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This paper derives a linear parameter-varying (LPV) model for three-axis attitude control of a spacecraft with a

single double-gimbal variable-speed control moment gyroscope (DGVSCMG) and magnetic torquers (MTQs) and

develops a singularity avoidance steering law. The LPV control theory provides an optimal gain-scheduled (GS)

controller while considering both control performance and robustness. However, in the spacecraft attitude control

problem, it is impossible to design a GS controller due to excesses of the number of parameters in most mission

scenarios.To avoid this difficulty, this paperdesigns two types of easy-to-useLPVmodels for adaptinganLPVcontrol

theory. The first model is developed by linearization of the kinematics around the equilibrium point of the target

attitude. The second one is developed by introducing a virtual state variable together with a parameter-dependent

coordinate transformation. Next, a GS controller is designed by using linear matrix inequalities with regional pole

placement constraints. Besides, the singularity avoidance steering law of a DGVSCMG by using MTQs is proposed.

The applicability is demonstrated through numerical simulations of the proposed methods.

Nomenclature

a = semimajor axis, km
B = body-fixed frame
b = geomagnetic field, N ⋅m−1 ⋅ A−1

H = total angular momentum, N ⋅m ⋅ s
HB = angular momentum of the spacecraft excluding a

DGVSCMG, N ⋅m ⋅ s
Hgi,Hgo = angular momentum of the inner/outer gimbal,

N ⋅m ⋅ s
Hws = angular momentum of the wheel, N ⋅m ⋅ s
�Igi�, �Igo� = inertia matrices of inner/outer gimbal axis, kg ⋅m2

�Is� = inertia matrix of the spacecraft including a
DGVSCMG as point of masses, kg ⋅m2

�Iws� = inertia matrix of wheel spin axis, kg ⋅m2

i = inclination, rad
�J� = inertia matrix of the spacecraft including a double-

gimbal variable-speed control moment gyroscope
(DGVSCMG), kg ⋅m2

mMTQ = magnetic moments, A ⋅m2

N = inertial frame
n = orbit rate, rad∕s
ŝ, ĝi, ĝo = spin axis, inner gimbal axis, and outer gimbal axis

unit vectors of a DGVSCMG
W,
Gi, Go

= spin axis, inner gimbal axis, and outer gimbal axis
frame

ω = angular velocity vector of the spacecraft, rad∕s
Ω = wheel spin rate, rad∕s

δi, δo = inner/outer gimbal angle, rad
μ = total dipole strength, Wb ⋅m
β = Euler parameters
σ, σS = modified Rodrigues parameters (MRPs), shadow

MRPs
σe = error MRPs
ρ = scheduling parameter vector
τMTQ = MTQ torque vector, N ⋅m
τd = disturbance torque vector, N ⋅m

I. Introduction

M OMENTUM exchange devices (MEDs) are popular actuators
to control the spacecraft attitude as they are electrically

actuated and do not require fuel. MEDs consist of control moment
gyroscopes (CMGs) and reaction wheels (RWs). The RWs are often
used for attitude control of satellites due to their mechanical
simplicity, lower cost, and simpler control law algorithms [1,2].
However, RWs cannot respond to the demand of a high-speed attitude
maneuver because they cannot provide both a high-speed wheel
spin rate and large RW motor torque. The RW electrical power
requirement scales with the rotor speed and reaches a limit of
available power. Further, there are mechanical limits to how fast a
rotor can spin without causing structural issues. In contrast, CMGs
are capable of producing large gyroscopic control torques onto the
spacecraft that are proportional to the rotor speed and the gimbal rate.
The challenges of CMGs are increased mechanical and control
algorithm complexity, as well as increased device cost. There are
various types of CMGs. Single-gimbal CMGs (SGCMGs) are the
most common type of CMG devices. Here the rotor is only able to
gimbal about a single-body fixed axes to produce the desired control
torque. A particular challenge of an SGCMG cluster is that they
cannot always output the desired torque at singular gimbal
configurations, often referred to as gimbal lock. Several singularity
avoidance methods have been proposed [3–6]. However, they tend to
result in complexity of the algorithm and only approximately
implement the desired control torque in the neighborhood of the
singular configuration.
Single-gimbal variable-speed CMGs (SGVSCMGs) are a hybrid

system that consists of an RW and an SGCMG. The extra degree of
freedom (DOF) of the wheel spin rate changes enable avoiding the
classical SGCMG singularities at the cost of additional power and
large rotor speed changes [7–11]. On the other hand, double-gimbal
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CMGs (DGCMGs) can apply control torques around arbitrary axes
except for singular orientations corresponding to a gimbal lock,
where both inner and outer gimbals coincide with each other. To
avoid such a gimbal lock, large angular motions should not be
commanded in one time [12]. As a practical application, they have
been used for international space station (ISS) due to their ability to
absorb large amounts of angular momentum. A double-gimbal
variable-speed CMG (DGVSCMG) has two gimbal axes and a
variable speed wheel. A DGVSCMG can generate large three-
dimensional torques if the RW motor torque is sized accordingly.
This advantage enables a high-speed attitude maneuver. Some
studies related to DGVSCMGs are discussed in Refs. [13–18]. In
particular, Stevenson and Schaub [13] develop the spacecraft-
DGVSCMG dynamics and presented a nonlinear control algorithm
with a Newton–Raphson (NR) scheme. Zhang and Fang [14] apply
robust backstepping control while considering disturbance torques to
the attitude control problem by using a DGVSCMG. Further, Jikuya
et al. [15] show two types of computational procedures for a rest-to-
rest maneuver using a DGVSCMG. Sasaki and Shimomura [16]
apply postguaranteed convex optimization method to approximated
model of the DGVSCMG dynamics. References [17,18] discuss a
spacecraft equipped with multiple DGVSCMGs.
Singular device configurations are also a serious challenge in an

