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Abstract
A non-canonical Hamiltonian formulation of the Coulomb formation dynamics is used

to develop necessary conditions for static Coulomb formations with constant charges.
With a static or frozen formation the satellites perform non-Keplerian orbits and main-
tain constant relative position vectors. As seen by an observer following the center of
mass motion, the spacecraft formation would appear to behave equivalently to a rigid
body in orbit. Previous research has demonstrated the existence of such static Coulomb
formations analytically by employing symmetry simplifying assumptions with linearized
relative motion dynamics, or by using numerical genetic search algorithms. These static
solutions are used as reference geometries and charges for feedback law developments.
This paper presents nonlinear static formation conditions for the circularly restricted
problem. Hamiltonian formulations have been used to study equilibrium conditions of
rigid bodies in orbit. Analogous techniques are employed to study necessary conditions
to achieve a static Coulomb formation. Analytical results using the full and truncated for-
mation gravity potential function are present. Numerical results illustrate convergence
performance improvements of an evolutionary search algorithm where the presented nec-
essary conditions are enforced.

Introduction
A great variety of spacecraft formation flying missions are being considered to

distribute sensors over a large area and control their relative positions. In these
missions a set of spacecraft fly in formation with separation distances ranging
from 100’s of meters to multiple kilometers. For example, the Techsat 21 pro-
gram1 considered satellites flying in Low Earth Orbits (LEO) to use radar inter-
ferometry to scan the Earth’s surface. The spacecraft separation distances were
about 1 km with the satellites performing coordinated in-plane and out-of-plane
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relative maneuvers. Other spacecraft formations include dynamically simpler
along-track formations.2 Such formations are used to perform stereo Earth imag-
ing or gravity field measurements.3 In an along-track formation two satellites are
essentially in the same orbit, but one satellite lags behind the second satellite. If
the satellites are not of equal type and build, then they will experience different
amounts of atmospheric drag. The formation control strategy must compensate
for the different orbit perturbation forces. An example of a very large scale space-
craft formation is the LISA mission,4 which has satellites flying millions of kilo-
meters apart in heliocentric orbits. The scientific purpose of the LISA mission is
to measure gravitational waves.

In all these spacecraft formation flying missions it is vital to develop fuel ef-
ficient control strategies. The craft are intended to orbit each other for several
years. Small modeling errors in the relative motion dynamics will cause unnec-
essary fuel usage. Due to the long mission durations, this unwarranted fuel usage
will quickly accumulate to significant amounts. Thus, when developing such tra-
ditional spacecraft formation missions, it is crucial that the reference formation
geometries satisfy the naturally occurring orbital motion as much as possible.

In 2002 King and Parker proposed a novel method of spacecraft propulsion in
their NIAC study.5 Studying the mission data of the SCATHA spacecraft,6 they
found that the naturally occurring electrostatic potentials of this High Earth Orbit
(HEO) spacecraft can grow large enough to produce milli-Newton level forces
onto a craft within a few dozen meters distance. King and Parker suggested
exploiting this electrostatic (Coulomb) force and using it to control the relative
motion of closely flying spacecraft. By emitting either positive ions or negative
electrons, the spacecraft charge can be controlled. The SCATHA mission itself
demonstrated this technology. Currently, the CLUSTERS mission7 is using this
charge emission technique to maintain a zero spacecraft charge relative to the
local space plasma environment.

Referred to as Coulomb thrusting, this mode of propulsion has been shown
to be essentially propellantless with Isp values approaching 1010–1013 seconds
for relative motion control.5, 8, 9 Furthermore, the associated electrical power re-
quirements are typically 1 Watt or less, depending on the spacecraft separation
distances and charge levels. However, the relative motion dynamics of charged
vehicles is much more complex than the dynamics of traditional formations. The
motion of any one craft is directly coupled though Coulomb force field interac-
tions to the motion of any other neighboring spacecraft.

