 0

0 12 (px)2

]

, 𝛴𝛴𝛴𝐳𝐳 =

⎡

⎢

⎢

⎢

⎣

𝛴𝛴𝛴𝐳𝐳1 … 𝟎2×2
⋮ ⋱ ⋮

𝟎2×2 … 𝛴𝛴𝛴𝐳𝐳𝑛𝐿

⎤

⎥

⎥

⎥

⎦

, (25)

where the measurement noise matrix 𝛴𝛴𝛴𝐳𝐳 dimension changes according
to the number of visible landmarks 𝑛𝐿.

5.2.1. DMC-UKF estimation
Let us assess the accuracy of the DMC-UKF estimates which compose

the subsequent mascon training dataset. The results of this paragraph
concerns a complete mascon distribution fitting with 𝑛 = 100. The
DMC-UKF accuracy greatly depends on the simulation conditions. To
test this, four different scenarios (namely A1, A2, B1 and B2) are
considered. Scenarios A do not account for the lighting constraint (thus
no measurements outages arise) while B ones do. The numeric label ‘‘1’’
refers to a simulation without landmarks uncertainty. Alternatively, the
‘‘2’’ means that the filter landmark database is perturbed with a 5 m
standard deviation Gaussian error. These conditions are summarized
in Table 1. Additionally, the position and unmodeled acceleration root
mean square errors (RMSE) are reported. This gives an idea on the
severity of the different scenario conditions. As expected, scenario A1
is the most favorable one as the filter has continuous measurements
and knows the exact landmark locations. The most severe conditions
arise when measurement outages happen (scenarios B). This is mainly
because the unmodeled acceleration has to converge again after each
of these gaps.

In order to illustrate the DMC-UKF signal, scenario B2 position
error and inhomogeneous gravity estimate are shown in Figs. 10–11.
The inhomogeneous gravity component is most representative as it
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Table 1
Summary of scenario conditions and position-unmodeled acceleration RMSE.

Scen. Lighting Landmark error RMSE(𝑟) [m] RMSE(𝑎) [%]

A1 Full No 2.164 1.202
A2 Full Yes 3.765 1.367
B1 Partial No 5.320 1.769
B2 Partial Yes 8.448 2.042

avoids the dominant Keplerian term. In Fig. 10, it can be observed
that the loss and recapture (gray areas) of landmark measurements
produce sharp errors. The position uncertainty seems to be bounded
and the filter adapts itself to changes on it. The DMC-UKF is capable to
keep track of the inhomogeneous gravity signal (which is the primary
goal) as shown in Fig. 11. The plotted estimate is the addition of the
unmodeled acceleration estimate 𝐚̂ plus the inhomogeneous gravity
component of the current filter model, 𝐚𝑀 (𝐫̂)+𝜇𝐫̂∕𝑟̂3. It can be observed
that the DMC-UKF signal matches more closely the truth one after a
couple of mascon trainings. Furthermore, gravity spikes arise (during
the second half of the simulation) due to low altitude arcs caused by the
accumulated effect of inhomogeneous gravity and solar perturbations
in the spacecraft trajectory. These spikes are shown to be captured to
a certain extent.

5.2.2. On-orbit global gravity accuracy
The on-orbit gravity accuracy for Table 1 scenarios is now assessed.

The evaluation set is the same as in paragraph 5.1.2. For 𝑛 = 100, the
mean gravity error with respect to altitude is shown in Fig. 12 along
with the Kepler model and the orbit fit with a true dataset (for reference
purposes). The on-orbit training seems effective as the initial Keplerian
model is improved. Nonetheless, significant degradation arises with
respect to the true on-orbit dataset. The errors tends to correlate with
the severity of the scenarios in Table 1. In Fig. 12, the complete or
the static mascon distribution does not seem to significantly differ
from each other. It can be noticed that the complete training seems to
perform better at low altitudes while the static one fits slightly better
the high altitude domain. The analysis is complemented with Fig. 13
which shows the global error with respect to the number of masses.
Except from the static mascon training under scenario A1, no clear
correlations are derived in terms of global error with respect to 𝑛. It also
shows that in terms of global error the complete mascon trainings seems
to be better, overall, than the static ones. However, awareness should
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Fig. 11. DMC-UKF inhomogeneous gravity estimation for scenario B2. Gray area ≡ measurement outage.
Fig. 12. Mean gravity error with respect to altitude with simultaneous navigation and
gravity estimation.

be raised that the global gravity error favors low errors in the low
altitude domain (since low altitude errors are higher in absolute terms).
This is why scenario A2 (see low altitude domain error in Fig. 12),
which does not have the most severe conditions, looks disfavorable in
Fig. 13.