attitude control of a spacecraft with DGVSCMGs. Multiple
DGVSCMGs [17] easily avoid their singularities by using the rotor
speed change or nullmotion aswith the singularity avoidancemethod
with VSCMGs [7]. However, with a single DGVSCMG it is difficult
to avoid the singularity because it has no redundancy. Reference [15]
designs the optimal trajectory of the gimbals and avoids the
singularity problemby switching off the feedback compensation near
the singularities. Although this approach is practical, it needs a high
calculation cost and ignores optimality near the singularities.
Reference [14] introduces the terms of the inner gimbal to calculate
the actuator input, but it does not guarantee steering the inner gimbal
away from the singularity. In addition, previous studies [13,14]
conclude that it is preferred to include other attitude actuators to avoid
singularities such as one RWor magnetic torquers (MTQs) [19,20].
Based on this insight, this paper studies the singularity avoidance of a
DGVSCMG while augmenting the control authority with MTQs.
The satellite dynamics with DGVSCMGs are described through a

set of nonlinear differential equations. Most of recent studies about
attitude control have used nonlinear controllers such as Lyapunov
function-based controllers [21,22]. With Lyapunov function-based
controllers, overall stability of attitude control is always guaranteed.
However, the closed-loop control performance is not discussed in
detail. To study the DGVSCMG performance, the linear parameter-
varying (LPV) control theory [23,24] is applied to the attitude control
problems [25,26]. In LPV control theory, to avoid difficulties coming
from the nonlinearity in satellite dynamics, the dynamics of
spacecraft is modeled as an LPV system. A gain-scheduled (GS)
controller is applied to this model using linear matrix inequalities
(LMIs). However, in the spacecraft attitude control problem, it is
impossible to design aGS controller due to excesses of the number of
scheduling parameters in most cases. In previous research, Sasaki
et al. [25] applies to the stabilization problem (it only controls the
angular velocity) of a spacecraft while geometrically considering the
operation range of the scheduling parameters. Kwon et al. [26]
applies the LPV control theory to the pointing control of a spacecraft
and reduces the number of the scheduling parameters by inserting a
first-order filter. However, a delay of a phase is generated.
In this study, first of all, two types of new simple LPV models are

considered to design the GS controllers for realizing the three-axis
attitude control of a spacecraft with a DGVSCMG and MTQs. The
first model is studied through linearization of the kinematics around
the equilibrium point of the target attitude. The second method is
developed by introducing a virtual state variable together with a
parameter-dependent coordinate transformation (PDCT). Then, a
singularity avoidance steering law of a DGVSCMGby usingMTQs is
developed. Finally, through numerical simulations, the effectiveness of
the proposed GS controller and the proposed singularity avoidance
steering law is demonstrated.

II. Spacecraft Model

In this paper, a spacecraft is studied, which has a single

DGVSCMG device as modeled in Fig. 1 and three MTQs. This

section develops the associated spacecraft dynamics with a

DGVSCMGandMTQs.Next, the rigid body kinematic equations are

reviewed.

A. Dynamics

The spacecraft considered in this paper is assumed to be a rigid

body and contains a single DGVSCMG device and three MTQs.

The body-fixed frame B is represented by a set of unit vectors x̂B,
ŷB, and ẑB. The inertial frame is given byN . Then, as in Fig. 2, the

unit vectors of the spin axis, the inner gimbal axis, and the outer

gimbal axis are denoted by ŝ, ĝi, and ĝo, respectively. The symbols

Go, Gi, andW denote the outer gimbal axis frame, the inner gimbal

axis frame, and the spin axis frame, respectively. The outer gimbal

axis ĝo is always paralleled to ẑB of the body frame B. Therefore, it
is given by

Go ĝo �
Go
2
4 0

0

1

3
5; Bĝo �

B
2
4 0

0

1

3
5 (1)

The inner gimbal axis ĝi must rotate around the outer gimbal axis

ĝo. Therefore, it is given as follows:

Gi ĝi �
Gi
2
4 0

1

0

3
5; Go ĝi �

Go
2
4− sin δo

cos δo
0

3
5; Bĝi �

B
2
4− sin δo

cos δo
0

3
5
(2)

Fig. 1 DGVSCMG frame and axes illustration.

Fig. 2 Definition of DGVSCMG’s frame.
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where δo is the outer gimbal angle. The spin axis ŝ can be expressed as
follows:

W ŝ �
W2
64
1

0

0

3
75; Gi ŝ �

Gi
2
64

cos δi

0

− sin δi

3
75;

Go ŝ �
Go
2
64
cos δo cos δi

sin δo cos δi

− sin δi

3
75; Bŝ �

B264
cos δo cos δi

sin δo cos δi

− sin δi

3
75 (3)

where δi is the inner gimbal angle. Next, the dynamics of a spacecraft
with a DGVSCMG and MTQs is considered to be expanded on a
spacecraft with single DGVSCMG in Ref. [13]. The total inertial
angular momentum H is described by

H � HB �Hgo �Hgi �Hws (4)

together with

HB � �Is�ωB∕N (5a)

Hgo � �Igo�ωGo∕N (5b)

Hgi � �Igi�ωGi∕N (5c)

Hws � �Iws�ωW∕N (5d)

where

ωGo∕N � ωB∕N � _δoĝo (6a)

ωGi∕N � ωB∕N � _δoĝo � _δiĝi (6b)

ωW∕N � ωB∕N � _δoĝo � _δiĝi � Ωŝ (6c)

and �Is� is the inertia matrix of a spacecraft (including the
DGVSCMG as point masses) about the overall spacecraft center of
mass, ωB∕N is the inertial angular velocity of the spacecraft, and
ωGo∕N , ωGi∕N , and ωW∕N denote the inertia angular velocity of the
outer gimbal, inner gimbal, andwheel, respectively. �Igi� or �Igo� is the
moment of inertia matrix of the DGVSCMG about the inner or outer
gimbal axis, respectively; �Iws� is the moment of inertia matrix of the
wheel about the spin axis; and Ω is the wheel spin rate. The total
inertia matrix �J� of a spacecraft including a DGVSCMG device is
given by

�J� � �Is� � �Igo� � �Igi� � �Iws� (7)

This inertia tensor �J�will varywith time as seen by the body frame.
Note that B�Is�, Go �Igo�, Gi �Igi�, and Gi �Iws� are constant matrices. The
dynamics of a spacecraft with a DGVSCMG and MTQs is given by

_H � τMTQ � τd (8)

where the vector τMTQ denotes the external torque by the MTQs and
τd represents the sum of all the external torques experienced by the
spacecraft. Substituting Eq. (4) into Eq. (8) yields