Due to the extreme fuel efficiency and low power consumption of Coulomb
thrusting, unconventional formation control strategies can be considered. King
and Parker discovered in Reference 5 that it is possible to use constant Coulomb
forces to cancel all relative motion of the charged spacecraft. As a result, these
static Coulomb formations appear frozen to an external observer and move as if
they were a single, continuous rigid body. Here the formation center of mass
(chief location) is assumed to have a circular orbital motion, and the linearized
relative motion is described relative to the formation center of mass LVLH coor-
dinate frame. The associated non-Keplerian orbits of the spacecraft require con-
tinuous control effort to remain in this static configuration. With conventional
thrusting techniques, flying such static formations would quickly deplete the fuel
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supply. However, with the Coulomb thrusting concept, extended missions are
possible where a small, continuous thrust is applied. Note that this discussion on
static Coulomb formations pertains to using open-loop spacecraft charges. None
of the static Coulomb formations considered so far have been found to be sta-
ble without any feedback. The charge required to achieve the static formation
is useful in control law development. For the 2-craft Coulomb tether formation
considered in Reference 10 it is used as a feed-forward control component along
with a feedback control law.

The charged spacecraft equations of motion are highly nonlinear and coupled.
Finding such static formation geometries, as well as the associated static charges,
is a non-trivial matter. References 5, 8 and 9 show static analytical solutions
of the Clohessy-Wiltshire equations for 3–7 craft using symmetry assumptions.
Here one satellite is always located in the formation center. In Reference 11 an-
other 3-craft equilateral triangular formation is presented, which does not contain
a craft in the formation center. Berryman and Schaub presented a genetic search
algorithm in Reference 12 to search for static Coulomb formations. This search
yielded new 2-craft formations used to perform Coulomb tether formations,10

as well as more general 3-craft solutions and several larger formation solutions
containing up to 9 spacecraft.

This paper investigates necessary conditions to achieve such static Coulomb
formations with constant charges, and presents the nonlinear static formation
conditions for the circularly restricted problem. The results of the genetic algo-
rithm search in Reference 12 indicated some general patterns where the resulting
formation symmetry axes tended to align with the chief coordinate frame axes.
Using a non-canonical Hamiltonian formulation of the relative motion, equilib-
rium conditions for static Coulomb formation are developed. In Reference 13
the Coulomb formation dynamics is discussed by considering the formation to
be a single continuous body, where the shape is determined through the indi-
vidual spacecraft locations. The rotating chief LVLH coordinate frame origin is
defined to be the Cartesian center of mass of the formation. Writing the relative
position vector component in the chief LVLH frame, it is possible to formulate
a formation inertia matrix. For a Coulomb formation to be static with respect to
this chief LVLH frame, the inertia matrix must be a constant matrix. In essence,
the frozen formation becomes equivalent to a rigid body, where the body internal
forces which maintain a given shape are replaced with the electrostatic Coulomb
forces. Achieving a static Coulomb formation is related to finding equilibrium
conditions of a rigid body in a circular orbit. As such, techniques similar to find-
ing zero-gravity gradient torques for satellites can be employed for the frozen
Coulomb formation search. A common technique is to obtain a first order trun-
cation of the gravity gradient torque acting on a spacecraft and determine linear
equilibrium conditions.14 Here the satellite motion is assumed to be decoupled
from the attitude. A more rigorous approach is presented by Wang, Maddocks
and Krishnaprasad in Reference 15 using a non-canonical Hamiltonian formula-
tion. Here the equilibrium attitudes are determined numerically from the com-
plete nonlinear formulation. Also, this approach allows the center of mass motion
and attitude coupling to be retained. More recently Beck and Hall used this non-
canonical Hamiltonian formulation in Reference 16 to determine analytical first
order conditions for general and axisymmetric rigid bodies in a circular orbit.
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This non-canonical Hamiltonian formulation is applied to the Coulomb space-
craft dynamics problem to determine necessary conditions for static formations
with constant charges. The necessary conditions are developed with the full for-
mation gravitational potential function. Further results are obtained after trun-
cating this potential function to second order. Finally, the developed necessary
conditions are incorporated into an evolutionary search algorithm. Numerical
studies are performed to evaluate the convergence improvements.

