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A B S T R A C T

The attitude and vibration control of a flexible spacecraft with two parallel double-gimbal variable-speed control
moment gyros (DGVSCMGs) is considered. The coupled nonlinear equations of motion create a complex chal-
lenge in a pointing control development. First a Gain-Scheduled (GS) controller for a 3-axis attitude control is
designed by the post-guaranteed linear matrix inequalities (LMIs) method with H H/2 constraints. Next an
H H/2 controller for vibration control is designed to attain both attitude and vibration control at the same time.
The two controllers are combined using the dynamic inversion (DI) technique. Finally, the effectiveness of the
proposed combined controller is demonstrated through a numerical example.

1. Introduction

Both attitude and vibration control of a flexible spacecraft is of great
interest in spacecraft applications. Missions of flexible spacecraft often
require high speed attitude maneuvers and high pointing accuracy and
stabilization. Increasing mission power requirements have created a
trend in which recent communication satellites have large flexible solar
battery paddles or communication antennas. For example, the
Thermoelectric Outer Planets Spacecraft (TOPS) project [1,2] was de-
veloped by the National Aeronautics and Space Administration (NASA)
to provide advanced systems technology that would allow realistic es-
timates of performance, cost, reliability, and scheduling that are re-
quired for an actual flight mission. The main antenna of TOPS has a
diameter of 4.3 m. The Engineering Test Satellite VIII (ETS-VIII) [3],
launched into Geo-synchronous orbit by the Japan Aerospace eX-
ploration Agency (JAXA) in 2007, has large solar paddles as shown in
Fig. 1. The main mission is mobile communication for which two large
deployable reflectors (LDR) are appended in the roll axis direction. The
dynamics between rigid spacecraft body and solar paddles are coupled
each other.

JUNO [4], as illustrated in Fig. 2, is a NASA space probe orbiting
Jupiter that was launched in 2011. The main mission is to measure
Jupiter's composition, gravity field, magnetic field, and polar magne-
tosphere. JUNO has three solar panels that are symmetrically arranged.
Two of the panels have four hinged segments each, and the third panel

has three segments and a magnetometer. Each panel is 2.7 by 8.9 m
long, and these panels are the biggest on any NASA deep-space probe.
The mission requires high precision pointing that lasts about 3 h of
perijove (periapsis of Jupiter) [5]. However, the flexing of the solar
battery paddles or antennas due to engaging the orbit or attitude con-
trol mechanism make such mission pointing requirements very chal-
lenging to achieve. Additionally, inertia tensor modeling uncertainty of
the flexible spacecraft is another challenge when providing precision
pointing control. A pointing control solution for such a large spacecraft
system with flexible components must account for these modeling un-
certainties, as well as resulting dynamical disturbances due to flexing.

The attitude dynamics of a flexible spacecraft is time varying and
nonlinear. It is impacted by orbital disturbances, model uncertainties
and modal frequency of the flexible paddles or antennas. To guarantee
robustness to these disturbances, uncertainties and flexibility, robust
control theory is adopted, and it can deal with Linear Time-Invariant
(LTI) systems with uncertainty. However, it is not appropriate for sys-
tems with drastic changes arising from nonlinearities or actuator mo-
tions in the original dynamics. Therefore, this paper investigates linear
parameter-varying (LPV) control theory [6]. Using LPV control theory,
the spacecraft dynamics are modeled as an LPV system which depends
on the scheduling parameters to avoid difficulties arising from non-
linearities in the original dynamics. A gain-scheduled (GS) controller is
applied to this model using linear matrix inequalities (LMIs). To solve
LMIs simultaneously, a multi-objective GS controller for evaluating
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both optimality and robustness can be easily designed [7].
Conventionally, the LPV control theory introduces common

Lyapunov functions [6,7] to guarantee overall stability as well as a
desired control performance subject to a range of parameter changes of
the LPV system. However, selecting a common Lyapunov function for
the entire operating range leads to undesirable design conservatism.
Many researchers have judged that this conservatism arises from se-
lecting a common Lyapunov function and have shifted their research
into parameter dependent Lyapunov functions [8,9], but the theory of
these are more complicated and can add additional sufficiency condi-
tions. In addition, changing rates of the system are restricted in many
cases. To avoid these difficulties while mitigating conservatism, the
post-guaranteed LMI method [10] is considered for flexible spacecraft
attitude control in which distinct Lyapunov solutions are adopted. This
paper adapts this post-guaranteed LMI method to the spacecraft atti-
tude problem while using the dynamic inversion (DI) technique to
achieve simultaneous attitude and vibration control.