_HB � _Hgo � _Hgi � _Hws � τMTQ � τd (9)

In the following development, the short-hand notations
ω � ωB∕N , ωgo � ωGo∕N , ωgi � ωGi∕N , and ωws � ωW∕N are
used to make equation description more compact. Taking the inertial
time derivative of the first term of the LHS in Eq. (9) leads to

_HB � �Is� _ω� ω×�Is�ω (10)

Note that the notation x× denotes the following skew-symmetric
matrix:

x× ≔

2
4 0 −x3 x2

x3 0 −x1
−x2 x1 0

3
5; ∀x � � x1 x2 x3 �T (11)

The second term of the LHS in Eq. (9) is related to the outer gimbal
of the DGVSCMG. This is shown as follows:

_Hgo � �Igo�
�
_ω� �δoĝo � ω×�_δoĝo�

�
� ω×

go��Igo�ωgo� (12)

The third term of the LHS in Eq. (9) is related to the inner gimbal of
the DGVSCMG. This is shown as follows:

_Hgi � �Igi�
�
_ω� �δoĝo � �δiĝi � ω×�_δoĝo � _δiĝi� � �_δoĝo�×�_δiĝi�

�
�ω×

gi��Igi�ωgi� (13)

The fourth term of the LHS in Eq. (9) is related to the wheel spin
rate of the DGVSCMG. This is shown as follows:

_Hws � �Iws�
�
_ω� �δoĝo � �δiĝi � _Ω ŝ�ω×�_δoĝo � _δiĝi � Ωŝ�

� �_δoĝo�×�_δiĝi � Ωŝ� � �_δiĝi�×�Ωŝ�
�
� ω×

ws��Iws�ωws� (14)

The first term of the RHS in Eq. (9) is related to MTQs [19,20].
This is shown as follows:

τMTQ � mMTQ × b�t� � −b×�t�mMTQ (15)

where the vectormMTQ ∈ R3 is the magnetic moments for the three
coils, and b�t� is the geomagnetic field at the spacecraft as seen by the
inertial frameN . Note that the MTQs are set toward the unit vectors
of B. The simplified magnetic model [27] is given by

Nb�t� �
2
4 b1�t�

b2
b3�t�

3
5 � μ

a3

2
4 sin i cos nt

− cos i
2 sin i sin nt

3
5 (16)

where μ is the total dipole strength, a is the semimajor axis, i is the
inclination, and n is the orbit rate. In Eq. (16), the time is measured
from the point of magnetic equator crossing on the ascending node
(t � 0). In summary, Eq. (9) is rewritten as the final kinetic equations
of motion of a spacecraft with a DGVSCMG and MTQs:

�J� _ω � −ω×�Is�ω − �Igo��δoĝo − �Igo�ω×�_δoĝo� − ω×
go��Igo�ωgo�

− �Igi��δoĝo − �Igi��δiĝi − �Igi�ω×�_δoĝo� − �Igi�ω×�_δiĝi�
− �Igi��_δoĝo�×�_δiĝi� − ω×

gi��Igi�ωgi� − �Iws��δoĝo − �Iws��δiĝi
− �Iws� _Ω ŝ−�Iws�ω×�_δoĝo� − �Iws�ω×�_δiĝi� − �Iws�ω×�Ωŝ�
− �Iws��_δoĝo�×�_δiĝi� − �Iws��_δoĝo�×�Ωŝ� − �Iws��_δiĝi�×�Ωŝ�
− ω×

ws��Iws�ωws� − b×�t�mMTQ � τd (17)

B. Rigid Body Kinematics

Spacecraft attitude is given by the orientation of the body-fixed
frame B with respect to the inertial frame N . It is known that three
kinematic parameters are enough to describe the attitude. As such
parameters, in this paper,modifiedRodrigues parameters (MRPs) are
chosen [28,29]. However, the following development is not tied to
this particular choice in attitude coordinates. Other attitude
parameterizations could readily be applied. The MRP vector σ is
defined in terms of the Euler parameters (EPs) β as the transformation
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σi �
βi

1� β0
i � 1; 2; 3 (18)

Note that β0 and βi denote the scalar part and the vector one of the
EPs, respectively. Using the principal rotation axis vector ê and the
rotation angle Φ, the MRPs are given by

σ � tan

�
Φ
4

�
ê (19)

For such the MRPs, the singular points are given at Φ � �2π.
When a spacecraft is thrown off by a launch vehicle, there is no
guarantee that the kinematic singularity is avoided even when the
control objective is set-point regulation as opposed to tracking.
However, these singularities can be avoided by introducing the dual-
MRPmethod that consists of the classicalMRP and the shadowMRP
[28,29]. To introduce the alternate EPs vector −β, the shadowMRPs
and one of the switch surface between these two MRP vectors are
defined as follows:

σSi � −
βi

1 − β0
� −σi∕σ2 i � 1; 2; 3 (20)

where σ2 � σTσ. The shadow MRPs are given by

σS � tan

�
Φ − 2π

4

�
ê (21)

For such shadow MRPs, the singular points are given atΦ � 0 as
compared with the classical MRPs, which are singular at Φ � �2π.
This allows one to avoid MRP singularities altogether by switching
between classical and shadow MRP sets as one MRP vector
approaches a singular orientation. The combined set of classical and
shadow MRPs with the switching surface σ2 � 1 provides for a
nonsingular, bounded, minimal attitude description. The original
kinematic equation based on the error MRPs σe and the error angular
velocity ωe is given by

_σe �
1

4
H�σe�ωe (22a)

H�σe� �
h
�1 − σTe σe�I3 � 2σ×e � 2σeσTe

i
(22b)

Note that the inverse of H�σe� is given by

H−1�σe� �
1

�1� σ2e�
HT�σe�; σ2e � σTe σe (23)

The direct mapping between the two trajectories _σe and _σSe is given
by [30]

_σSe � −
_σe
σ2e

� 1

2

�
1� σ2e
σ4e

�
σeσTeωe (24)

as a mapping exists between σe and σSe .

III. LPV Modeling

A. LPV Model for Three-Axis Attitude Control

This section investigates the LPV model to design the GS
controller for three-axis attitude control. First, Eq. (17) must be
transformed into an LPV model that linearly depends on scheduling
parameters [23]. To realize the attitude control of a spacecraft, the
error angular velocity of a spacecraft ωe is considered as the state

feedback variable, and the DGVSCMG input _Ω, _δi, _δo and the
MTQs input mMTQ are considered as the control input of the plant.

