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This Paper addresses an integrated power/attitude control system for a spacecraft with two double-gimbal

variable-speed controlmoment gyroscopes. Double-gimbal variable-speed controlmoment gyroscopes are of interest

because a single device is a three-degree-of-freedom attitude actuator. A double-gimbal variable-speed control

moment gyroscope has two gimbal axes and one variable-speedwheel. A primary advantage of adopting this actuator

is to reduce the number of actuators, which leads to reducing the total mass and volume allocation within the

spacecraft. In this Paper, first, the dynamical equations of motion of a spacecraft equipped with multiple double-

gimbal variable-speed control moment gyroscopes are developed. Then, two types of steering laws are proposed for

two double-gimbal variable-speed control moment gyroscopes. These steering laws attain three-axis attitude control

and power tracking by using the wheels as energy storage devices while considering both singularity avoidance and

wheel spin equalization. The controller design applies multiobjective gain scheduling with linear parameter-varying

control theory, which can evaluate both optimality and robustness. Finally, numerical simulation examples of the

orbiting spacecraft attitude tracking problem demonstrate the effectiveness of the proposed gain-scheduling

controller and two steering laws for the integrated power/attitude control system.

Nomenclature

B = body-fixed frame
Ggi, Ggo = direction matrices of inner/outer gimbal axes of

double-gimbal variable-speed control moment
gyroscopes

Gi, Go = inner/outer gimbal axes frame
Gws = direction matrix of spin axes of double-gimbal

variable-speed control moment gyroscopes
H = total angular momentum, N ⋅m ⋅ s
HB = angular momentum of the spacecraft excluding

double-gimbal variable-speed control moment
gyroscopes, N ⋅m ⋅ s

Hgi, Hgo = angular momentum of inner/outer gimbal,N ⋅m ⋅ s
Hws = angular momentum of wheel, N ⋅m ⋅ s
�Is� = inertia matrix of the spacecraft including double-

gimbal variable-speed control moment gyroscopes
as point of masses, kg ⋅m2

�Igi�, �Igo� = inertia matrices of inner/outer gimbal axes, kg ⋅m2

�Iws� = inertia matrix of wheel spin axes, kg ⋅m2

�J� = inertia matrix of the spacecraft including double-
gimbal variable-speed control moment gyroscopes,
kg ⋅m2

L = total external torque, N ⋅m
N = inertial frame
n = number of double-gimbal variable-speed control

moment gyroscopes
PRW = power of reaction wheels, W
TRW = kinetic energy of reaction wheels, J
u = control torque, N ⋅m
uCMG = output torque of control moment gyroscopes,N ⋅m
uRW = output torque of reaction wheels, N ⋅m
W = spin axes frame
δi, δo = inner/outer gimbal angle vector, rad
ρ = scheduling parameter vector
σ, σe = modified Rodrigues parameters and error modified

Rodrigues parameters
Ω = wheel spin rate vector, rad∕s
ω = angular velocity vector of the spacecraft, rad∕s

I. Introduction

S PACECRAFT components such as sensors, attitude actuators,
and batteries are only provided within limited mass and volume

allocation in the spacecraft design process. The size of the batteries or
the number of attitude actuators is strictly constrained, particularly
when mission-specific equipment must occupy most of the inner
space of the spacecraft. Spacecraft usually have chemical batteries to
store the energy generated by the solar panel. On the other hand,
chemical batteries have problems such as large weight or stringent
requirements such as required temperature range or resistance to
cosmic radiation. As an alternative, using high-speed flywheels as
dual-function devices for both attitude actuation and energy storage
have been suggested [1,2]. Because many spacecraft already have
flywheels for the purpose of attitude stabilization or pointing/three-
axis attitude control, mass and volume within the spacecraft may be
conserved by reducing the mass and volume allocation of the
batteries and using the flywheels as dual-function devices. This
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concept is called the integrated power/attitude control system
(IPACS) [3–6].
The satellite dynamics are generally described through a set of

nonlinear differential equations. Most recent studies about attitude
control used nonlinear controllers such as Lyapunov function-based
controllers [7,8]. With Lyapunov function-based controllers, the
overall stability of attitude control is always guaranteed. However,
the closed-loop control performance is not discussed in detail. To study
such control performance, a linear parameter-varying (LPV) control
theory [9–12] is applied to the attitude control problems [13,14].Using
the LPV control theory, the spacecraft dynamics are modeled as an
LPV system to avoid difficulties arising from nonlinearities in the
dynamics. A gain-scheduled (GS) controller is applied to this model
using linearmatrix inequalities (LMIs). To solveLMIs simultaneously,
a multiobjective GS controller for evaluating both optimality and
robustness can be easily designed [15,16].
There are a variety of types of momentum exchange devices