It may be also worth to look the trained mascon distributions.
Fig. 14 shows the resulting distributions of trainings for 𝑛 = 100, 1000
under scenario B2. The average gravity parameters of these distribu-
tions are 4418 and 445.8 m3∕s2 respectively. It is found that some masses
tend to negligible values (<1 m3∕s2), especially near the most negative
𝑥 axis, constituting a 14.8% (𝑛 = 100) and a 6.89% (𝑛 = 1000) of the
total number. Along the training, the masses positions vary in average
2.307 and 2.741 km with respect to the initial distribution.

5.2.3. Inclusion of low altitude samples
Following paragraph 5.1.2, the positive impact of including low

altitude samples is to be analyzed. The same low altitude data of Fig. 6
(right) are used. In a real mission operation, these data samples are to
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Fig. 13. Mean gravity error with respect to altitude for different mascon setups and
training datasets.

be acquired while on the fly (which is out of the scope of this work).
In order to account for that, a 5% Gaussian error is added on each
acceleration component. For scenario A1, 2D gravity error maps with
and without low altitude samples (namely ejecta) are shown in Fig. 15.
It can be easily observed that these additional samples help to reduce
significantly the error in the low altitude domain. The fact that the
ejecta data is generated randomly but concentrated on specific spatial
regions can be deduced from the 𝑦𝑧 map. Table 2 compares the global
gravity error with and without ejecta for the on-orbit scenarios. For all
the simulated scenarios (both with the complete and static trainings),
the global gravity error is reduced significantly (≈50%).

5.2.4. Computational efficiency
Let us conclude this subsection by evaluating the simultaneous

navigation and gravity estimation computational efficiency. This paper
simulations are executed in a M1 Max (2.06–3.22 GHz) processor using
a single thread. Recall that the algorithms are coded in C++ under
the Basilisk simulation framework (see Fig. 5). The execution times
of the DMC-UKF step and each mascon optimization are reported in
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Fig. 14. Trained mascon distribution for scenario B2.
Fig. 15. Gravity error maps with and without low altitude samples for scenario A1 and 𝑛 = 100.
Table 2
Global gravity percent error with and without low altitude samples for 𝑛 = 100.

Scen. Orbit Orbit with ejecta

𝜇𝑀 𝜇𝑀 , 𝐫𝑀 𝜇𝑀 𝜇𝑀 , 𝐫𝑀
A1 3.674% 2.561% 1.424% 0.956%
A2 4.129% 3.614% 1.709% 1.572%
B1 3.591% 3.040% 1.542% 1.461%
B2 3.367% 2.661% 1.681% 1.624%

Table 3. The number of masses ranges from 100 to 1000. The DMC-
UKF execution is in the order of milliseconds or less. The mascon
training ranges between 1 to 10 s for the static setup and 10–120 for the
complete setup. Since the time span between measurements is 60 s and
one orbit lasts ≈ 15 h, the computation times show promise in terms of
on-board autonomy.

5.3. Propagation analysis

The intended purpose of the fitted mascon models is to serve as
propagators for subsequent mission phases. Consequently, a propaga-
tion analysis is done in this subsection. The orbits to propagate vary
their initial semi-major axis 𝑎0 and inclination 𝑖0 being {𝑒0 = 0.001, 𝛺0 =
48.2◦, 𝜔 = 347.8◦, 𝜈 = 85.3◦} fixed. The analyzed set of inclinations is
736

0 0
Table 3
Computational times of simultaneous navigation and gravity estimation for several
models. M ≡ masses fit; MP ≡ masses and positions fit.
𝑛 [–] DMC-UKF step Mascon training

Mean [ms] Max. [ms] Mean [s] Max. [s]

100 (M) 0.289 0.779 1.099 1.146
500 (M) 1.194 2.742 5.890 6.091
1000 (M) 2.327 3.648 12.53 12.69

100 (MP) 0.283 0.542 10.91 10.94
500 (MP) 1.192 2.461 56.56 56.96
1000 (MP) 2.327 4.008 112.5 112.6

𝑖0 = {0◦, 45◦, 90◦, 180◦}. The semi-major axis is varied between 28 to
46 km which ensures the orbit stability for the propagation duration
of 12 h. The propagation accuracy is measured by the position RMSE
evaluated each 60 s.