The Jacobian linearization of Eq. (17) around the equilibrium point

(ωe;eq � 0, _Ωeq � 0, _δi;eq � 0, _δo;eq � 0,mMTQ;eq � 0) leads to the

linear dynamics of a spacecraft with a DGVSCMG and MTQs. The
spacecraft dynamics and the kinematics equations based on the
MRPs are given as follows:

_ωe � A�ρ�ωe � B1�ρ�uDGV � B2�ρ�mMTQ �Ew (25)

_σe �
1

4
H�σe�ωe (26)

where uDGV � � _Ω _δi _δo �T is the DGVSCMG control input, Ew
the disturbance term including model errors, and the coefficient
matrices are given as follows:

A�ρ� � �J�−1�Iws�M�ρ� (27)

B1�ρ� � �B1N1�ρ�; �B1 � −�J�−1�Iws� (28)

B2�ρ� � �B2N2�ρ�; �B2 � �J�−1 μ

a3
(29)

with

M�ρ� � �Ωŝ�×

�
2
4 0 Ω sin δi Ω cos δi sin δo

−Ω sin δi 0 −Ω cos δi cos δo
−Ω cos δi sin δo Ω cos δi cos δo 0

3
5
(30)

N1�ρ� � � ŝ Ωĝi × ŝ Ωĝo × ŝ �

�
2
4 cos δi cos δo −Ω sin δi cos δo −Ω cos δi sin δo
cos δi sin δo −Ω sin δi sin δo Ω cos δi cos δo
− sin δi −Ω cos δi 0

3
5
(31)

N2�ρ� �
2
4 0 −2 sin i sin nt − cos i
2 sin i sin nt 0 − sin i cos nt

cos i sin i cos nt 0

3
5 (32)

where ρ and σe are the scheduling parameter vectors. If ρ is defined by

ρ � �Ω sin δi cos δi sin δo cos δo sin nt cos nt �T

with σe � � σe1 σe2 σe3 �T , this system has 10 scheduling

parameters and it is covered with a convex hull that has 210�� 1024�
extreme points or vertices [23–26] constructed by the combination of
the maximum and the minimum values of the scheduling parameters.
In LPV control theory, the number of the vertices of the convex hull is
equivalent to the number of the LMIs to be solved for control design.
These LMIs should be solved simultaneously to guarantee overall
stability for a whole operating range. In this way, the scheduling
parameters of the LPV model in Eq. (25) have too many vertices to
perform the GS controller design. This is the main challenge to adapt
the LPV control theory to the spacecraft attitude control problem. To
overcome this challenge, several methods are considered to reduce
the number of vertices. First, the part that depends on the scheduling
parameters of the coefficientmatricesB1�ρ� andB2�ρ� are embedded

into a virtual control input u 0 ∈ R3 as follows:

u 0 � N1�ρ�uDGV � �B−1
1

�B2N2�ρ�mMTQ (33)

where �B−1
1 can always be solved, since rank� �B1� � 3. Note that

Eq. (33) represents the relationship between the output torque and the
set of the gimbal rate and the MTQ magnetic moment. In the case of
CMGs, it has a singularity problem. In this paper, this singular
configuration challenges are avoided by the use of MTQs’ torques.
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The detail is discussed later in Sec. V. By using this virtual control

input and setting the state variable to x: � �ωT
e σTe �T for three-axis

attitude control, the state-space representation of Eqs. (25) and (26) is

given as follows:

�
_ωe

_σe

�
�

�
A�ρ� 0

1
4
H�σe� 0

��
ωe

σe

�
�

�
�B1

0

�
u 0 �

�
E
0

�
w (34)

which is equivalently written in a more compact form as

_x � Ae�ρ; σe�x� Beu
0 �Eew (35)

where the coefficient matrices are given by

Ae�ρ; σe� ≔
�

A�ρ� 0
1
4
H�σe� 0

�
; Be ≔

�
�B1

0

�
; Ee ≔

�
E
0

�
(36)

and from Eq. (30), the scheduling parameter vector ρ is given by

ρ �
2
4 ρ1
ρ2
ρ3

3
5 �

2
4Ω cos δi cos δo
Ω cos δi sin δo

Ω sin δi

3
5 (37)

In this way, the number of scheduling parameters in the vectors ρ
and σe is reduced into 6 that yields 64�� 26� vertices or LMIs.

However, it is still toomany to design the GS controller. To avoid this

situation, from the next subsection, two types of easy-to-use LPV

models that have few vertices are investigated.

B. Simple LPV Model (Method 1)

To eliminate the scheduling parameter vector σe in Eq. (35), the

Jacobian linearization of Eq. (22b) around the equilibrium point

(σe;eq � 0) leads to the linear kinematics as follows:

H�σe� ≃ I3 (38)

Substituting Eq. (38) into Eq. (34), a simple LPVmodel is given as

follows:

�
_ωe

_σe

�
�

�
A�ρ� 0
1
4
I3 0

��
ωe

σe

�
�

�
�B1

0

�
u 0 �

�
E
0

�
w (39)

which is written compactly as

_x � ~Ae�ρ�x� Beu
0 �Eew (40)

where

~Ae�ρ� ≔
�
A�ρ� 0
1
4
I3 0

�
; Be ≔

�
�B1

0

�
; Ee ≔

�
E
0

�
(41)

The GS controller for this simple LPV model is given by

u 0 � −K�ρ�x (42)

which allows for simultaneous consideration of overall stability and

control performance. In this case, the number of scheduling

parameters is reduced into 3, which yields 8�� 23� vertices, and the
GS controller can be easily designed. The GS controller gainK�ρ� is
designed later in Sec. IV.

C. Simple LPV Model (Method 2)

This section presents the method to reduce the scheduling

parameters by using the proposed coordinate transformation and

analyze the singularity of the inverse transformation matrix.