Nonlinear Static Solution Conditions
Consider a formation of N spacecraft flying in close proximity to each other

with typical separation distances ranging from 10-100 meters. As illustrated in
Figure 1, each craft is assumed to have an electrostatic (Coulomb) charge. The
Coulomb forces cause a complex dynamic interaction between all charged space-
craft in the formation. Let ri be the inertial position vector of a single craft of
mass mi. The vector rc is the center of mass position vector of this formation
defined as

rc =
1
M

N∑
i=1

miri (1)

with M =
∑N

i=1mi being the total formation mass. The relative position vector
of the ith satellite with respect to this center of mass is

ρi = ri − rc (2)

To describe the relative motion, a rotating orbit frame O : {ôr, ôθ, ôh} is intro-
duced where

ôr =
rc
rc

(3a)

ôθ = ôh × ôr (3b)

ôh =
rc × ṙc
|rc × ṙc|

(3c)

with rc = |rc| and ṙc being the inertial derivative of rc.
Each craft is assumed to have an electrostatic charge qi relative to the ambient

space plasma environment. The Coulomb force experienced by craft i due to the
electrostatic field interaction with the jth craft is

Fij = kcqiqj
ρji
ρ3
ji

e
−
ρji
λd with i 6= j (4)

where ρji = ρi − ρj and kc = 8.99 · 109Nm2/C2 is the Coulomb’s constant.
Note that the typical Coulomb force magnitude is augmented with an additional
exponential term depending on the Debye length λd.17, 18 The electro-static field
strength of a spacecraft flying through a space becomes absorbed by the plasma
environment of free-flying electrons and ions. At low Earth orbits, this Debye
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N

Inter-Spacecraft
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rc
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ρi

ôr

ôθ

ôh

(mi, qi)

φi

γi

Figure 1. Illustration of a Coulomb Spacecraft Formation.

length is on the order of centimeters, making the Coulomb thrusting concept
difficult to implement. At Geostationary Orbits (GEO) the Debye length can
vary between 140–1400 meters, depending on solar activity levels. The Coulomb
spacecraft motion studied in the following sections are assumed to be flying on
high Earth orbits where the Debye length does not degrade the Coulomb field too
much.

The gravitational potential of a point mass in orbit about a planet with mass m
is given by14

Vi(ri) = −Gmmi

ri
= −µmi

ri
(5)

where G is the universal gravitational constant and µ = Gm is the gravitational
constant of a particular planet. The equations of motion of the ith charged satel-
lite in orbit about a planet are then given by

mir̈i = −∇riVi +
N∑
j=1

Fij with i 6= j (6)

Earlier treatments on studying static Coulomb formations in References 5, 8 and
11 utilized the formation Hill coordinate frame. Note that no linearization is
performed in Eq. (6). The full nonlinear orbital mechanics of a point mass are
retained.

A static Coulomb formation consists of a set of N spacecraft with constant
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charges that do not vary their relative positions.5, 8, 11 To an observer traveling
with the orbit frame O, the formation would appear to be rigid or frozen and
not vary its shape. Several such solutions have been found using the linearized
Clohessy-Wiltshire-Hill equations.19, 20 Let us define the orbit frame derivative
through

Odρ
dt

= ρ′ (7)

For a static Coulomb formation ρ′i = 0 and the inertial derivative of ρ is given
by

ρ̇i =
Ndρi

dt
= ρ′i + ωO/N × ρi = ωO/N × ρi (8)

The inertial acceleration of the relative position vector must satisfy

ρ̈i = ωO/N × (ωO/N × ρi) + ω̇O/N × ρi (9)

Using Eq. (2) the static formation condition is written as

mi(r̈c + ωO/N × (ωO/N × ρi) + ω̇O/N × ρi) = −∇riVi +
N∑
j=1

Fij (10)

with i 6= j. To find a static Coulomb formation, spacecraft locations ρi = xiôr+
yiôθ + ziôh and charges qi must be found such that Eq. (10) is satisfied for each
spacecraft. If successful, then the electrostatic forces will perfectly cancel the
relative orbital accelerations and freeze the formation as seen by the rotating orbit
frame O. Equation (10) is written for general orbit types. Restricting our search
to cases where the formation center of mass motion is circular or nearly circular,
the center of mass and associated orbit frame motion simplify to:

ωO/N =
√
µ

r3c
ôh = nôh (11)

r̈c = −rcn2ôr (12)
ω̇O/N = 0 (13)

Note that by making this simplification we are assuming that the formation center
of mass motion is decoupled from the satellite relative motion.13 This decoupling
is justifiable as long as the spacecraft relative position vectors ρi remain small
compared to the inertial center of mass position vector rc. The static formation
condition in Eq. (10) simplifies for the circularly restricted case to

mi(−rcn2ôr + n2ôh × (ôh × ρi)) = −∇riVi +
N∑
j=1

Fij with i 6= j (14)