(MEDs) that have flywheels. The primary benefit of using such
MEDs is their availability for long-term operation without using any
fuel as thrusters do.MEDs include reactionwheels (RWs) and control
moment gyroscopes (CMGs). RWs are often used for spacecraft
attitude control [17,18]. Because RWs cannot provide large torques,
CMGs are often used for missions that demand high-speed attitude
maneuvering abilities. Single-gimbal CMGs (SGCMGs) are themost
common type of CMG devices. Here, the rotor is only able to gimbal
about a single body-fixed axis to produce the desired control torque
[19–21]. Single-gimbal variable-speed CMGs are a hybrid system
that has two functions of a RWand an SGCMG. The extra degree of
freedom in thewheel spin rate enables avoiding the classical SGCMG
singularities at the cost of additional power and large rotor speed
changes [22–25]. On the other hand, a double-gimbal VSCMG
(DGVSCMG) has two gimbals and a variable-speed wheel. A
DGVSCMGcan generate three-dimensional torques. This advantage
enables three-axis attitude control with one DGVSCMG [26–28].
However, a wheel mechanical failure is serious for a DGVSCMG
device. Once its wheel has failed, a DGVSCMG is unable to generate
torque. Once its gimbals have failed, high-speed attitude maneuver
cannot be attained because the torque from the variable-speed wheel
is much smaller than any other torques produced by gimbaling. To
avoid such situations, it is convenient to introduce redundancy. In this
context, there are few studies inwhich the dynamics and steering laws
are provided for two parallel DGVSCMGs that have two parallel
outer gimbal axes fixed to the spacecraft body. Cui and He [29]
discussed the singularity avoidance steering law with a mode
switching method based on singularity measurement. Sasaki and
Shimomura [30] showed the fault-tolerant operating method for two
parallel DGVSCMGs while switching between a two-Double-
gimbal CMG (DGCMG) mode and a one-DGVSCMG mode.
The IPACS of a spacecraft with multiple RWs has been studied

previously [3]. Moreover, some research [4–6] adapts the IPACS to
spacecraft withmultipleVariable-speedCMG (VSCMGs). However,
there has been no previous study to consider the IPACS of a
spacecraft with DGVSCMGs. This Paper considers the problem of a
spacecraft with two parallel DGVSCMGs. First, the dynamical
equation of motion (EOM) of a spacecraft equipped with multiple
DGVSCMGs is developed. Based on the developed dynamics, an
LPVmodel of a spacecraft with two parallel DGVSCMGs is obtained
and the GS controller under mixedH2∕H∞ constraints is designed to
guarantee optimality and robustness at the same time.Next, two types
of steering laws for the IPACS are proposed while considering both
singularity avoidance andwheel spin equalization. Finally, numerical
simulation examples of the orbiting spacecraft attitude tracking
problem demonstrate the effectiveness of the proposed GS controller
and two steering laws for the IPACS.

II. Equation of Motion

The spacecraft considered in this Paper is assumed to be a rigid
body and contains multiple DGVSCMG devices as modeled in
Fig. 1. The body-fixed frameB is represented by a set of unit vectors:
x̂B, ŷB, and ẑB. The inertial frame is given byN . The symbols Go, Gi,

and W denote the outer gimbal axis frame, the inner gimbal axis
frame, and the wheel spin axis frame, respectively. The basis vectors
of Go, Gi, andW are defined as in Fig. 2. Note that the outer gimbal
frame Go is oriented such that the ẑgo is aligned with the outer gimbal
rotation axis ĝo, the inner gimbal frameGi is oriented such that the ŷgi
is aligned with the inner gimbal rotation axis ĝi, and the vector x̂w in
the wheel spin frameW is the same direction toward the wheel spin
axis ŝ. Assuming that the flywheel is symmetric about the inner
gimbal rotation axis ĝi, the inner gimbal frame and the wheel spin
frame coincide with each other as Gi � W. The inertia matrices at
each frame are introduced. Because Go frame unit axes are aligned
with the principal outer gimbal frame axes, the jth outer gimbal
inertia matrix �Igoj� is expressed in the Go frame components as the
constant diagonal matrix:

Go �Igoj� �
Go
2
4 Igoj;x 0 0

0 Igoj;y 0

0 0 Igoj;z

3
5 (1)

Assuming that the flywheel is symmetric about the inner gimbal
rotation axis, because W �Iwsj� � Gi �Iwsj�, the jth inner gimbal frame
and wheel spin frame inertia matrices are expressed as

Gi �Igij��
Gi
2
4Igij;x 0 0

0 Igij;y 0

0 0 Igij;z

3
5; Gi �Iwsj��

Gi
2
4Iwsj;x 0 0

0 Iwsj;y 0

0 0 Iwsj;z

3
5
(2)

where Iwsj;y � Iwsj;z. Let the direction cosine matrix (DCM) �A1A2�
transform vectors written in theA2 frame into the vectors expressed
in the A1 frame. Using the DCM �BGo� and �GoGi�, the constant

Fig. 1 DGVSCMG frames and axes illustration.