1. Parameter-Dependent Coordinate Transformation

To eliminate the scheduling parameter vector σe in Eq. (35), the

second method is presented. By using the parameter-dependent

coordinate transformation (PDCT) matrix:

T�σe� ≔
�
I3 0
0 H−1�σe�

�
(43)

the following simple LPVmodel is obtained, which is easy to use for

control design. By using this matrix T, Eq. (35) can be expressed as
follows:

T�σe�
"
_ωe

_σe

#
� T�σe�

"
A�ρ� 0

1
4
H�σe� 0

#
T−1�σe�T�σe�

"
ωe

σe

#

� T�σe�
"

�B1

0

#
u 0 � T�σe�

"
E

0

#
w (44)

�
_ωe

H−1�σe�_σe

�
�

�
A�ρ� 0
1
4
I3 0

��
ωe

H−1�σe�σe

�
�

�
�B1

0

�
u 0 �

�
E
0

�
w

(45)

By introducing the following virtual state

ζ � H−1�σe�σe (46)

_ζ � H−1�σe� _σe �
d

dt
fH−1�σe�gσe (47)

Equation (45) is rewritten into

�
_ωe

_ζ

�
�

�
A�ρ� 0
1
4
I3 0

��
ωe

ζ

�
�

�
�B1

0

�
~u 0 �

�
E

ϵI3

�
w (48)

or compactly as

_~x � ~Ae�ρ� ~x� Beu
0 � ~Eew (49)

where ~x ≔ �ωT
e ζT �T and

~Ae�ρ� ≔
�
A�ρ� 0
1
4
I3 0

�
; Be ≔

�
�B1

0

�
; ~Ee �

�
E
ϵI3

�
(50)

with

���� d

dt
fH−1�σe�gσe

���� ≤ ϵkwk; ϵ > 0 (51)

Note that a previous study [31] introduced a virtual state ξ with
_ξ: ≃ H−1�σe� _σe and replaced H−1�σe�σe by ξ. This transformation

can be realized in the open-loop system because the part ξ is

eliminated by the premultipliedmatrix ~Ae�ρ� (note that two blocks of
the right half of ~Ae�ρ� are zero entries). However, in the closed-loop
system, this transformation includes an approximation. To avoid such

an approximation in the closed-loop system, this paper introduced a

virtual state ζ ≔ H−1�σe�σe and embed the transformation error

�d∕dt�fH−1�σe�gσe into the disturbance as that upper bound ϵI3.
This paper selects the positive scalar ϵ as the upper bound of

�d∕dt�fH−1�σe�gσe by numerical simulation results.
The goal of the GS control for the simpler LPV model in Eq. (49):

u 0 � − ~K�ρ� ~x (52)

is to consider both overall stability and control performance at the

same time as with Eq. (42).
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2. Relationship Between Original Model and Transformed Model

Getting back the coordinate transformation x ≔ T−1�σe� ~x, this GS
controller can be transformed into the controller �K�ρ; σe�
corresponding to the original plant in Eq. (35) as follows:

u 0 � − ~K�ρ�T�σe�T−1�σe� ~x (53)

� − �K�ρ; σe�x (54)

where

�K�ρ; σe� ≔ ~K�ρ�T�σe� (55)

This controller by method 2 is less approximated form and

guarantees overall stability for closed system by introducing the

transformation error as a disturbance. The relationship between

original LPV plant as in Eq. (35) and transformed simple LPV plant

as in Eq. (49) is shown as in Fig. 3. In this case, the number of

scheduling parameters is reduced to 3 in Eq. (37), which yields

8�� 23� vertices and can design the optimal GS controller as with

method 1.

3. Singularity Analysis of Transformation Matrix

The singularity of the PDCT matrix in Eq. (43) is analyzed. It is

caused by the singularity of H−1�σe�. From Eq. (23), H�σe� has an
inverse matrix except for the case of Φ � �2π. It can be easily

avoided by introducing the shadow MRPs in analogy with the

discussion of the Sec. II.B.

IV. Controller Synthesis

In the LPV control theory, first a convex hull constructed by the

maximum and the minimum values of the scheduling parameters is

introduced. Then, the extreme controllers defined at each vertex of

the convex hull are designed by solving an LMI problem at each

vertex. Finally, the optimal GS controller is constructed by the

extreme controllers. To ensure overall stability for a whole operating

range, a set of LMIs must be solved simultaneously. The number of

LMIs of this set is equivalent to the number of vertices of the convex

hull. There are generally too many vertices with the LPV model of a

spacecraft attitude control problem. In the LPV model in Eq. (35), it

has 64�� 26�vertices. In this case, the LMIs become infeasible most

possibly. On the other hand, the LMIs for the simple LPV models in

Eqs. (40) and (49) are feasible most possibly. Let us consider the GS

controller design for these simple LPV models.

A. Convex Hull

First, a convex hull constructed for the simple LPV model in

Eq. (40) is considered. The scheduling parameter vector ρ of Eq. (37)
has an interesting property. It can be represented by the spherical

coordinate system as in Fig. 4. This property comes from

DGVSCMG’s spherical motion. Note that the wheel spin rate Ω
represents the radial coordinate, and the inner/outer gimbal angles δi
and δo represent the angular coordinate, which imply that the

maximum and the minimum values of the scheduling parameters are

determined as the limitation of the wheel spin rate, since the

maximum values of the trigonometric functions of δi and δo are unity
and the same is true with the minimum value. The LPV system in

Eq. (40) and the GS controller in Eq. (42) are expressed by the

following polytopic representation [23,26]:

~Ae�ρ� �
Xp
i�1

λi�ρ� ~Aei (56)

K�ρ� �
Xp
i�1

λi�ρ�Ki (57)

Xp
i�1

λi�ρ� � 1; λi�ρ� ≥ 0 (58)

where p denotes the number of vertices (in this case, p is equal to

8�� 23�) and λi�ρ� is the convex combination matrix given as in

Table 1. Let ρ
i
and �ρi denote the lower and the upper bound of ρi.

Using these parameters and introducing the following interpolation

parameters αi and �αi, the scheduling parameters ρi can be described
as follows:

ρi � αiρi � �αi �ρi; 0 ≤ αi; �αi ≤ 1; αi � �αi � 1 (59)

The extreme matrices ~Aei, 1 ≤ i ≤ p in Eq. (56) are given by any

frozen systemof ~A�ρ�with any combination of �ρi and ρi as inTable 1.

Fig. 3 Relationship between two models.