The models under consideration are the ones that fit the complete
mascon distribution. Amongst them, the analyzed models correspond to
A1 and B2 scenarios (simultaneous navigation and gravity estimation),
on-orbit and dense datasets (true data). The fits with low altitude sam-
ples are also considered. For these scenarios, the final position RMSE is
shown in Fig. 16. For the most severe scenario B2, the expected error
ranges between 0.1–1 km in the majority of cases. For the less stringent
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Fig. 16. Final position RMSE after 12 h for different initial orbits with 𝑛 = 1000 mascon models.
scenario A1, with the low altitude samples, the error can be typically
drive down to 10–100 m. This may preclude the use of the fitted on-orbit
mascon models in long-term propagations. However, by training a truth
on-orbit dataset, the errors are reduced to 1–10 m. This demonstrates
that the on-orbit DMC-UKF dataset can be possibly improved with
precise orbit determination. Finally, the mascon distribution trained
with a dense dataset achieves a high level of accuracy (0.1–1 m RMSE).
This validates the effectiveness of the mascon model for small body
propagations.

The results in Fig. 16 are shown for 𝑛 = 1000. Although the number
of masses seems to not impact significantly the gravity errors (recall
Fig. 9 and Fig. 13), high 𝑛 values may be more robust to evaluation

ismatches. This refers to the fact that in a propagation, the evaluation
oint diverges from the truth one over time. This intuition is confirmed
y Fig. 9 where for a specific propagation, 𝑛 is varied. It can be
bserved that 𝑛 = 1000 provides the best results in the majority of cases.
lthough it is concluded that the on-orbit mascon fits are not suitable

or long term propagations, they may be useful for short-term ones. For
xample, Fig. 17 shows that after 2 h, scenario B2 error is ≈ 20 m which
reatly improves the Keplerian error of ≈ 300 m. This could be of use
or navigation or control applications with high update frequencies.

Finally, the computational efficiency of the mascon propagations is
valuated in Table 4. It can be easily observed that mascon models are
ompetitive in terms of propagation speed (without any paralleliza-
ion). The computational cost is only five times higher than a single
eplerian model for the most heavy model. At the same time, that
odel is 25 times more efficient than the polyhedron model.

. Conclusions

This manuscript presents a simultaneous navigation and mascon
ravity estimation strategy around a small body. The scheme fuses
he concept of dynamical model compensation with a mascon gravity
ptimizer. The dynamical model compensated unscented Kalman filter
enerates an on-orbit position-unmodeled acceleration dataset. The
easurements are obtained by an on-board camera tracking surface

andmarks. Then, the mascon distribution that best fits the on-orbit
ataset is found. The mascon optimizer uses Adam gradient descent and
737
Fig. 17. Position RMSE evolution with respect to number of masses.

Table 4
Computational times of Kepler, polyhedron and mascon models for 12 h
orbit propagation.
Model Mean [s] Max. [s]

Kepler 0.546 0.555

Poly. 7790 faces 68.11 68.31

Mascon 𝑛 = 100 0.779 0.792
Mascon 𝑛 = 500 1.668 1.687
Mascon 𝑛 = 1000 2.734 2.801

ensures physical constraints through a projection step. Numerical sim-
ulations around asteroid Eros validate the proposed methodology. Even
under different scenario conditions, the trained mascon models always
improve the Keplerian model in the analyzed altitude regime. A half
day propagation analysis reveals that the trained mascon distribution
with the most severe conditions (measurement outages and landmarks
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uncertainty) yields 100–1000 m root mean square error. Still, there is
oom for future improvement since training under the truth on-orbit
ataset reduces the propagation error to 1–10 m.

Future work may focus on reducing the accuracy gap between the
realistic on-orbit scenario and its equivalent truth dataset. To this end,
several ideas has been preliminary tested in this paper. In particular,
scenarios without lighting constraint (thus no measurements outages)
and the addition of low altitude samples have a positive effect in
the mascon accuracy. As an example, the aforementioned propagation
errors are 10–100 m under continuous measurements. In the future, it
is planned to look deeper into these ideas. For example, measurement
outages can be precluded by a multi-satellite configuration which en-
ables the use of inter-satellite ranging. Apart from the signal continuity,
relative ranging is a highly accurate measurement that may facilitate
precise orbit determination. The detailed collection of low altitude sam-
ples is to be further explored. One possible venue is the consideration
of a realistic data acquisition from ejecta particles. Another potential
method is the design of low altitude fly-overs by the spacecraft (which
allows to directly use the proposed DMC-UKF algorithm).
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Appendix A. Loss function gradient

This appendix provides the expression of the loss function (see
Eq. (17)) gradient. The chain rule is exploited to separate the model
derivatives from the loss choice.