Expressing all vectors in orbit frame O components through ρ = (x, y, z), ôr =
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(1, 0, 0) and ôh = (0, 0, 1), the static formation condition is also expressed as:

−mi

On2(x+ rc)
n2y
0

 = −∇riVi +
N∑
j=1

Fij with i 6= j (15)

Because the formation is maintaining a fixed shape, it can be compared to a
rigid body consisting of a discretely distributed set of masses. Studying attitude
equilibrium solutions of orbiting satellites, the attitude-to-orbit coupling is typi-
cally neglected.16, 14 However, this decoupling is an approximation. For satellites
with very unevenly distributed mass components the center of mass motion cou-
pling may need to be included. The resulting equilibrium attitudes can vary sub-
stantially from the decoupled center of mass motion case.15 This paper focuses
on formation cases where the mass distribution is reasonably even and the center
of motion decoupling is justified.

Formation Forces and Torques

The force acting on a single satellite is defined as

Fi = −∇riVi +
N∑
j=1

Fij (16)

Using ri = rc + ρi, a change of coordinates can be introduced through

∇riVi =
[
∂Vi
∂ri

]T
=
[
∂Vi
∂rc

∂rc
∂ri

]T
=
[
∂Vi
∂rc

]T
= ∇rcVi (17)

Let the formation gravitational potential function V (rc) be written as

V (rc) =
N∑
i=1

Vi = −
N∑
i=1

µmi

|rc + ρi|
(18)

Using Figure 1, we can express

|rc + ρi| =
√
r2c + 2rc · ρi + ρ2

i = rc

√
1− 2

(
ρi
rc

)
cos γi +

(
ρi
rc

)2

(19)

Using the Legendre polynomial definition,21, 14 the 1/ri term is written as a poly-
nomial expansion as

1
ri

=
1

|rc + ρi|
=

1
rc

∞∑
k=0

Pk(cos γi)
(
ρi
rc

)k
(20)
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Thus, the total formation gravitational potential is given by

V (rc) = − µ
rc

N∑
i=1

∞∑
k=0

miPk(cos γi)
(
ρi
rc

)k
(21)

This potential function can be conveniently truncated at desired orders k. To
study the rigid body orbital attitude problem, the equivalent potential function is
typically truncated at second order.

The total force acting on the formation is then given by

F =
N∑
i=1

Fi = −∇rcV (rc) (22)

The Coulomb forces mutually cancel each other here due to being formation in-
ternal forces. Because∇rcVi is aligned with ri, the external torque being applied
to the ith spacecraft about the formation center of mass can be written as16

τi = ρi × (−∇rcVi) = −(−ri + rc)×∇rcVi = rc ×∇rcVi (23)

The total torque applied to the formation about the center of mass is then

τc =
N∑
i=1

τi = rc ×∇rcV (24)

Using the orbit frame unit direction vectors, this torque can also be expressed as

τc = (rcôr)×
[
∂V

∂rc

]T
= rcôr ×

[ ∂V
∂ôr

∂ôr
∂rc︸︷︷︸

1
rc

[I3×3]

]T
= ôr ×∇ôrV (25)

Note that if the gradient of the formation potential function is aligned with the
orbit radial direction ôr, then the gravity gradient torque will be zero.

Non-Canonical Formulation
In this section a non-canonical formulation of a static Coulomb formation is

developed. This development assumes that electrostatic charges can be produced
to achieve a static formation, and develops necessary equilibrium conditions on
where the satellite masses must be placed with the rotating orbit frame O.

Because we are considering static Coulomb formations, the spacecraft forma-
tion can be represented as a discretely distributed rigid body. The formation
inertia matrix about the center of mass is expressed as13

[I] = −
N∑
i=1

mi[ρ̃i][ρ̃i] =
N∑
i=1

mi

Oy2
i + z2

i −xiyi −xizi
−xiyi x2

i + z2
i −yizi

−xizi −yizi z2
i + y2

i

 (26)
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Given that static formation shapes are considered, a body-fixed coordinate frame
B is introduced. The orientation of this formation-fixed frame B relative to the
center of mass orbit frame O is given through the rotation matrix

[BO] = [OB]T =
[Bôr Bôθ

Bôh
]