Fig. 4 Convex hull.
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The extreme controllers Kei, 1 ≤ i ≤ p in Eq. (57) are designed for

the extreme matrices ~Aei, 1 ≤ i ≤ p in Eq. (56), respectively. In this
way, the convex hull that defines a whole operating range is
constructed as shown in Fig. 4.

B. Extreme Controllers

A GS controller K�ρ� is desired that guarantees overall stability
and achievesH2 performance for the simple LPV model in Eq. (40)
with the performance output z as follows:

_x � ~Ae�ρ�x� Beu
0 �Eew (60a)

z � Cx�Du 0 (60b)

The H2 control problem is considered. Let us consider the H2

norm as follows:

kHzw�s�k2 �
Z

∞

0

zT�t�z�t� dt (61)

for an impulse disturbance input w, and it is equivalent to

kHzw�s�k2 �
Z

∞

0

�xTCTCx� u 0TDTDu 0� dt (62)

where the coefficient matrix set (C, D) is selected such that they
satisfy the condition CTD � 0, DTD > 0. When the Lyapunov
variable is time-varying and the optimal controller gain K̂i is
introduced, minimizing kHzw�s�k2 is equivalent to

inf
h
Trace�BT

clPBcl�
i

subject to (63)

P > 0; _P � PAcl �AT
clP � CT

clCcl < 0 (64)

where

Acl � ~Aei −BeKi (65)

Bcl � Ee (66)

Ccl � C −DKi (67)

When the Lyapunov variable is time-invariant with _P � 0,
minimizing kHzw�s�k2 is equivalent to

inf
h
Trace�BT

clPBcl�
i

subject to (68)

P > 0; PAcl �AT
clP � CT

clCcl < 0 (69)

For convenience, let us define the following matrix functions
related to H2 performance. Pre- and postmultiply Eq. (69) by

X � P−1 > 0; applying the Schur complement formula [32],

Eq. (69) is equivalent to

�
� ~AeiX −BeW� � �⋅�T 	

CX −DW −I

�
< 0 (70)

where X denotes the positive definite matrix and W denotes the

rectangular matrix, �A� � �A�T is abbreviated into �A� � �⋅�T , and
the symbol 	 denotes the matrix symmetric element. Related to the

H2 objective function in Eq. (68), introducing a slack variable Z,
Eq. (68) is equivalent to

�
X 	
ET

e Z

�
> 0 (71)

Here, to take into account the transient response of the control

system, theLMI representation for the regional pole placement [33] is

introduced as well as LMIs for H2 performance. The region [33] is

the set S�α; r;Θ� of complex numbers x� jy such that

x < −α < 0; jx� jyj < r; tanΘx < −jyj (72)

as shown in Fig. 5. Confining the closed-loop poles to this region

ensures the minimum decay rate α, the minimum damping ratio

ζ � cosΘ, a damped natural frequency ωd < r sin θ, and an

undamped natural frequency ωn < r. This in turn bounds the

maximum overshoot, the frequency of oscillatory modes, the delay

time, the rise time, and the settling time. The LMIs for this regional

pole placement are given by

� ~AeiX − BeW� � �⋅�T � 2αX < 0 (73a)

�
−rX ~AeiX −BeW
	 −rX

�
< 0 (73b)

�
Γ�Θ� ~Γ�Θ�
	 Γ�Θ�

�
< 0 (73c)

where

Γ�Θ� � sinΘ
n
� ~AeiX −BeW� � �⋅�T

o
(74)

~Γ�Θ� � cosΘ
n
� ~AeiX −BeW� − �⋅�T

o
(75)

which enable us to easily specify the closed-loop time response with

the stability margin α.

Table 1 Convex combination coefficients

i ρ λi�ρ� Binary

1 � ρ1 ρ
2

ρ
3 �T α1α2α3 000

2 � ρ1 ρ
2

�ρ3 �T α1α2 �α3 001

3 � ρ1 �ρ2 ρ
3 �T α1 �α2α3 010

4 � ρ1 �ρ2 �ρ3 �T α1 �α2 �α3 011

5 � �ρ1 ρ
2

ρ
3 �T �α1α2α3 100

6 � �ρ1 ρ
2

�ρ3 �T �α1α2 �α3 101

7 � �ρ1 �ρ2 ρ
3 �T �α1 �α2α3 110

8 � �ρ1 �ρ2 �ρ3 �T �α1 �α2 �α3 111

Fig. 5 Regional pole placement.
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In this study, the LMI problem represented by bothH2 control in
Eqs. (70) and (71) and the regional pole placement in Eq. (73) is
considered as follows:

inf
W i ;X;Z

�Trace�Z�� subject to (76a)

�
� ~AeiX −BeW i� � �⋅�T 	

CX −DW i −I

�
< 0;

�
X 	
ET

e Z

�
> 0 (76b)

� ~AeiX −BeWi� � �⋅�T � 2αX < 0 (76c)

�
−rX ~AeiX −BeW i

	 −rX

�
< 0;

�
Γi�Θ� ~Γi�Θ�
	 Γi�Θ�

�
< 0;

for all 1 ≤ i ≤ 8

(76d)

where

Γi�Θ� � sinΘ
n
� ~AeiX − BeW i� � �⋅�T

o
(77)

~Γi�Θ� � cosΘ
n
� ~AeiX −BeW i� − �⋅�T

o
(78)

Using the optimal solution setX,W i to the problem in Eq. (76), the
extreme controller of the convex hull are given by

Ki � W iX
−1; 1 ≤ i ≤ 8 (79)

Then, theGS controller withmethod 1 in Eq. (42) is constructed by
substituting Eq. (79) into Eq. (57). Therefore, the optimal GS
controller for the simple LPV model in Eq. (40) is obtained by

u 0 � −K�ρ�x (80)

Similarly, the GS controller with method 2 in Eq. (52) can be
obtained as follows:

u 0 � − ~K�ρ� ~x; ~x � T�σe�x (81)

for the simple LPV model in Eq. (49).

V. Steering Law Design

First, this section provides the singularity of a DGVSCMG, and
then a singularity avoidance steering law of aDGVSCMGandMTQs
is proposed.