Fig. 2 Definition of DGVSCMG’s frame.
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diagonal inertia matrices Go �Igoj�, Gi �Igij�, and Gi �Iwsj� are expressed
with components taken in theB frame as the time-varyingmatrices as
follows:

B�Igoj� � �BGo�Go �Igoj��BGo�T (3a)

B�Igij� � �BGo��GoGi�Gi �Igij��GoGi�T �BGo�T (3b)

B�Iwsj� � �BGo��GoGi�Gi �Iwsj��GoGi�T �BGo�T (3c)

Here, the EOM of a spacecraft with n DGVSCMGs is considered
to be expanded on the EOMof a spacecraft with a single DGVSCMG
[26]. The total inertial angular momentum H is described by

H � HB �Hgo �Hgi �Hws (4)

with

HB � �Is�ωB∕N (5a)

Hgo � �Igo�
Xn
j�1

ωGoj∕N (5b)

Hgi � �Igi�
Xn
j�1

ωGij∕N (5c)

Hws � �Iws�
Xn
j�1

ωWj∕N (5d)

where

ωGoj∕N � ωB∕N � _δojĝoj (6a)

ωGij∕N � ωB∕N � _δojĝoj � _δijĝij (6b)

ωWj∕N � ωB∕N � _δojĝoj � _δijĝij �Ωŝj (6c)

The inertia tensors of all DGVSCMGs are assumed to be identical,
and �Is� is the inertia matrix of a spacecraft (including the
DGVSCMGs as point masses) about the overall spacecraft center of
mass. Note that B�Is� is a constant matrix as seen from the B frame,
even with the offcenter DGVSCMG inertia added [26]. The vector
ωB∕N is the inertial angular velocity of the spacecraft; and ωGoj∕N ,
ωGij∕N , andωWj∕N denote the jth inertia angular velocity of the outer
gimbal, inner gimbal, and wheel, respectively. The EOM of a system
of rigid bodies follows from Euler’s equation [31] as follows:

_H � L (7)

where the vector L represents the sum of all the external torques
experienced by the spacecraft. Substituting Eq. (4) into the left-hand
side (LHS) of Eq. (7) yields

_HB � _Hgo � _Hgi � _Hws � L (8)

In the following development, the short-hand notationω � ωB∕N
is used to make the equation description more compact. Similarly,
gimbal frame angular velocity and wheel spin frame angular velocity
definitions are shortened such asωGoj∕N � ωgoj,ωGij∕N � ωgij and
ωWj∕N � ωwsj. Taking the inertial time derivative of the first term of
the LHS in Eq. (8) leads to

_HB � �Is� _ω� ω×�Is�ω (9)

where notation x× denotes the following skew-symmetric matrix:

x× ≔

2
4 0 −x3 x2

x3 0 −x1
−x2 x1 0

3
5; ∀x � � x1 x2 x3 �T (10)

The second term of the LHS in Eq. (8) is related to the outer

gimbals of the DGVSCMGs. This is shown as follows:

_Hgo �
Xn
j�1

�Gojd

dt
��Igo�ωgoj� � ω×

goj��Igo�ωgoj�
�

(11)

� �Igo�
Xn
j�1

�N d

dt
�ω� _δojĝoj� � ω×

goj��Igo�ωgoj�
�

(12)

� �Igo�
Xn
j�1

�
_ω� �δojĝoj � ω×

�
_δojĝoj

�
� ω×

goj

�
�Igo�ωgoj

��
(13)

�n�Igo� _ω��Igo�
�
Ggo

�δo�ω×�Ggo
_δo�

�
�
Xn
j�1

ω×
goj

�
�Igo�ωgoj

�
(14)

where id∕dt is used to define a frame-dependent time derivative with

respect to frame i, δo � �δo1; · · · ; δon�T ∈ Rn×1 is the outer gimbal

angle vector, andGgo � �ĝo1; · · · ; ĝon� ∈ R3×n denotes the matrix of

the outer gimbal axes. Note that �Igo� is removed from the derivative

in the second line because it is constant in the Go frame. Similarly, the

third term of the LHS in Eq. (8) is related to the inner gimbals of the

DGVSCMGs. This is shown as follows:

_Hgi � n�Igi� _ω� �Igi�
�
Ggo

�δo �Ggi
�δi � ω×

�
Ggo

_δo �Ggi
_δi
�

�
�
Ggo

_δo
�
×
�
Ggi

_δi
��

�
Xn
j�1

ω×
gij

�
�Igi�ωgij

�
(15)

where δi � �δi1; · · · ; δin�T ∈ Rn×1 is the inner gimbal angle vector,

and Ggi � �ĝi1; · · · ; ĝin� ∈ R3×n denotes the matrix of the inner

gimbal axes. The fourth term of the LHS in Eq. (8) is related to the

wheel spin rates of the DGVSCMGs. This is shown as follows:

_Hws � n�Iws� _ω� �Iws�
�
Ggo

�δo �Ggi
�δi �Gws

_Ω

�ω×
�
Ggo

_δo �Ggi
_δi �GwsΩ

�
�

�
Ggo

_δo
�
×
�
Ggi

_δi �GwsΩ
�

�
�
Ggi

_δi
�
×�GwsΩ�

�
�

Xn
j�1

ω×
wsj

�
�Iws�ωwsj

�
(16)

where Ω � �Ω1; · · · ;Ωn�T ∈ Rn×1 is the wheel spin rate vector, and

Gws � �ŝ1; · · · ; ŝn� ∈ R3×n denotes the matrix of the spin axes. The

total inertia matrix �J� of a spacecraft including n DGVSCMGs is

given by

�J� � �Is� � n
�
�Igo� � �Igi� � �Iws�

�
(17)

Note that this inertia tensor �J� is not constant if taken in the body
frameB by outer/inner gimbaling. In summary, Eq. (8) is rewritten as

the final spacecraft/DGVSCMGs kinetic equations of motion:
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�J� _ω�−�Igo�
�
Ggo

�δo�ω×
�
Ggo

_δo
��

− �Igi�
�
Ggo

�δo�Ggi
�δi�ω×

�
Ggo

_δo�Ggi
_δi
�
�
�
Ggi

_δi
�
×
�
Ggo

_δo
��

− �Iws�
�
Ggo

�δo�Ggi
�δi�Gws

_Ω�ω×
�
Ggo

_δo�Ggi
_δi�GwsΩ

�
�
�
Ggo

_δo
�
×
�
Ggi

_δi�GwsΩ
�
�
�
Ggi

_δi
�
×�GwsΩ�

�
−ω×�Is�ω

−
Xn
j�1

�
ω×

wsj��Iws�ωwsj��ω×
gij��Igi�ωgij��ω×

goj��Igo�ωgoj�
�
�L

(18)

This is the kinetic EOM of a spacecraft with multiple
DGVSCMGs.

III. LPV Model for Three-Axis Attitude Tracking

A. Linear Tracking Dynamics

This Paper deals with two parallel DGVSCMGs’ allocation
depicted as in Fig. 3. In this case, direction matrices in Eq. (18) are
given by

Ggo �

2
664
0 0

0 0

1 1

3
775; Ggi �

2
664
− sin δo1 − sin δo2

cos δo1 cos δo2

0 0

3
775;

Gws �

2
664
cos δi1 cos δo1 cos δi2 cos δo2

cos δi1 sin δo1 cos δi2 sin δo2

− sin δi1 − sin δi2

3
775 (19)

To introduce the reference angular velocity vector ωR∕N of the
reference frameR relative toN , the error angular velocityωe and the
inertial time derivative of ωe are given by

ωe � ω − ωR∕N ; _ωe � _ω − _ωR∕N (20)

By using a Jacobian linearization of Eq. (18) around the

equilibrium point (ωeeq � 0, _Ωeq � 0, _δieq � 0, _δoeq � 0) and

introducing Eq. (20), the linear EOM of a spacecraft with
DGVSCMGs is as follows:

_ωe � A�ρ�ωe � Bu� Ew (21)

where

A�ρ� � �J�−1�Iws��GwsΩ�× (22)

B � −�J�−1�Iws� (23)

Ew is the disturbance term including the model error, and u is the
control input as follows:

u �
h
Fws Fgi Fgo

i264
_Ω
_δi
_δo

3
75 (24)

with

Fws �

2
664
cos δi1 cos δo1 cos δi2 cos δo2

cos δi1 sin δo1 cos δi2 sin δo2

− sin δi1 − sin δi2

3
775;

Fgi �

2
664
−Ω1 sin δi1 cos δo1 −Ω2 sin δi2 cos δo2

−Ω1 sin δi1 sin δo1 −Ω2 sin δi2 sin δo2

−Ω1 cos δi1 −Ω2 cos δi2

3
775;

Fgo �

2
664
−Ω1 cos δi1 sin δo1 −Ω2 cos δi2 sin δo2

Ω1 cos δi1 cos δo1 Ω2 cos δi2 cos δo2

0 0

3
775 (25)

B. Linear Rigid-Body Kinematics

The spacecraft attitude is given by the orientation of the body-fixed

frame B with respect to the inertial frame N . It is known that three

kinematic parameters are enough to describe the attitude. As such

three kinematic parameters, in this Paper, modified Rodrigues

parameters (MRPs) along with their shadow set are chosen [31,32].