(27)

where the unit direction vectors of theO frame are expressed in B frame compo-
nents. Using rigid body notations and conventions, the inertial angular momen-
tum of the formation about its center of mass is written as

Hc = [I]ωB/N (28)

Given the inertial momentum vector, the formation body frame angular velocity
vector can be found using

ωB/N = [I]−1Hc (29)

For the following development in this section, let us use the shorthand notation

BdHc

dt
= H ′c (30)

Taking the inertial derivative of Eq. (28) we find

Ḣc = H ′c + ωB/N ×Hc = τc (31)

Solving forH ′c, we find

H ′c = Hc × [I]−1Hc + ôr ×∇ôrV (32)

The formation attitude motion relative to the orbit frame is of interest. Assum-
ing a circular center of mass orbital motion, the relative angular velocity vector
is expressed as

ωB/O = ωB/N − ωO/N = ω = ωB/N − nôh (33)

The formation angular momentum relative to the orbit frame is

H = Hc − [I]ωO/N = Hc − n[I]ôh (34)

Also, note that

H = [I]ω or ω = [I]−1H (35)

Using Eqs. (32) and (35), taking the formation body frame derivative ofH yields

H ′ = H × [I]−1H + nH × ôh + n ([I]ôh)×
(
[I]−1H

)
+ n2 ([I]ôh)× ôh

− n[I]ô′h + ôr∇ôrV (36)
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The orbit normal vector derivative is written as

ô′h = −ω × ôh = ôh × ω = [õh][I]−1H (37)

ô′h = ôr × ω = [õr][I]−1H (38)

where the tilde matrix notation [ã]b being equivalent to a × b is used.14 Let A
be defined as

A = (tr([I])[I3×3]− [I]) ôh (39)

Reference 22 proves the following useful identity

[Ã] = [õh][I] + [I][õh] (40)

Substituting Eqs. (37) and (40) into Eq. (36) yields

H ′ = [Ã][I]−1H − n2ôh × ([I]ôh) + ôr ×∇ôrV (41)

To define the angular rate and orientation of the static Coulomb formation relative
to the orbit frame, the state vector x is introduced:

x =

Hôh
ôr

 (42)

The vectorH = [I]ω is a measure of the relative rotation rate, while the two unit
direction vectors ôh and ôr uniquely determine the orientation of the formation
fixed frame B. The equations of motion of a static Coulomb formation are then
written in the non-canonical form as

x′ =

H ′ô′h
ô′r

 =

 Ã õh õr
õh 03×3 03×3

õr 03×3 03×3

 [I]−1H
−n2[I]ôh
∇ôrV

 (43)

By defining the scalar Hamilton functionH through16

H(x) =
1
2
H[I]−1H − n2

2
ôh[I]ôn + V (ôr) (44)

the equations of motion can be written as

x′ =

 Ã õh õr
õh 03×3 03×3

õr 03×3 03×3

∇xH (45)

Note that these equations of motion assume that electrostatic charges exist which
will cause the formation to maintain a constant shape. This assumption is not
true for all possible formation shapes. The non-canonical formulation in Eq. (45)
allows for the formation to rotate or remain fixed relative to the orbit frame O.



Necessary Conditions for Circularly-Restricted Static Coulomb Formations 11

Also, note that the formation gravity potential function V has not been truncated
in this expression.

Necessary Equilibrium Conditions
This paper explores necessary conditions for fixed static Coulomb formations

with constant charges. For the formation spacecraft to remain frozen relative
to the orbit frame, it is necessary that x′ = 0. Studying the null space of the
skew-symmetric 9 × 9 matrix in Eq. (45), three independent Casimir functions
are found for this system.

C1(x) =
1
2
ôh · ôh C2(x) =

1
2
ôr · ôr C3(x) = ôh · ôr (46)

Let us define the scalar function F through

F(x) = H(x)− λ1C1(x)− λ2C2(x)− λ3C3(x) (47)

where λi are scalar unknown coefficients. Because the skew-symmetric matrix
in Eq. (45) is not full rank, simply setting ∇xH = 0 is not sufficient. Instead,
equilibrium conditions are determined by investigating

∇xF = 0 (48)

The resulting three orbit frame equilibrium conditions of the static Coulomb for-
mation are:

[I]−1H∗ = 0 (49)