A.1. Mascon model Jacobian

The Jacobian of the mascon model, for a dataset as Eq. (15), has
the following structure

𝐉𝑀 = [𝐉𝜇𝑀 𝐉𝐫𝑀 ], (A.1)

where 𝐉𝜇𝑀 is Jacobian of the masses and 𝐉𝐫𝑀 refers to the spatial
distribution. These can be expanded as

𝐉𝜇𝑀 = 2𝐀𝑀diag(
√

𝜇𝜇𝜇𝐒𝑀
), 𝐉𝐫𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝐚𝑀
𝜕𝐫𝑀1

|

|

|

|𝐫1
…

𝜕𝐚𝑀
𝜕𝐫𝑀𝑛

|

|

|

|𝐫1

⋮ ⋱ ⋮
𝜕𝐚𝑀
𝜕𝐫𝑀1

|

|

|

|𝐫𝑚
…

𝜕𝐚𝑀
𝜕𝐫𝑀𝑛

|

|

|

|𝐫𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.2)

where diag() indicates a diagonal matrix. The Jacobian 𝐉𝐫𝑀 elements
are

𝜕𝐚𝑀
𝜕𝐫𝑀𝑘

|

|

|

|𝐫𝑗
= 𝜇𝑀𝑘

(

1
𝛥𝑟3𝑗𝑘

𝐈 −
3𝛥𝐫𝑗𝑘𝛥𝐫𝑇𝑗𝑘

𝛥𝑟5𝑗𝑘

)

. (A.3)

Note that Eq. (A.1) structure is flexible. For example, if is decided to
just fit √𝜇𝑀𝑘

being 𝐫𝑀𝑘
fixed, the spatial distribution Jacobian 𝐉𝐫𝑀

anishes from the expression. Then, the Jacobian operations are very
fficient since the matrix 𝐀𝑀 needs only to be computed once (as it
nly depends on 𝐫 which is fixed in this case).
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𝑀

.2. Gradient with respect to acceleration

The loss function and the mascon model are related by the gravity
cceleration. The loss function gradient with respect to the mascon
cceleration prediction is to be computed. Since the loss (see Eq. (17))
s chosen to be the mean squared percent error, this gradient is

𝐿𝐚𝑀 = 1
𝑚

⎡

⎢

⎢

⎢

⎣

2(𝐚𝑀 (𝐫1) − 𝐚1)∕𝑎21
⋮

2(𝐚𝑀 (𝐫𝑚) − 𝐚𝑚)∕𝑎2𝑚

⎤

⎥

⎥

⎥

⎦

. (A.4)

ny other choice of loss function is admitted as long as its gradient
ith respect to the acceleration mascon prediction can be obtained.

.3. Chain rule

By applying the chain rule, the loss function gradient with respect
o the mascon distribution variables is

𝐿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟏𝑇
(

∇𝐿𝐚𝑀 ⊕
𝑑𝐚𝑀
𝑑
√

𝜇1

)

⋮

𝟏𝑇
(

∇𝐿𝐚𝑀 ⊕
𝑑𝐚𝑀
𝑑𝑥𝑀𝑛
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𝑑𝐚𝑀
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𝑑𝐚𝑀
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)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A.5)

where 𝟏 is a vector of ones that helps expressing the summation of
the right side vector components. Although the expression may seem
complex, the vector within the parentheses is nothing more than the
element-wise product of ∇𝐿𝐚𝑀 with each column of the mascon model
Jacobian matrix 𝐉𝑀 .

Appendix B. Static position determination

This appendix provides a fast analysis tool for the landmarks-based
navigation errors. To this end, a static landmarks-based position deter-
mination algorithm is described. Then, the position error distribution
with respect to the camera focal length is analyzed.

B.1. Landmark-based position determination

A position fix can be approximately determined by solving the un-
derlying landmarks-based navigation geometrical problem. If no errors
(attitude, landmarks position, pixelation) are present, the lines between
a surface landmark and its projection on the image plane uniquely
intersect in the camera aperture center (assumed as spacecraft center
of mass for simplicity). This is deduced from Fig. 2. When errors are
present, the intersection is not unique. Alternatively, the position fix
can be approximated by the closest point with respect to all lines in
terms of the mean squared distance. In order to describe that logic,
let us detail how the line between the landmark and its pixel can be
constructed:

1. Transform the center pixel to 2D image coordinates: (𝑢𝑙 , 𝑣𝑙) =
𝑤𝑝(𝑝𝑥𝑙 , 𝑝𝑦𝑙 ).

2. Compute the line-of-sight vector 𝐰𝐶
𝑙 of the landmark from the

spacecraft:

𝐰𝐶
𝑙 = 1

√

2 2

⎡

⎢

⎢

𝑢𝑙
𝑣𝑙
⎤

⎥

⎥

.