They are a popular nonsingular attitude description with a minimal

coordinate set by switching between the two possible MRP

descriptions. They linearize very well, which is a benefit in the

following discussion. However, other attitude coordinates could be

used here as well without impacting the results. TheMRP vector σ is
defined in terms of the Euler parameters as the transformation

σi �
βi

1� β0
i � 1; 2; 3 (26)

The inverse transformation is given by

β0 �
1 − σTσ
1� σTσ

; βi �
2σi

1� σTσ
; i � 1; 2; 3 (27)

Using the principal rotation axis vector ê and the rotation angleΦ,

MRPs are given by

σ � tan

�
Φ
4

�
ê (28)

For such MRPs, the singular points are given at Φ � �2π.
However, these singularities can be avoided by introducing the dual

MRP method that consists of the conventional MRP and the shadow

MRP [31,32]. The kinematic equation based on the error MRPs σe is
given by

_σe � H�σe�ωe (29a)

H�σe� �
1

4

h
�1 − σTe σe�I3 � 2σ×e � 2σeσTe

i
(29b)

Let us transform Eq. (29) into an LPV model. The Jacobian

linearization of Eq. (29) around the equilibrium point (ωeeq � 0,

σeeq � 0) leads to the linearized kinematics with MRPs, which is

given by

_σe ≃
1

4
ωe (30)

Fig. 3 Two parallel DGVSCMGs’ allocation.
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C. LPV Modeling

Setting the state variable x ≔ �ωT
e σTe �T , the state-space

representation of Eqs. (21) and (30) is rewritten as follows:

�
_ωe

_σe

�
�

"
A�ρ� 0
1
4
I3 0

#"
ωe

σe

#
�

"
B

0

#
u�

"
E

0

#
w (31)

which is equivalently written in a more compact formulation as

_x � Ae�ρ�x�Beu� Eew (32)

The Jacobian matrices are defined as

Ae�ρ� ≔
"
A�ρ� 0
1
4
I3 0

#
; Be ≔

�
B

0

�
; Ee ≔

�
E

0

�
(33)

with

ρ �
2
4 ρ1
ρ2
ρ3

3
5 ≔ GwsΩ �

2
4Ω1 cos δi1 cos δo1 � Ω2 cos δi2 cos δo2

Ω1 cos δi1 sin δo1 � Ω2 cos δi2 sin δo2
−Ω1 sin δi1 −Ω2 sin δi2

3
5

(34)

It seems that the number of the scheduling parameters generally
depends on the number of actuators. If it is true, it is difficult to design
the GS controller to guarantee overall stability and control
performance for a whole operating range of the LPV system because
the number of LMIs to be solved simultaneously increases
proportionally to the number of actuators. However, it is not true. By
defining the scheduling parameters adequately as in Eq. (34), one can
reduce the number of the scheduling parameters into just three,
regardless of the number of actuators. This number is the same as the
dimension of the spacecraft dynamics.

IV. Controller Design with Convex Optimization

AGS controllerK�ρ� that guarantees overall stability and achieves
mixedH2∕H∞ performance [15] for the LPVmodel as in Eq. (32) is
considered. First, the generalized plant for Eq. (32) with the
performance output vector z and the state-feedback controller are
defined as follows:

_x � Ae�ρ�x�Beu� Eew (35a)

z � Cx�Du (35b)

u � −K�ρ�x (35c)

where the coefficient matrix set (C, D) is selected such that they
satisfy the condition CTD � 0, DTD > 0. The LPV system and the
GS controller are expressed by the following polytopic
representation:

Ae�ρ� �
Xp
i�1

λi�ρ�Aei (36)

K�ρ� �
Xp
i�1

λi�ρ�Ki (37)

λi�ρ� ≥ 0;
Xp
i�1

λi�ρ� � 1 (38)

where p denotes the number of vertices. In this case, p is equal to

8�� 23� and λi�ρ� is given as in Table 1. The scheduling parameter ρi

in Eq. (34) has its upper and lower bounds, which are denoted by ρi
and ρ

i
, respectively. They are given as follows:

ρi � Ω1max � Ω2max (39)

ρ
i
� −�Ω1max � Ω2max� (40)

where jΩjj ≤ Ωjmax, j � 1, 2. Introducing interpolation parameters

αi and αi, the scheduling parameters ρi can be described as follows:

ρi � αiρi � αiρi; 0 ≤ αi; αi ≤ 1; αi � αi � 1 (41)

The extreme matricesAei, 1 ≤ i ≤ p in Eq. (36) are given by any

frozen system of A�ρ� with any combination of ρi and ρ
i
, as in

Table 1. The extreme controllers Kei, 1 ≤ i ≤ p in Eq. (37) are

designed for the extreme matrices Aei, 1 ≤ i ≤ p in Eq. (36),

respectively. In this way, the convex hull that defines a whole

operating range is constructed as shown in Fig. 4.
Let us introduce the following mixedH2∕H∞ LMI problem [15]:

inf
Wi;X;Z

�Trace�Z�� (42a)

subject to

�
X 	
ET
e Z

�
> 0;

� �AeiX −BeWi� � �•�T 	
CX −DWi −I

�
< 0 (42b)

Table 1 Convex combination coefficients

i ρ λi�ρ� Binary

1 � ρ1 ρ
2

ρ
3 �T α1α2α3 000

2 � ρ1 ρ
2

ρ3 �T α1α2α3 001

3 � ρ1 ρ2 ρ
3 �T α1α2α3 010

4 � ρ1 ρ2 ρ3 �T α1α2α3 011

5 � ρ1 ρ
2

ρ
3 �T α1α2α3 100

6 � ρ1 ρ
2

ρ3 �T α1α2α3 101

7 � ρ1 ρ2 ρ
3 �T α1α2α3 110

8 � ρ1 ρ2 ρ3 �T α1α2α3 111

Fig. 4 Convex hull.
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2
6664
�AeiX −BeW i� � �•�T 	 	

CX −DW i −γI 	
ET
e 0 −γI

3
7775 < 0;

for all 1 ≤ i ≤ p (42c)

where X ∈ R6×6 and W ∈ R3×6 are matrix variables, and Z ∈ R3×3

is a slack variable. Equations (42a) and (42b) guarantee H2

performance, and Eq. (42c) gives H∞ constraint. Using the optimal
solution sets X and W i to the problem in Eqs. (42), the extreme
controllers Ki at each vertex of the operation range [9] are given by

Ki � WiX
−1; 1 ≤ i ≤ p (43)

Then, the GS controller in Eq. (35c) is constructed by substituting
Eq. (43) into Eq. (37).

V. Steering Law Design

In [3–6], the IPACS with multiple reaction wheels or variable-
speed CMG were developed. In this Paper, the IPACS with multiple
DGVSCMGs is considered. Two types of steering laws for two
parallel DGVSCMGs are proposed.

A. Steering Law 1

The first proposed steering law consists of RW steering and CMG
steering.

1. RW Steering

Both power tracking and wheel spin equalization are attained by
RW steering. First of all, the kinetic energy and power of RWs are
considered. The kinetic energy of RWs in DGVSCMGs is given by

TRW � 1

2

Xn
j�1

Iwsj;xΩ2
j (44)

Therefore, the power ofRWsdescribed as the rates of change of the
energy is given by

PRW � _TRW �
Xn
j�1

Iwsj;xΩj
_Ωj � Iws;xΩT _Ω (45)

Note that the wheel inertias of all DGVSCMGs are assumed to be
same as thewheel spin directions. Next, the RW steering law to attain
the power tracking is considered. To introduce the required powerPr,
the steering law of RWs is described as follows:

Pr � ~P _Ω; ~P � Iws;xΩT (46)

Therefore, the required inputs of the RWs are obtained to solve
Eq. (46) as follows:

_Ω � ~P†Pr � N1M1Ωe (47)

where

N1 � I2 − ~P† ~P (48)

M1 � k1I2 (49)

Ωe � Ω −Ω12×1 (50)

Ω � 1

2

X2
i�1

Ωi (51)

Note thatmatrixN1 is the nullmotion of theRWsteering law,M1 is

the weighting matrix, and Ωe is the error wheel spin rate vector to

attain thewheel spin equalization in the nullmotion. TheRWsteering

law in Eq. (47) can attain both power tracking and wheel spin

equalization. Recalling that the control input u is given as in Eq. (24),
the output torque vector of the RWs uRW is given by

uRW � Fws
_Ω (52)

2. CMG Steering

Both three-axis attitude control and singularity avoidance are

attained by CMG steering. The required CMG torque vector is

calculated as follows:

uCMG � u − uRW (53)