−n2[I]ô∗h − λ1ô
∗
h − λ3ô

∗
r = 0 (50)

∇ôrV − λ2ô
∗
r − λ3ô

∗
h = 0 (51)

The condition in Eq. (49) is rather trivial and requires thatω∗ = [I]−1H∗ = 0.
For an actual rigid body, the inertia matrix [I] is always full rank and this con-
dition would imply H∗ = 0 at equilibrium. However, in this study [I] is the
formation inertia matrix which can be rank-deficient if all spacecraft are in a co-
linear formation. Recall that the spacecraft are treated as point masses. Without
loss of generality, let us assume that all craft are aligned along the first formation
body axis b̂1. In this case the equilibrium relative momentumH∗ is expressed in
B frame components as

H∗ =

BH∗1H∗2
H∗3

 =

B0 0 0
0 I2 0
0 0 I2

 Bω∗1ω∗2
ω∗3

 (52)

Equation (49) requires that ω∗ = 0, even though the inverse of [I] does not exist
in this case, the equilibrium H∗ must still be 0. Substituting Eq. (25) and (49)
into Eq. (41), the external formation torque at equilibrium must be

τ ∗c = n2[õ∗h][I]ô
∗
h (53)



12 Schaub, Hall, and Berryman

This formation torque equilibrium condition is true for the full, untruncated for-
mation gravitational potential function.

To determine the coefficients λi, we first take the vector dot product of Eq. (50)
with ô∗r and the vector dot product of Eq. (51) with ô∗h. Both steps yields an
expression for λ3:

ô∗h · ∇ôrV = λ3 = −n2ô∗h · [I]ô∗r (54)

Taking the vector cross product between ô∗r and Eq. (51), while using the torque
definition in Eq. (25), yields

τ ∗c = −λ3ô
∗
θ (55)

The equilibrium torque condition expressions in Eq. (53) and (55) must both be
true.

τ ∗c = n2[õ∗h][I]ô
∗
h = −λ3ô

∗
θ (56)

This equilibrium torque condition is only possible if (Case 1) λ3 ≥ 0 and n2[I]ô∗h =
−λ3ô

∗
r , or (Case 2) λ3 = 0 and [õ∗h][I]ô

∗
h = 0.

Let us first investigate Case 1. Here it is necessary that

−λ3ô
∗
r = n2[I]ô∗h (57)

Expressing all vectors in the orbit frame O components, Eq. (57) is expressed as

−λ3

O1
0
0

 = n2

OI11 I12 I13

I12 I22 I23

I13 I23 I33

 O0
0
1

 (58)

Let ρi = xiôr + yiôθ + ziôh. The formation inertia matrix can be expressed in
O frame components as

OI11 I12 I13

I12 I22 I23

I13 I23 I33

 =
N∑
i=1

y2
i + z2

i −xiyi −xizi
−xiyi x2

i + z2
i −yizi

−xizi −yizi x2
i + y2

i

 (59)

Studying the third line in Eq. (58), we find that I33 = 0 must be true for this
case. This I33 condition is only possible if xi = yi = 0 for all spacecraft. Thus,
this case is only feasible if all satellites are aligned with the orbit normal vector.
Thus, all off-diagonal inertia matrix elements will be zero here and I11 = I22 =∑N

i=1 z
2
i . Studying the first line of Eq. (58) we then determine that

λ3 = 0 (60)

must be true as well. Using Eq. (57), λ3 = 0 implies that [I]ô∗h = 0 for case 1.
For case 2 we determined that λ3 = 0 and

[I]ô∗h ∝ ô∗h (61)
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such that [õ∗h][I]ô
∗
h = 0. Note that the results of Case 1 actually satisfy these con-

ditions as well. Thus there is not need to further distinguish between both cases.
Equation (61) indicates that at equilibrium the vector ôh must be an eigenvector
of the formation inertia matrix [I]. Thus, ô∗h must be aligned with a principal axis
of [I]. Further, substituting λ3 = 0 in the equilibrium condition in Eq. (51) yields

∇ôrV = λ2ô
∗
r (62)

Thus, the gradient of the formation gravitational potential function V must be
exactly in the ôr direction at equilibrium. The coefficient λ2 can be determined
through

λ2 = ∇ôrV · ô∗r (63)