Recently, DI-based control has gained popularity among engineers.
This technique is often used for air borne objects such as aircraft
[13,14] or missiles [15,16]. The concept of DI introduces an inversional
representation and determines the control law by using both required
command and inversional dynamics. This paper develops a new ap-
proach by adapting the DI technique to a flexible spacecraft with
combined attitude and vibration controllers.

The attitude actuator considered in this paper is assumed to be a set
of two parallel double-gimbal variable-speed control moment gyros
(DGVSCMGs) [17,18] to attain high speed attitude maneuvers. A
DGVSCMG is a new type of multi-degree-of-freedom (multi-DOF) ac-
tuator with several advantages. One DGVSCMG can generate large
three-dimensional torques, which leads to a reduction of the number of
actuators, the total mass, and volume allocation within the spacecraft.
However, a wheel mechanical failure is a serious concern for a
DGVSCMG device. Once its wheel has failed, a DGVSCMG is unable to
generate any torque. To avoid such situations and provide robustness, it
is convenient to introduce redundancy in the control devices.

DGVSCMGs have singularity configurations in which the Jacobian
matrix is not invertible. In this paper, a singularity avoidance steering
law is considered based on singularity robustness (SR) steering with
null motion [19]. Finally, through numerical simulations, the effec-
tiveness of the proposed combined controller for 3-axis attitude and
vibration control and the singularity avoidance steering law is in-
vestigated.

2. Equation of motion

2.1. Nonlinear dynamics of a flexible spacecraft with DGVSCMGs

The spacecraft is assumed to be a flexible body and contains mul-
tiple DGVSCMG devices as modeled in Fig. 3. Note that the translational
motion for the center of mass of the flexible structures is assumed to be
negligibly small in the following analysis. The body-fixed frame B is
represented by a set of unit vectors x̂B, ŷB, and ẑB. The inertial frame is
given byN . Symbols ,o iG G , andW denote the outer gimbal axis frame,
the inner gimbal axis frame, and the wheel spin axis frame, respec-
tively. Unit vectors ŝj, ĝij, and ĝoj denote spin axis, inner/outer gimbal
axis in j-th DGVSCMG, respectively.

Here, the equation of motion (EOM) of a flexible spacecraft with n
DGVSCMGs is considered. The total inertial angular momentum H is
described by

= + + + +H H H H H HB go gi ws (1)

with

=H I[ ]B s /B N (2a)

=
=

H I
n

[ ]go go
j 1

/ojG N

(2b)

=
=

H I
n

[ ]gi gi
j 1

/ijG N

(2c)

=
=

H I
n

[ ]ws ws
j 1

/jW N

(2d)

=H QT (2e)

where

= + ĝoj oj/ /ojG N B N (3a)

= + +g gˆ ˆoj oj ij ij/ /ijG N B N (3b)

= + + +g g sˆ ˆ ˆoj oj ij ij j j/ /jW N B N (3c)

and is the inertia tenso I[ ]s r of a spacecraft (including the DGVSCMGs as
point of masses) about the overall spacecraft center of mass and /B N is

Fig. 1. ETS-VIII by JAXA [3].

Fig. 2. JUNO by NASA [5].

Fig. 3. j-th DGVSCMG.
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the inertial angular velocity of the spacecraft. I[ ]gi and I[ ]go are the
moment of inertia tensors of the DGVSCMG about the inner or outer
gimbal axes respectively; I[ ]ws is the moment of inertia tensor of the
wheel about the spin axes; and j is the j-th wheel spin rate, ij or oj is
the inner or outer gimbal angle. In this flexible model, m elastic modes
are considered, with Rm the modal coordinate vector and ×Q Rm 3

the coupling matrix between flexible and rigid dynamics. The total
inertia tensor J[ ] of a spacecraft including n DGVSCMGs is given by

= + + +J I I I I[ ] [ ] [ ] [ ] [ ].s go gi ws (4)

Note that I[ ]s
B , I[ ]gooG , I[ ]giiG and I[ ]wsiG are constant matrices. The

inertia tensor J[ ] varies with time as seen by the body frame, since
I[ ]go

B , I[ ]gi
B and I[ ]ws

B vary with time as follows:

= I[ ] [ ][ ]I o go o
T

[ ]go
oB BG BGG (5)

= I[ ][ ] [ ][ ] [ ]I o o i go o i
T

o
T

[ ]gi
iB BG G G G G BGG (6)

= I[ ][ ] [ ][ ] [ ] ,I o o i ws o i
T

o
T

[ ]ws
iB BG G G G G BGG (7)

where the notation [ ]1 2A A defines the direction cosine matrix (DCM)
that the 2A frame orientation is related to the 1A frame orientation. The
rotation matrix [ ]1 2A A maps a vector with components taken in the 2A

frame into a vector with components in the 1A frame. The EOM of a
flexible spacecraft follows from Euler's equation:

=H L, (8)

where the vector L represents the sum of all the external torques ex-
perienced by the spacecraft. Substituting Eq. (1) into the LHS in Eq. (8)
yields

+ + + + =H H H H H L.B go gi ws (9)

In the following development, the shorthand notation = /B N is
used to make the equation description more compact. Similarly, the
definitions of the gimbal frame angular velocities and the wheel spin
frame angular velocity definitions are shortened such as = go/oG N ,

= gi/iG N and = ws/W N , respectively. Taking the inertial time
derivative of the first term of the LHS in Eq. (9) leads to

= + ×H I I[ ] [ ] .B s s (10)

Note that the notation ×x denotes the following skew-symmetric
matrix:

= =×x x
x x

x x
x x

x x x:
0

0
0

, [ ] .T
3 2

3 1

2 1

1 2 3

(11)

The second term of the LHS in Eq. (9) is related to the outer gimbals
of the DGVSCMGs.

= + + +×

=

×H G Gn I I
n

I[ ] [ ]( ¨ ( )) ([ ] ),go go go go o go o
j

goj go goj
1 (12)

where = … R[ , , ]o o on
T n

1 and = … ×G g g R[ ˆ , , ˆ ]go o on
n

1
3 are the outer

gimbal angle vector and the outer gimbal axes matrix, respectively. The
third term of the LHS in Eq. (9) is related to the inner gimbals of the
DGVSCMGs.

= + + + + +

+

× ×

=

×

H G G G G G Gn I I

n
I

[ ] [ ]( ¨ ¨ ( ) ( )

[ ] ,

gi gi gi go o gi i go o gi i go o gi i

j
gij gi gij

1 (13)

where = … R[ , , ]i i in
T n

1 and = … ×G g g R[ ˆ , , ˆ ]gi i in
n

1
3 are the inner

gimbal angle vector and the inner gimbal axes matrix, respectively. The
fourth term of the LHS in Eq. (9) is related to the wheel spin rates of the
DGVSCMGs.

= + + +

+ + + + +

+ +

× ×

×

=

×

H G G G

G G G G G G

G G

n I I

n
I

[ ] [ ]( ¨ ¨

( ) ( ) ( )

( ) ( )) ([ ] ),

ws ws ws go o gi i ws

go o gi i ws go o gi i ws

gi i ws
j

wsj ws wsj
1 (14)

where = … R[ , , ]n
T n

1 is the wheel spin rate vector and
= … ×G s s R[ ˆ , , ˆ ]ws n

n
1

3 is the matrix of the spin axes. The fifth term of
the LHS in Eq. (9) is related to the flexible dynamics of a spacecraft.

= + ×H Q Q¨ .T T (15)

Finally, Eq. (9) is expanded to form the final spacecraft/DGVSCMGs
kinetic equations of motion:

= + +

+ + +

+ + + + +

+ + +

+ +

+

×

× ×

×

× × ×

=

× × ×

×

G G G G

G G G G

G G G G G G

G G G G G

Q

Q L

J I I

I

I
n

I I I

[ ] [ ]( ¨ ( )) [ ]( ¨ ¨

( ) ( ) ( ))

[ ]( ¨ ¨ ( )

( ) ( ) ( ) ( )) [ ]

( ([ ] ) ([ ] ) ([ ] )) ¨

.

go go o go o gi go o gi i

go o gi i go o gi i

ws go o gi i ws go o gi i ws

go o gi i ws gi i ws s

j
wsj ws wsj gij gi gij goj go goj

T

T

1

(16)

2.2. Modal equation of flexible structures

The modal equation for flexible structures of a spacecraft is de-
scribed as follows:

+ + + =C D Q¨ 0, (17)

and the damping matrix C and the stiffness matrix D are given by

= …C diag{2 , ,2 }n nm1 1 1 (18)

= …D diag{ , , }.n nm1
2 2 (19)

Note that ni is the natural frequency, and i is the modal damping.
( i m1 )

2.3. Kinematics

The quaternion set for attitude descriptions consists of a vector part
and a scalar part. Given the principal rotation axis =ˆ [ ]x y z

T with
=ˆ ˆ 1T and the rotation angle , the quaternion (Euler Parameters) is

(are) defined by

= =q q
q :

ˆ sin

cos
,

4

2

2 (20)

with the constraint:

= + =q q ˆ ˆ sin
2

cos
2

1.T T 2 2
(21)

To formulate the attitude tracking problem of a spacecraft, the error
quaternion =q q qe d

† must be evaluted, where q denotes the current
quaternion, qd denotes the desired quaternion, and † refers to the
conjugate operation. The kinematics equation is given by