𝑢𝑙 + 𝑣𝑙 + 1 ⎣ 1 ⎦
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Fig. B.18. Distribution of position errors with respect to focal length.

3. Project the line-of-sight vector into the rotating small body
centered frame: 𝐰𝑙 = (𝐑𝐶

𝐴)
𝑇𝐰𝐶

𝑙 .
4. Construct the parametric equation of the line: 𝑠𝐰𝑙 = 𝐬 − 𝐫𝑙.

Note that 𝑠 is the independent variable and 𝐬 is the set of points
sweeping along the line. The distance 𝑑𝑙 of a point 𝐫′ to a line can be
computed as

𝑑𝑙 = ‖(𝐫′ − 𝐫𝑙) × 𝐰𝑙‖. (B.1)

Recall that 𝐰𝑙 is a unit vector. Then, the goal is to find the point 𝐫̂
that minimizes the sum of the squared distances 𝐷 for a number 𝑛𝐿 of
landmarks

𝐫̂ ≈ argmin
𝐫′

𝐷 = argmin
𝐫′

𝑛𝐿
∑

𝑙=1
𝑑2𝑙 , (B.2)

where the sum of the distances can be expanded as
𝑛𝐿
∑

𝑙=1
𝑑2𝑙 =

𝑛𝐿
∑

𝑙=1
[(𝐫′ − 𝐫𝑙) × 𝐰𝑙]𝑇 [(𝐫′ − 𝐫𝑙) × 𝐰𝑙]

=
𝑛𝐿
∑

𝑙=1
(𝐫′ − 𝐫𝑙)𝑇 (𝐫′ − 𝐫𝑙) − [(𝐫′ − 𝐫𝑙) ⋅ 𝐰𝑙]𝑇 [(𝐫′ − 𝐫𝑙) ⋅ 𝐰𝑙].

(B.3)

Note that the vector identity (𝐚×𝐛)𝑇 (𝐚×𝐛) = (𝐚𝑇 𝐚)(𝐛𝑇 𝐛) − (𝐚𝑇 𝐛)(𝐛𝑇 𝐚) is
used. The spacecraft position estimate 𝐫̂, can be computed by taking the
derivative of 𝐷 with respect to 𝐫′ and equaling the resulting expression
to zero

𝑑𝐷
𝑑𝐫′

|

|

|

|𝐫′=𝐫̂
=

𝑛𝐿
∑

𝑙=1
2(𝐫̂ − 𝐫𝑙) − 2[(𝐫̂ − 𝐫𝑙) ⋅ 𝐰𝑙]𝐰𝑙 = 𝟎. (B.4)

After rearranging terms, 𝐫̂ can be cleared as
(

𝑛𝐿𝐈 −
𝑛𝐿
∑

𝑙=1
𝐰𝑙(𝐰𝑙)𝑇

)

𝐫̂ =
𝑛𝐿
∑

𝑙=1
𝐫𝑙 − (𝐫𝑙 ⋅ 𝐰𝑙)𝐰𝑙 , (B.5)

which is a 3 × 3 system of linear equations that can be solved by
inverting the left-side matrix. Note that 𝐈 denotes the identity matrix.
There are two singular cases for Eq. (B.5) system. The first one is 𝑛𝐿 < 2
where it is evident that there are not enough lines to determine an
intersection. The other case is when all the lines are parallel which may
occur if the visible landmarks are too close (thus projecting to the same
pixel on the image).

B.2. Position error with respect to focal length

The static position determination algorithm of Appendix B.1 allows
a preliminary analysis of navigation errors. The main advantage is that
this analysis is purely geometrical and free of dynamics. In the case
under consideration, it is of interest to find a suitable camera focal
length 𝑓 (which controls how much is visible and its resolution) for
Section 5.2. To this end, several focal lengths ranging the diagonal

◦ ◦
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FOV evenly between 23 and 94 are analyzed for the orbit under
consideration. The distribution of position errors is shown in Fig. B.18.
The simulation does not include the lighting constraint in order to avoid
an excessive number of outliers. After examining Fig. B.18, the value
𝑓 = 25 mm is used in this manuscript.
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