Finally, the λ1 coefficient is determined by substituting λ3 = 0 into Eq. (50) and
solving for

λ1 = −n2ô∗h · [I]ô∗h = −n2I33 (64)

where I33 is defined in Eq. (59). Also, using λ3 = 0, the equilibrium formation
torque is τ ∗c = 0. For the static Coulomb formation to remain fixed relative to the
orbit frame O, the external gravitational gradient torque acting on the formation
must be zero. This result parallels equivalent results of rigid body attitude studies
of circularly restricted orbital motion.16, 15

Note that none of the above formation equilibrium results for λi or τc required
truncating the formation gravitational potential function V in Eq. (21). For this
general case the formation attitude has to satisfy ô∗h being aligned with a princi-
pal axis of the formation inertia matrix. However, the above conditions did not
require that ô∗r and ô∗θ be eigenvectors as well. A common second order approx-
imation of the gravitational potential function of a body is14

V (ôr) ≈
3
2
n2ôTr [I]ôr (65)

with the gradient being

∇ôrV = 3n2[I]ôr (66)

Substituting Eq. (66) into Eq. (62), we find that

3n2[I]ô∗r = λ2ô
∗
r (67)

This can only be satisfied if ô∗r is also an eigenvector, and thus a principal axis, of
the formation inertia matrix. By approximating the gravitational potential func-
tion to 2nd order, the necessary conditions for a static Coulomb formation require
that the principal axes of the formation inertia matrix be aligned with the orbit
frame O unit direction vectors ôr, ôθ and ôh.
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Constrained Genetic Search Results

Parker and King searched for static Coulomb solutions in References 5 and
8 using analytical methods with simplifying symmetry assumptions. In Refer-
ence 12 an evolutionary search method is outlined which will numerically search
for static Coulomb formations with circular formation center of mass motions.
Here a population of candidate solutions of spacecraft position and charge states
is generated. The fitness J of each population member is evaluated by comput-
ing the weighted sum of all spacecraft accelerations within the rotating chief Hill
frame. If these accelerations are zero, then the fitness J will be zero and a static
Coulomb formation has been found. The N satellite position is not determined
randomly in Reference 12, but it is determined through the formation center of
mass condition

N∑
i=1

miρi = 0 (68)

Given the N − 1 spacecraft position vectors ρi, the N th position is evaluated
using

ρN = − 1
mN

N−1∑
i=1

miρi (69)

This constrained evolutionary search algorithm yielded candidate solutions which
were all centered about the Hill frame origin. Also, applying this constrained
helped avoid duplicated formation solutions displaced in the along-track direc-
tion.

If the potential gravity field is approximated to second order in Eq. (65), then
for the circularly restricted chief orbit problem any static Coulomb formation
must have the principal axis of the formation inertia matrix in Eq. (59) be aligned
with the orbit frame O. Applying these constraints to the evolutionary search
algorithm should improve the static formation search performance. Let ρi be the
N spacecraft relative position vectors which are determined after the evolutionary
matic algorithm. These N vectors will not satisfy either the center of mass or
the principal axis conditions. To satisfy these constraints, appropriate position
corrections δρi must be determined. The center of mass condition requires that

N∑
i=1

mi(ρi + δρi) = 0 (70)

Note that compared to the center of mass enforcement method in Eq. (69) where
only theN th spacecraft position is adjusted, this new method will cause all space-
craft positions to be adjusted to comply with the center of mass condition. To
satisfy the formation principle axes condition, it is necessary that all off-diagonal
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formation inertia matrix components in Eq. (59) are zero.

N∑
i=1

mi(xi + δxi)(yi + δyi) = 0 (71a)

N∑
i=1

mi(xi + δxi)(zi + δzi) = 0 (71b)

N∑
i=1

mi(zi + δzi)(yi + δyi) = 0 (71c)

The center of mass constraint condition in Eq. (70) has the position corrections
δρi appearing linearly. However, the formation principal axes conditions in
Eq. (71) depend quadratically on the corrections δρi. A nonlinear least-squares
optimization method could be applied to solve this system of 6N equations for
the required δρi corrections. With the evolutionary algorithm, computational effi-
ciency for computing each new population generation is vitally important. Thus,
an approximate method is investigated to satisfy the constraints in Eq. (70) and
(71).