= =
+ ×q

G q G q
I q

qq
q1

2
( ) , ( ): .e

e
e e

e e

e
T

4

4 3

(22)

2.4. LPV model for 3-axis attitude control

The spacecraft considered contains two parallel DGVSCMGs that
have two parallel outer gimbal axes fixed to the spacecraft body de-
picted as in Fig. 4. In this case, the direction matrices in Eq. (16) are
given by
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= =

=

G G G
0 0
0 0
1 1

,
sin sin

cos cos
0 0

,

cos cos cos cos
cos sin cos sin

sin sin
.

go gi

o o

o o ws

i o i o

i o i o

i i

1 2

1 2

1 1 2 2

1 1 2 2

1 2 (23)

Here, a linear parameter-varying (LPV) model for 3-axis attitude
control is introduced. By using a Jacobian linearization of Eq. (16)
around the equilibrium point ( = 0eeq , = 0eq , = 0ieq , = 0oeq ) and
the vector part in Eq. (22) around the equilibrium point ( =q 0e ,

=q 1e4 ), the LPV model of a flexible spacecraft with DGVSCMGs is
described as follows:

= + +A Bu Ew( ) (24)

=q I1
2e 3 (25)

where

= ×A J I( ) [ ] [ ]( ) ,ws
1 (26)

=B J I[ ] [ ],ws
1 (27)

with

= G ,s (28)

Ew is a disturbance term that includes the modal terms ×Q Q¨,T T ,
the orbital disturbance term, and model error, such as uncertainty in
the spacecraft inertia matrix J[ ]. The control input u is given as follows:

=u B u (29)

with

=B F F F[ ],ws gi go (30)

=u ,i

o (31)

where u is the actuator input vector. This is called the steering law of
DGVSCMGs. Using this steering law, the DGVSCMG system can avoid
singularities. Note that the Jacobian matrix B is constructed by

=F
cos cos cos cos
cos sin cos sin

sin sin
,ws

i o i o

i o i o

i i

1 1 2 2

1 1 2 2

1 2

=F
cos cos cos cos
cos sin cos sin

sin sin
,ws

i o i o

i o i o

i i

1 1 2 2

1 1 2 2

1 2

=F
cos sin cos sin

cos cos cos cos
0 0

.go
i o i o

i o i o

1 1 1 2 2 2

1 1 1 2 2 2

Note that Fws, Fgi and Fgo are the torque direction matrices of wheel
spin rate, inner gimbal rotation and outer gimbal rotation, respectively.

Combining the linearlized dynamics in Eq. (24) and kinematics in
Eq. (25), the state-space representation for 3-axis attitude control is
given as follows:

= + +q
A

I q
B u E w

( ) 0
0 0 0 .

e e1
2 3 (33)

Setting the state variable =x q: [ ]e
T

e
T T , the state-space representa-

tion of Eq. (33) is rewritten as follows:

= + +x A x B u E w( ) ,e e e (34)

where

=A
A

I
( ):

( ) 0
0

,e 1
2 3

=B B: 0 ,e

=E E: 0 .e

3. Controller synthesis

In this section, first an attitude controller for 3-axis attitude control
is designed via LPV control theory. Then, the aimed attitude and vi-
bration controller is constructed using dynamic inversion (DI).

3.1. Gain-scheduled attitude controller

A simple classical controller like a Lyapunov function-based con-
troller always guarantees overall stability of attitude control. However,
the closed-loop control performance is not necessarily acceptable.
Therefore in this paper, an optimal GS controller for 3-axis attitude
control is introduced to guarantee both overall stability and control
performance and also robustness to orbital disturbances, model un-
certainties and flexibility of the paddles or antennas. The generalized
plant of Eq. (34) for control design is given as follows:

= + +
= +

x A x B u E w
z Cx D u

( )e e e

(36)

where the coefficient matrix set (C D, ) is selected such that it satisfies
the condition =C D 0T , >D D 0T , and where w and z are the dis-
turbance input vector and the performance output vector for the LPV
model in Eq. (34), respectively. For this plant, the state-feedback GS
controller:

=u K x( ) (37)

is designed. With full state feedback using the designed attitude con-
troller, the angular velocity of the spacecraft, the inner/outer gimbal
angles, and the wheel spin rates are needed to determine the required
input, and these measurements can be provided by the gyro sensor (or
estimated value coming from a Kalman filter) and tachometers in the
actuators. The LPV model and the GS controller are expressed by the
following polytopic representation:

=
=

A A
p

( ) ( ) ,e
i

i ei
1 (38)

Fig. 4. Two parallel DGVSCMGs' allocation.
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=
=

K K
p

( ) ( ) ,
i

i i
1 (39)