A. Singularity Analysis of a DGVSCMG

The singularity of a DGVSCMG is considered. From Eq. (31), the
Jacobian matrix of the DGVSCMG system is given by

N1 �
2
4 cos δi cos δo −Ω sin δi cos δo −Ω cos δi sin δo
cos δi sin δo −Ω sin δi sin δo Ω cos δi cos δo
− sin δi −Ω cos δi 0

3
5 (82)

Previously, the steering law of a single DGVSCMG system is
given by

uDGV � N−1
1 u 0 (83)

If rank �N1� � 3, the inverse matrixN−1
1 can be always obtained.

However, if the rank �N1� ≠ 3 then this cannot be solved. It occurs
when det�N1� � 0 with

det�N1� � −Ω2 cos δi (84)

When the spin rate is zero (Ω � 0) or the inner and outer gimbals
are overlapped (cos δi � 0), the DGVSCMG system falls into a
singularity.

B. Singularity Avoidance Steering Law

Recalling in Eq. (33), the output torque is given by

u 0 � N1uDGV � �B−1
1

�B2N2mMTQ (85)

By using the inverse matrix of N1, the DGVSCMG input is
given by

uDGV � N−1
1 u 0 −N−1

1
�B−1
1

�B2N2mMTQ (86)

where this is the steering law of theDGVSCMG.When det�N1� � 0,
the steering law in Eq. (86) cannot be solved. To avoid such a
situation, the singularity robustness (SR) steering law [3] is
considered as follows:

uDGV � N#
1u

0 −N#
1
�B−1
1

�B2N2mMTQ (87)

where

N#
1 � NT

1 �N1N
T
1 � λ1I�−1 (88)

λ1 � k1 exp�−k 0
1j det�N1�j� (89)

where k1 and k 0
1 are positive scalars. When j det�N1�j is larger

enough, Eq. (87) is approaching to Eq. (86). Although this SR
steering law is intended to avoid the singularity by adding torque
errors, it is not guaranteed to steer gimbal angles or manage thewheel
spin rate from their singularities. To manage the gimbal angles and
the wheel spin rate, the following Lyapunov function V�> 0� is
considered:

V � 1

2
uTeue (90)

with

ue �
2
4Ω −Ωr

δi − δir
0

3
5 (91)

where Ωr and δir are the preferred wheel spin rate and inner gimbal
angle, respectively. The time derivative of Eq. (90) is given by

_V � uTeuDGV (92)

since the preferred set Ωr, δir is constant. To guarantee Lyapunov

stability _V < 0 for attaining the preferred set, the DGVSCMG
actuator input for avoiding the singularity is given by

uDGV � − �Wue (93)

with

�W �
2
4 b1 0 0

0 b2 0

0 0 0

3
5 (94)

where �W is the weighting matrix with the positive scalars b1 and b2.
In this case, the time derivative of the Lyapunov function V is
given by

_V � −uTe �Wue ≤ 0 (95)

Combining Eqs. (83) and (93) while introducing an SR steering
method, the steering lawof aDGVSCMGfor avoiding the singularity
is given by

uDGV � N#
1u

0 − �Wue (96)
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In general, a steering law tends to use the null space (for
instance, with the local gradient method) if it is available, not to
prevent the three-axis attitude control [3]. However, the steering
law is certainly not robust with only single DGVSCMG as there
is no null space to avoid the singularity. Previous research [13,14]
discussed this singularity avoidance as a future work. This study
attempts to avoid the singularity by using MTQ torques. From
Eqs. (87) and (93), the steering law for avoiding the singularity is
obtained by

uDGV � N#
1u

0 − �Wue −N#
1
�B−1
1

�B2N2mMTQ (97)

The MTQ input to eliminate the term − �Wue is given by

− �Wue −N#
1
�B−1
1

�B2N2mMTQ � 0 (98)

mMTQ � −N#
2
�B−1
2

�B1N1
�Wue (99)

where

N#
2 � NT

2 �N2N
T
2 � k2I�−1; k2 > 0 (100)

Note that an MTQ steering always falls in the singularity, so
again the SR steering inverse is adapted. Figure 6 shows the
illustration of the scheduling parameter vector in Eq. (37). The
proposed steering laws in Eqs. (97) and (99) give the trajectory to
the preferred condition that is away from the singularities.

VI. Numerical Simulation

This section presents some numerical simulations by using the GS
controllers with method 1 in Eq. (80) and method 2 in Eq. (81) and
also compares the conventional steering law in Eq. (83), the SR
steering law in Eq. (96), and the SR steering law with MTQs in
Eqs. (97) and (99).

A. Simulation Parameters

The controller design parameters C and D, and the disturbance
coefficient matrices Ee and ~Ee are given as follows:

C�

2
664
3× I3 03×3

03×3 I3

03×3 03×3

3
775; D�

"
06×3

0.02× I3

#
;

Ee �
"
diag�2.15.51.7�× 10−5

03×3

#
; ~Ee �

"
diag�2.15.51.7�× 10−5

I3

#

(101)

Note that the disturbance coefficient matrices Ee and ~Ee are

determined by the maximum value of the following environmental

torque disturbance vector [20]:

τd �
2
4 12.8 × 10−6 � 8.6 × 10−6 sin nt

5.5 × 10−5�1� sin nt�
12.8 × 10−6 � 4.3 × 10−6 sin nt

3
5 N ⋅m (102)

and ϵ in ~Ee is determined as ϵ � 1, which is an enough large value by
simulation results. The parameters of the regional pole placement in

Eqs. (76c) and (76d) are given by

r � 1.0; α � 0.1; Θ � π

4
(103)

and the parameters of the proposed singularity avoidance steering

laws in Eqs. (97) and (99) are given by

k1 � 10; k 0
1 � 0.001; k2 � 0.01; b1 � 1; b2 � 0.1

(104)

with the preferred wheel spin rate and the inner gimbal angle:

Ωr � 300 rpm; δir � 0 rad (105)

The simulation parameters are given in Table 2, in which the initial

condition of the error angular velocity of the spacecraft and actuator

conditions are also given. The orbital parameters are given in Table 3,

in which these parameters closely parallel those used in Ref. [20] and

the total dipole strength is also given. The limitation of DGVSCMG

and MTQ input is given by

−10 ≤ _Ω ≤ 10 rad∕s2; −1 ≤ _δi ≤ 1 rad∕s; −1 ≤ _δo ≤ 1 rad∕s
(106a)

−10−3 ≤ mMTQ;i ≤ 10−3 A ⋅m2; 1 ≤ i ≤ 3 (106b)

This simulation also considers the model uncertainty Δ�J� on the

inertia tensor �J�. Therefore, in the numerical simulation, the inertia

tensor �J� is given by �J� � Δ�J� with Δ�J� � 0.2�J�, because the

moments and products of inertia of the spacecraft may change due to

fuel usage or solar paddle oscillations.