Then, the CMG steering law is given by

uCMG � Q_δ (54)

where

Q �
h
Fgi Fgo

i
; _δ �

"
_δi
_δo

#
(55)

If det �QQT� � 3, Eq. (54) can be always solved with respect to _δ
for any given torque command uCMG. If rank �Q� ≠ 3, then this

cannot be solved. It occurs when det �QQT� � 0. The singularity

measure m is introduced by

m �
���������������������
det�QQT�

q
(56)

When m is close to zero, the system falls into the singularity. The

singularity robustness (SR) steering law [19] is one of the most

efficient singularity avoidance techniques. Reference [21] gives an

SR-based singular value decomposition (SVD) method that hires

orthonormal matrices U ∈ R3×3 and V ∈ R4×4. In Eq. (54), the

matrix Q can be decomposed into

Q � UΣVT (57)

where

Σ�
2
4σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

3
5; U� �u1 u2 u3 �; V� �v1 v2 v3 v4 �

(58)

that yields

Q �
X3
i�1

σiuiv
T
i (59)

where σ1 ≥ σ2 ≥ σ3 ≥ 0 are singular values of Q. If det�QQT� ≠ 0,
then σi > 0, 1 ≤ i ≤ 3 and

Q† � VΣ†UT (60)

where

Σ† �

2
666664

1
σ1

0 0

0 1
σ2

0

0 0 1
σ3

0 0 0

3
777775 (61)
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that yields

Q† �
X3
i�1

�
1

σi

�
viu

T
i (62)

The SR inverse Q# � QT �QQT � λI3�−1 is given as follows [21]:

N# � VΣ#UT (63)

where

Σ# �

2
6666664

σ1
σ2
1
�λ

0 0

0 σ2
σ2
2
�λ

0

0 0 σ3
σ2
3
�λ

0 0 0

3
7777775

(64)

λ � k2
1 − exp�−�1∕m��
1� exp�−�1∕m�� (65)

where λ is the sigmoid functionwith positive scalar k2 and singularity
measure m. When the system is closed to the singularity, λ is

approaching to k2. Therefore, the SR-based SVD steering law is

given by

_δ � Q#uCMG (66)

where

Q# �
X3
i�1

�
σi

σ2i � λ

�
viu

T
i (67)

Although this steering law can avoid the singularity, it cannot

escape from the singularity. Then, a singularity escape steering law is

proposed as follows:

_δ � Q#uCMG � N2M2v1 (68)

where

N2 � I4 −Q#Q (69)

M2 � λI4 (70)

where thematrixN2 is the null motion of the CMG steering law, and

M2 is the weighting matrix with sigmoid function λ of singularity
measurem. Vector v1 is employed to output the maximum torque in

the direction orthogonal to the singularity surface and to escape

rapidly from the singular point [33]. Figure 5 shows the procedure

of the steering law computation. From this figure, the required

torque u from the GS controller is divided into the wheel input uRW
and the inner/outer gimbal input uCMG. Note that the control

performance of the thee-axis attitude control is guaranteed because

the total generated torque amount in the three-dimensional motion

is conserved.

B. Steering Law 2

This steering law provides three-axis attitude control, singularity

avoidance, wheel spin equalization, and power tracking at the same

time. The following steering law is considered as follows:

�
u
Pr

�
� S

�
_Ω
_δ

�
(71)

where

S �
"
Fws Q

P 0

#
(72)

The coefficient matrix S can be decomposed into

S � ~U ~Σ ~VT (73)

where

~Σ �

2
666664

~σ1 0 0 0 0 0

0 ~σ2 0 0 0 0

0 0 ~σ3 0 0 0

0 0 0 ~σ4 0 0

3
777775; ~U �

h
~u1 ~u2 ~u3 ~u4

i
;

~V �
h
~v1 ~v2 ~v3 ~v4 ~v5 ~v6

i
(74)

with

~σ1 ≥ ~σ2 ≥ ~σ3 ≥ ~σ4 ≥ 0

that yields

S �
X4
i�1

~σi ~ui ~v
T
i (75)

To solve this equation, the DGVSCMG inputs are given by�
_Ω
_δ

�
� S#

�
u
Pr

�
� N3

�
M3

�
Ωe

0

�
�M4 ~v1

�
(76)

Fig. 5 Procedure of the steering computation.
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where

S# �
X3
i�1

�
~σi

~σ2i � λ

�
~vi ~u

T
i (77)

N3 � I6 − S#S (78)

M3 � k1I6 (79)

M4 � λI6 (80)