=
=

p
( ) 0, ( ) 1,i

i
i

1 (40)

where p denotes the number of vertices, in this case, p is equal to
=8 ( 2 )3 . λ is the polytopic coefficient. Details regarding the determina-

tion of λ are described in Ref. [20]. The matrices Aei and Ki are de-
termined by the combination of the maximum and minimum values of
the scheduling parameters parameterized by ,o i, and . Note that
the spacecraft inertia matrix J[ ] is assumed to be the initial condition as
a constant matrix in the controller design. Let us introduce the fol-
lowing mixed H H/2 LMI problem [7]:

Zinf [Trace ( )] subject to
W X Z, ,i (41a)

> <0, 0,H H i2 2 (41b)

< 0,H i (41c)

i pfor all 1 ,

where

=
X

E Z ,H
e
T2

= +A X B W
CX D W I

( ) (•) ,H i
ei e i

T

i
2

=
+A X B W

CX D W I
E I

( ) (•)

0
,H i

ei e i
T

i

e
T

Eqs. (41a) and (41b) guarantee the 2H performance, and Eq. (41c)
gives the H constraint. Using the optimal solution set (X W, i ) solving
the H2 and H problems simultaneously in Eq. (41), the extreme con-
trollers Ki at each vertex of the operation range are given by

=K W X i p, 1 .i i
1 (42)

Then, the GS controller is constructed by substituting Eq. (42) into
Eq. (39). Note that the common Lyapunov solution >X 0 was used in
past GS controller design and resulted in conservatism. As an alter-
native, the post-guaranteed LMI method [10] is used, in which the
distinct Lyapunov solutions >X 0i are adopted. By using this method,
the mixed H H/2 LMI problem can be described as follows:

Zinf [Trace ( )] subject to
W X Z

i
, ,i i i (43a)

> <0, 0,H i H i2 2 (43b)

< 0,H i (43c)

i pfor each 1 ,

where

=

= +

=
+

X
E Z

A X B W
CX D W I

A X B W
CX D W I

E I

' ( ) (•)

( ) (•)

0
.

H i
i

e
T

i

H i
ei i e i

T

i i

H i

ei i e i
T

i i

e
T

2

2

Using the optimal solution set (X W,i i ) to the problem of Eq. (43),
less conservative extreme controllers can be obtained. These extreme

controllers are given by

=K W X i p, 1 .i i i
1 (44)

By using these extreme controllers, a GS controller is again con-
structed as in Eq. (39). In order to guarantee overall stability and
control performance over the entire operational range, we seek a
common Lyapunov solution >X 0c that satisfies the following LMIs
[10]:

Zinf [Trace ( )] subject to
X Z,c (45a)

> <0, 0,H c H i2 2 (45b)

< 0,H i (45c)

i pfor all 1 ,

where

= X
E Z

,H c
c
T2

=
+A B K X

C D K X I
'

( ) (•)
( )

,H i
ei e i c

T

i c
2

=
+A B K X

C D K X I
E I

( ) (•)
( )

0
.H i

ei e i c
T

i c

e
T

3.2. Attitude and vibration controller

To attain both attitude and vibration control, a vibration controller
is designed. From Eq. (17), the state-space representation for vibration
control is given as follows:

= + +C D
I

Q E w
¨

0 0 0 (46)

or

= + +x A x B E w ,e e e (47)

where

=x : [ ]T T T (48)

with

= = =A C D
I B Q E E: 0 , :

0
, :

0
.e e e

(49)

The generalized plant for Eq. (47) is defined as follows:

= + +
= +

x A x B E w
z Cx D

e e e

(50)

where the coefficient matrix set (C D, ) is selected such that it satisfies
the condition =C D 0T , >D D 0T , and where w and z are the dis-
turbance input vector and the performance output vector for the LPV
model in Eq. (47), respectively. For this plant, the state-feedback GS
controller:

= K x (51)

is designed. Let us introduce the following mixed H H/2 LMI problem
again to guarantee the robustness to parameter perturbations (such as
model error of the paddle or antenna and sensor error) as follows:

Zinf [Trace ( )] subject to
W X Z, , (52a)

> <0, 0,H H2 2 (52b)
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< 0,H (52c)

where

=
X

E Z
,H

e
T2

= +A X B W
CX D W I

( ) (•) ,H
e e

T
2

=
+A X E W

CX D W I

E I

( ) (•)

0

.H

e e
T

e
T

Using the optimal solution set X W, , the optimal controller K is
given by

=K W X .1 (53)

Note that in Eq. (50), the control input given by is the differential
of the upper part of the state vector in the generalized plant for attitude
control in Eq. (36). However, the differential of the angular velocity is
generally not available as a control input. To utilize this parameter as a
control input, we use the DI technique [13–16]. Using the desired an-
gular acceleration ref coming from the vibration controller in Eq. (51),
the desired control input for vibration control uv is to be given by the
following DI system:

=u B A( ( ) ),v
1

ref (54)

which is derived from Eq. (24). Combining the GS attitude controller in
Eq. (37) and the vibration controller in Eq. (54), the attitude and vi-
bration controller u is given by

= +u u W u ,v (55)

where the weighting matrix W is given by

= >W g g g g idiag{ , , }, 0, 1 3.i1 2 3 (56)

Substituting Eqs. (37) and (54) into Eq. (55), while substituting Eq.
(51) into Eq. (54), the controller in Eq. (55) to attain both attitude and
vibration control can be rewritten as

= + +u K W B A K q W B K K( ( ) ( )) ( ) ( ),d p e p d
1 1 (57)

where

= =K K K K K K( ) [ ( ) ( )], [ ]d p d p (58)

with × × ×K K KR R R( ) , ( ) ,d p d
3 3 3 3 3 3 and ×K Rp

3 3. With full
state feedback using the designed attitude and vibration controller, in
addition to the case of the attitude control only, the modal coordinate
vector is needed for the control, and the modal coordinate vector can be
provided by the displacement or strain sensors in the flexible structures.

4. Steering law design

CMGs have a singularity problem. In this section, a singularity
avoidance steering law for a spacecraft with DGVSCMGs is proposed.
The steering law considered in this paper is rewritten as follows:

=u B u . (59)

To obtain the actuator input u , the inverse matrix of B is con-
sidered.

4.1. Moore-Penrose steering law

The general solution of Eq. (59) is given by

=u B u,† (60)

with

=B B B B( ) .T T† 1 (61)

This steering law, known as the “Moore-Penrose steering law”, is
often used. However, this steering law can not avoid CMG singularities.

4.2. Singularity robustness steering law

To avoid these singularities, a singularity robustness (SR) steering
law [19] is proposed as follows:

=u B u, (62)

with

= +B B B B I( ) ,T T
3

1 (63)

where α is an SR parameter that is a positive scalar to be properly se-
lected. In this paper, a sigmoid function as an SR parameter is in-
troduced as follows:

=
+

( )
( )

1 exp

1 exp
,m

m

1

1
(64)

with a singularity measurement

= B Bm det( ) ,T (65)

when m is close to 0, the system falls into the singularity. The parameter
κ is a positive scalar. Although the control input can be calculated by
using this SR steering law, it is not guaranteed to steer gimbal angles
away from their singularities.

4.3. SR steering law with null motion

To steer gimbal angles away from their singularities, an SR steering
law with null motion coming from a redundancy in a DGVSCMG system
is proposed. A general solution of an SR steering law includes two terms
constructed by the particular solution and the homogeneous solution as
follows:

= +u B u W N (66)

with

= … >W w w w idiag{ , , }, 0, 1 6,i1 6 (67)

=N I B B t t R[ ] ,6
6 (68)

where the matrix N is the kernel space of B and W is the weighting
matrix. When t 0, the term W N' in Eq. (66) provides null motion of
the DGVSCMG steering law. To steer gimbal angles toward a preferred
configuration, the vector t is determined by

=t u u* (69)

where =u [ ]T
i
T

o
T T is the actuator parameter set vector. The desired

actuator parameter set vector u * is approximately selected to realize a
desired configuration and to avoid wheel saturation. By using this
steering law, the control input can be calculated, and the gimbal angles
can be steered toward a preferred configuration away from singula-
rities. In this paper, the steering law in Eq. (66) with Eqs. (68) and (69)
is adopted.

5. Numerical simulation

This section presents the attitude maneuver numerical simulations
by using the attitude controller in Eq. (37) and combined attitude and
vibration controller in Eq. (57). As an example of a flexible spacecraft,
the thermoelectric outer planet spacecraft (TOPS) as shown in Fig. 5 is
considered [1]. The flexible parameters characterizing TOPS are re-
presented by the following coupling matrix Q in Kg m1/2 , damping
matrix C and stiffness matrix D:
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=Q
9.4733 15.5877 0.0052
0.5331 0.4855 18.0140

0.5519 4.5503 16.9974 (70)

=C
0.0059 0 0

0 0.0075 0
0 0 0.0097 (71)

=D
0.5476 0 0

0 0.5625 0
0 0 0.5776

,
(72)

with the natural frequency in rad/s

= = =0.7400, 0.7500, 0.7600,n n n1 2 1 (73)

and the modal dampings

= = =0.0040, 0.0050, 0.00641 2 3 (74)

associated to the first 3 natural modes ( =m 3). Inertia tensor I[ ]s
B is

given by

=
1543.9 2.3 2.8

2.3 471.6 35
2.8 35 1713.3

kg m .I[ ]
2

sB
(75)

The initial modal coordinate vector and the time derivative of the
modal coordinate vector is = =(0) [0 0 0] , (0) [0 0 0]T T , respectively.