Fig. 6 Illustration of the scheduling parameter vector.

Table 2 Simulation parameters

Parameter Value Unit
B�Is� diag� 10 10 8 � kg ⋅m2

Gi �Iws� diag� 0.0042 0.0021 0.0021 � kg ⋅m2

Gi �Igi� diag� 0.001 0.001 0.001 � kg ⋅m2

Go �Igo� diag� 0.001 0.001 0.001 � kg ⋅m2

Ω0 250 rad∕s
δi0 0 rad
δo0 0 rad
ωe0 � 0 0 0 �T rad∕s

Table 3 Orbital
parameters

Parameter Value Unit

μ 7.9 × 1015 Wb ⋅m
a 7359.42 km
i 53 deg
n 0.001 rad∕s
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B. Three-Axis Attitude Control Simulation

Figure 7 shows the attitude maneuver simulation results with
the initial error MRPs σe0 � � 0.414 0.3 0.2 �T in Ref. [10] by
using the GS controller in Eq. (81) and the singularity avoidance
steering laws in Eqs. (97) and (99). From the time history of the
angular velocity in (a) and the error MRPs in (b), the three-axis
attitude control has been successfully achieved at 40 s. Subfigures
(c) and (d) in Fig. 7 represent the gimbal angles and rates (gimbal
input), respectively. Subfigures (e) and (f) in Fig. 7 represent the
wheel spin rate and acceleration (wheel input), respectively. From
subfigures (c) and (e) in Fig. 7, the preferred set of a DGVSCMG
in Eq. (105) is obtained by the proposed steering laws while
avoiding the singularities in (h) in Fig. 7. Besides, the limitation
of the actuator input in Eq. (106) has not exceeded in (d), (f), and
(g) in Fig. 7.

C. Comparison of Steering Laws

Figure 8 shows the attitude maneuver simulation results with
the initial error MRPs σe0 � � 0.252 0 −0.092 �T as one of the
initial conditions that shall fall into the singularity. This
subsection presents three types of simulation results by using the
conventional steering law in Eq. (83), the SR steering law in
Eq. (96), and the SR steering law with MTQs in Eqs. (97) and

(99). The singularity measurement det�N1� is shown as in
subfigure (a) in Fig. 8. When det�N1� � 0, the system falls into
the singularity. MRPs are shown as in subfigure (b) in Fig. 8 and
the inner/outer gimbal angles and wheel spin rate are shown as in
subfigures (c), (d), and (e) in Fig. 8, respectively. From Fig. 8, the
conventional steering law in Eq. (83) falls into singularity at 25 s
and cannot attain three-axis attitude control, because the wheel
spin rate is approaching to zero at that time. The SR steering law
in Eq. (96) can successfully avoid the singularity but cannot attain
three-axis attitude control, because it has no null space and the
steering motion for avoiding the singularity prevents the
spacecraft from achieving the attitude control. On the other hand,
the SR steering law with MTQs in Eqs. (97) and (99) successfully
achieves both singularity avoidance and complete attitude
control, because the proposed steering law provides preferred set
of a DGVSCMG (Ω � 300 rpm and δi � 0 rad). Therefore, the
effectiveness of the proposed steering law in Eqs. (97) and (99) is
shown as in Fig. 8.

D. Monte Carlo Simulation

Figure 9 shows the 614-run Monte Carlo (MC) simulation result
given by a variety of rotation angles generated by a variety of
combinations of initial and final attitudes of the spacecraft. This MC

a) Angular velocity b) Error MRPs

c) Gimbal angles d) Gimbal rates

e) Wheel spin rate f) Wheel acceleration

g) Magnetic moments h) Singularity of a DGVSCMG
Fig. 7 Attitude simulation.
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simulation aims to compare the two proposed methods by using the
GS controllers in Eqs. (80) and (81). This figure shows the rotation
angle φ versus the average of the convergence time t	. From this
figure in the small attitude maneuver (φ ≤ 90 deg), these controllers
attain three-axis attitude control at almost the same time because the
GS controller of method 2 in Eq. (81) can be approximated by that of
method 1 in Eq. (80) by using the following approximation of the
PDCT matrix:

T�σe� ≃ I6 (107)

On the other hand, in the large attitude maneuver, the convergence

time ofmethod 2with PDCT is shorter than that ofmethod 1, because

method 1 includes approximation in the modeling of the LPV plant.

This approximation is useful for the small attitude maneuver but not

good for the large attitude maneuver when the model error becomes

a) Singularity measurement b) MRPs by using (i) conventional steering law, (ii) SR
steering law, and (iii) SR steering law with MTQs

c) Inner gimbal angle d) Outer gimbal angle

e) Wheel spin rate
Fig. 8 Comparison of the steering laws.
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large. Therefore, method 2 with PDCT can attain preferred control
performance for all three-axis attitude rotations, compared with
method 1. On the other hand, in the case of the small attitude
maneuver such as an attitude tracking problem,method 1 is also good
as an easy-to-use controller design.

VII. Conclusions

This paper derives a linear parameter-varying (LPV) model for
three-axis attitude control of a spacecraft with a double-gimbal
variable-speed controlmoment gyroscope (DGVSCMG)andmagnetic
torquers (MTQs). Based on this LPVmodel, two types of simple LPV
models are established to design gain-scheduled controllers by using
twomethods. These two methods overcome the difficulty from excess
of the number of scheduling parameters. Besides, the singularity
avoidance steering laws of a DGVSCMG by usingMTQs is proposed.
Through theMonteCarlo simulation examples, the effectiveness of the
LPV model with the parameter-dependent coordinate transformation
and the singularity avoidance steering law are demonstrated. Future
work will consider translational motion of the center of mass of the
flexible structures and a gain tuning method for the GS controller and
the singularity avoidance steering law.
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