VI. Numerical Simulation

This section presents a numerical simulation of the attitude
tracking problem given by the satellite in a near-polar orbit found in
[3,4]. The pointing axis is required to track a ground station, and the
spacecraft is required to rotate about this pointing vector so that
the solar panel axis is perpendicular to the spacecraft–sun axis. These
two constraints determine the required angular velocity for three-axis
attitude control on orbit. Two numerical simulations using steering
law 1 in Eq. (68) and steering law 2 in Eq. (76) are presented. The
disturbance torque [34] experienced by aerodynamics, solar pressure,
magnetic torque, and other environmental factors is assumed by

L �
2
4 4 × 10−6 � 2 × 10−6 sin�nt�
6 × 10−6 � 3 × 10−6 sin�nt�
3 × 10−6 � 3 × 10−6 sin�nt�

3
5 (81)

where n denotes mean motion. The controller design parameters C
and D, the disturbance coefficient matrix Ee, and positive scalars k1
and k2 are given as follows:

C �

2
664
20 × I3 03×3

03×3 0.01 × I3

03×3 03×3

3
775; D �

�
06×3

0.03 × I3

�
;

Ee �
"
10−6 × diag� 6 9 6 �

03×3

#
(82)

k1 � 0.2; k2 � 10 (83)

Fig. 9 Error MRPs (magnified).

Fig. 7 Singularity measure.

Fig. 6 Power profiles.

Fig. 8 Angular velocity (magnified).

Table 2 Simulation parameters

Parameter Value Unit
B�Is� diag [600 600 475] kg∕m2

Gi �Iws� diag [0.7 0.4 0.4] kg∕m2

Gi �Igi� diag [0.1 0.1 0.1] kg∕m2

Go �Igo� diag [0.1 0.1 0.1] kg∕m2

Ω0 � 650 600 �T rad∕s
Ωmax � 750 750 �T rad∕s
_Ωmax � 1 1 �T rad∕s2
_Ωmin �−1 −1 �T rad∕s2

δ0 � π∕4 −π∕4 0 π∕2 �T rad
_δmax � 1 1 1 1 �T rad∕s
_δmin �−1 −1 −1 −1 �T rad∕s
ωe0 � 0.003 −0.005 −0.025 �T rad∕s
σe0 � 0.2 −0.2 −0.6 �T ——
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a) Wheel spin rates

c) Gimbal angles d) Gimbal rates

b) Wheel acceleration

Fig. 11 Attitude and power tracking simulation (steering law 2).

a) Wheel spin rates

c) Gimbal angles d) Gimbal rates

b) Wheel acceleration

Fig. 10 Attitude and power tracking simulation (steering law 1).
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Note that the disturbance coefficient matrix Ee is determined by
the maximum values of the disturbance in Eq. (81). The simulation
parameters are given in Table 2, in which the initial condition of the
MRPs and the angular velocity of the spacecraft (σ0, ω0) are also
given. These spacecraft parameters closely parallel those used in
[6,23]. The maximum and minimum values of the scheduling
parameter in Eqs. (39) and (40) are given by −1500 ≤ ρi ≤ 1500
from the maximum wheel spin rates in Table 2.
Figure 6 shows the power history of the RWs in the DGVSCMGs,

and Fig. 7 shows the singularity measure of the DGCMGs in the
DGVSCMGs. From these figures, the power (the solid and dashed
lines) are tracked by the required power (circles) in Fig. 6 and the
singularity measure (the solid and dashed lines) in Fig. 7 avoided the
singularity (it avoided 0). As a result, the proposed controller and the
steering laws have achieved both power tracking and singularity
avoidance. Figures8 and9 show the error angular velocity and the error
MRPs,which are converged to 0 at 70 s.Therefore, the IPACShasbeen
successfully achieved by the proposed control and steering laws.
Figures 10 and 11 show the simulation results of the DGVSCMG

motion by using the steering laws in Eqs. (68) and (76), respectively.
From these figures, thewheel motions in Figs. 10a, 10b, 11a, and 11b
show that wheel spin equalization has been attained. With regard to
the computing speed, steering law 2 is 1.12 times faster than steering
law 1.

VII. Conclusions

In this Paper, the dynamics and linear parameter-varying model of
a spacecraft equipped with multiple DGVSCMGs has been
developed. Then, a multiobjective gain-scheduled controller with
linear parameter-varying control theory was applied to evaluate both
optimality and robustness. Two types of steering laws for two parallel
DGVSCMGs were proposed to attain power tracking while
considering both singularity avoidance and wheel spin equalization.
Through numerical examples, an integrated power/attitude control
system and the effectiveness of the proposed controller and steering
laws were demonstrated. Also, the advantage of the computing speed
was demonstrated by comparing two steering laws.
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