The DGVSCMGs’ parameters are given in Table 1. The wheel sa-
turation in DGVSCMG is = ±500rad/s and the limits of the wheel
input is = ±5rad/s2. The limits of the inner/outer gimbal input is

= ±1 rad/si o/ .
The disturbance torque [21] experienced by aerodynamics, solar

pressure, magnetic torque, and other environmental factors is assumed
to be

=
× + ×
× + ×
× + ×

L
nt
nt
nt

4 10 2 10 sin( )
6 10 3 10 sin( )
3 10 3 10 sin( )

N m,

6 6

6 6

6 6 (76)

where n rev/day denotes the orbital frequency. A near-polar orbital
satellite is considered in this simulation [22] in this case,

=n 14.57788549.
The controller design parameters C e and D e of the GS controller for

the 3-axis attitude control in Eq. (37) and the disturbance coefficient
matrix Ee are given as follows:

=
×

× = × =
×

×

× ×

×

×
C

I
I D I E I10 0

0 2
0 0

, 0
0.01 , 0 ,e e e

3 3 3

3 3 3

3 3 3 3

6 3

3

3

3 3
(77)

the scheduling parameters are given in =i700 700, 1, 2, 3i .
The controller design parameters C e and D e of the vibration controller
in Eq. (51) and the disturbance coefficient matrix Ee are given as fol-
lows:

= = =
×

×

× ×

×

×
C

I
I D I E I0

0
0 0

, 0 , 0 ,e e e

3 3 3

3 3 3

3 3 3 3

6 3

3

3

3 3
(78)

the weighting matrix of the combined attitude and vibration controller
W is given by

=W
0.06 0 0

0 0.06 0
0 0 0.06

.
(79)

Steering law to avoid the singularities in Eq. (66) with Eqs. (68) and
(69) is adapted. The design parameter for the steering law is as follows:

= = =W u

1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

, 10, [250 250 0 0 0 /2]T*

(80)

In this paper, the gain of the weighting matrices in Eqs. (79) and
(80) are determined by trial and error.

5.1. Large maneuver simulation

In this subsection, the large attitude maneuver is considered. The
initial/desired attitude parameter and the angular velocity are given in
Table 2. This maneuver [11] corresponds to a rotation in Eq. (20) as
follows:

=ˆ [ 2/ 14 1/ 14 3/ 14 ]T (81)

= 8/9 (82)

This maneuver rotates the spacecraft 160 around the principal ro-
tation axis ˆ . This simulation also considers the model uncertainty J[ ]
on the inertia tensor J[ ]. Therefore in the numerical simulation, the
inertia tensor J[ ] is given by +J J[ ] [ ] with =J J[ ] 0.2[ ], since the
oscillation of the flexible solar battery paddles or flexible parabolic
communication antenna prevent the spacecraft inertia tensor from

Fig. 5. TOPS by NASA [1].

Table 1
DGVSCMGs’ parameters.

Parameter Value Unit

i Iws[ ]G diag[0.0042 0.0042 0.0042] kgm2

i Igi[ ]G diag[0.001 0.001 0.001] kgm2

o Igo[ ]G diag[0.001 0.001 0.001] kgm2

(0) [200 300] rad/s
(0)i [0 0] rad
(0)o [ /4 /2] rad

Table 2
Attitude simulation parameters.

Parameter Value Unit

q (0) [0 0 0 1]T −
qd [ 0.5264 0.2632 0.7896 0.1736]T −

(0) [[0.06 0.05 0.08]T rad/s
d [0 0 0]T rad/s
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being known exactly in a practical situation. This inertia tensor varia-
tion can heavily affect spacecraft attitude, which invariably presents a
challenge to the spacecraft attitude control system [12].

Figs. 6–8 show the comparison of the simulation results by using
two controllers. Black lines and green lines show the simulation results
by using the GS attitude controller in Eq. (37) that only considers at-
titude control and the combined attitude and vibration controller in Eq.
(57) that considers both attitude and vibration control, respectively.

The time history of the angular velocity of a spacecraft and attitude
parameters (quaternions) are shown in Fig. 6. From this figure, the 3-
axis attitude control have been completely attained. Fig. 8 shows the
time history of the modal vector. This figure demonstrates the effec-
tiveness of the proposed combined attitude and vibration controller,
since the response of the modal displacements is improved and the
maximum amplitude value of the result by proposed controller is less
than half of that by the attitude controller. Fig. 8 shows controller input
results. This figure shows the amount of control input coming from
proposed controller is almost the same as attitude controller.