Assume that the evolutionary algorithm has begun to converge to a proper
static Coulomb formation solution. After mating two parents to generate new
children, the required spacecraft position corrections δρi to satisfy the two con-
straints should be small. As the numerical search converges to a static Coulomb
formation solution, the corrections will go to zero. Linearizing the formation
principal axis constraint in Eq. (71), the 6N constraint equations can be writ-
ten in a linear form and the desired corrections δρi can be determined through a
standard least-squares algorithm.

−
N∑
i=1

mixi =
N∑
i=1

miδxi −
N∑
i=1

mixiyi ≈
N∑
i=1

mi(yiδxi + xiδyi) (72a)

−
N∑
i=1

miyi =
N∑
i=1

miδyi −
N∑
i=1

mixizi ≈
N∑
i=1

mi(ziδxi + xiδzi) (72b)

−
N∑
i=1

mizi =
N∑
i=1

miδzi −
N∑
i=1

miziyi ≈
N∑
i=1

mi(ziδyi + yiδzi) (72c)

This spacecraft position correction algorithm which enforces both the forma-
tion center of mass and principal axis constraint has been incorporated into the
evolutionary algorithm described in Reference 12. The static Coulomb forma-
tion search performance is evaluated by running the algorithm several times and
tracking the formation cost function J values at each evolutionary generation
iteration step.

Method 1 is the unmodified algorithm outlined in Reference 12. Note that this
version of the evolutionary algorithm is designed to run on a single processor
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(h) Average Result of all 3–9 Craft Searches

Figure 2. Genetic Search Convergence Comparisons for Method 1 (dotted
line · · · ), Method 2 (dashed line - - - ), and Method 3 (solid line — ) for Static
Coulomb Formations Sizes Ranging from 3–9 Craft.
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only. Distributed versions of this strategy are under development.
Method 2 replaces the center of mass constraint application with a new method

where Eq. (70) is solved using a fast least-squares algorithm. On average this
change is expected to improve the convergence rate. By only correcting the last
satellite position ρN , its position can vary drastically. The associated charge
(computed through the parent mating process) will then not be appropriate to
cause zero acceleration on the neighboring satellites. By moving all the satel-
lites by a common small amount δρi (i.e. the difference between the Hill frame
origin and the initial formation center of mass), the final convergence rate of the
evolutionary algorithm is expected to improve.

Method 3 enforces both the formation center of mass and linearized principal
axis constraint condition in Eq. (72). Note that it is possible to iterate locally on
the principal axis constraint to satisfy the quadratic version exactly. However, the
numerical test runs show that the linearized version is sufficient to provide no-
ticeable convergence improvements. Iterating to satisfy the quadratic form could
provide slight improvements to the convergence rate, but would also increase the
computational time to evaluate a generation.

Figure 2 illustrates the evolutionary algorithm convergence performance with
methods 1–3. Test cases with 3–9 spacecraft are evaluated. For each case with
a particular number of craft, several run were performed. The displayed perfor-
mance is an average of all these runs. Typically method 1 performs the poorest,
followed by method 2, while method 3 is always the best performing method.
For smaller number of spacecraft, the convergence improvements are about 200-
300%. As the number of satellites increase, the overall convergence rates of all
methods are reduced.

Several interesting behaviors are apparent in these results. Note that for the 3
and 6 craft case that method 1 performs better than method 2. The reason for this
is still unclear, but it appears to be related to what formations are possible with
certain number of satellites.

Conclusion

Necessary conditions to achieve static Coulomb formations with constant charges
are formulated. By describing the formation as a continuous body where the
Coulomb forces are internal forces maintaining a specific shape, a method is
employed which is analogous to those used for finding rigid body equilibrium
conditions. Specifically, a non-canonical Hamiltonian formulation is developed
for the Coulomb formation. This description allows for various levels of gravi-
tational potential function simplifications to be performed. Considering the full
nonlinear gravitational potential function of the spacecraft formation, the orbit
out-of-plane unit direction vector must a be principal vector of the formation in-
ertia matrix. If the formation gravitational potential function is approximated to
the common second order form, then all three formation principal axes must be
aligned with the rotating chief frame axes. Note that this is only a necessary, and
not a sufficient condition for a static Coulomb formation with constant charges
to exist. A numerical study illustrates how applying this constraint can improve
the convergence rate of evolutionary search algorithm by up to 200-300%.
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