Figs. 9 and 10 show the simulation results of the DGVSCMG

rotational motion by using the singularity avoidance steering law in Eq.
(66). Subfigures (a) and (b) in Fig. 9 show the wheel input and the
gimbal input, respectively. From these subfigures, DGVSCMG input
does not exceed limit by the torque limiter. Wheel and gimbal motion in
subfigures (c) and (d) in Fig. 9 show that the wheel angular velocity and
the gimbal angles converge to the preferred DGVSCMG parameter set u *

and also the singularity measurement (when m is close to 0, the system
falls into the singularity) go away from the singularity statement as in
Fig. 10.

5.2. Monte Carlo simulation of the rest-to-rest maneuver

In this subsection, a monte carlo (MC) simulation of a rest-to-rest
maneuver is considered, which is the initial attitude parameter

=q (0) [0 0 0 1]T and initial/desired angular velocity =(0) [0 0 0]T

rad/s, = [0 0 0]d
T rad/s. The desired attitude parameter qd can be

represented by the spherical coordinate system as follows:

Fig. 6. Spacecraft attitude motion.

Fig. 7. Modal.

Fig. 8. Controller input.
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=ˆ
sin cos
sin sin

cos (83)

Note that the parameters θ and ϕ represent the angular coordinates
as in Fig. 11. In this MC simulation, 614 ( , ) sets
(0 180, 0 360 deg) of the combination at 10 deg intervals
are adopted. The other simulation parameters are analogous to the
parameters as in Subsection 5.1. Table 3 shows the 614-run mean va-
lues of the vibration function J for the modal of the vibration as fol-
lows:

= =x x xJ t d( ) [ ]
t T T T

T

0

f
(84)

Note that the terminating time tf of the J norm is considered as
200 s simulation time. Figs. 12 and 13 show the 10, 90 and 180° rota-
tion simulation results by using the attitude controller and the proposed
attitude and vibration controller, respectively. These figures show vi-
bration surfaces, where the direction of the vector from the origin of the

coordinate axes to the surface represents the direction of the principal
rotation axis ˆ in Eq. (83), and the magnitude of the vector represents
the value of the vibration function in Eq. (84) as in Fig. 11.

From Figs. 12 and 13, when the rotation is large, the vibration
surface swell outward in the ± y direction of the principal rotation axis
ˆ and the shapes are almost symmetric with respect to the y axis. This

Fig. 9. DGVSCMGs' rotation.

Fig. 10. Singularity measurement.

Fig. 11. MC simulation.

Table 3
Mean values of the vibration function.

Att controller Att/Vib controller

= 10 deg ×5.2621 102 0.2599
= 90 deg ×5.4831 102 2.0979
= 180 deg ×5.5597 102 4.7161
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means the rotation around the y axis causes a large vibration in this
TOPS spacecraft. This generally depends on the spacecraft parameters
such as inertia tensor J[ ], the coupling matrix Q the set of actuator, and
the simulation parameters such as the initial wheel spin rates and
gimbal angles of the DGVSCMGs. The volume of the vibration surfaces
for the attitude and vibration controller is less than that for the attitude
controller and the surfaces by the proposed controller are bounded and
very smooth. From Table 3, the oscillation of a flexible spacecraft by
using the proposed attitude and vibration controller is also suppressed
100 times less than that by using the attitude controller. These results
imply that rest-to-rest maneuver at any rotation around an arbitrary
axis are successfully achieved while suppressing the oscillations by the
controller in Eq. (57). Therefore, the effectiveness of the proposed at-
titude and vibration controller is demonstrated from these MC simu-
lations.

6. Conclusion

In this paper, the dynamics and the linear parameter-varying (LPV)
model of a flexible spacecraft equipped with multiple double-gimbal
variable-speed control moment gyros (DGVSCMGs) are explored and
developed, respectively. A gain-scheduled (GS) controller for 3-axis
attitude control is designed by the post-guaranteed linear matrix in-
equalities (LMIs) method with H H/2 constraints. Based on the dy-
namic inversion (DI) technique, a combined controller for attitude and
vibration control is obtained. To avoid the singularity problem of
DGVSCMGs, a singularity robustness (SR) steering law with null motion
is applied with a sigmoid function as an SR parameter. Monte Carlo
(MC) simulations demonstrate that the volume of the vibration surface
for the combined controller is less than that for the attitude controller.
Future work will consider translational motion of the center of mass of

Fig. 12. Vibration surface (Att).
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the flexible structures and a gain tuning method for the combined at-
titude and vibration controller and the singularity avoidance steering
law.
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