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Redundant Reaction Wheel Torque Distribution Yielding
Instantaneous L2 Power-Optimal Attitude Control

Hanspeter Schaub∗and Vaios J. Lappas†

The attitude control problem of a rigid spacecraft containing a redundant set of reaction wheels
is investigated. Particularly with small spacecraft the available power is very limited due to the small
surface area to radiate excess heat. A power-optimal reaction wheel motor torque distribution strategy
is developed that minimizes the instantaneous electrical power requirements. Power regeneration from
slowing down the wheels is not considered in this work. The new torque distribution is developed as a
modification to the traditional minimum torque solution. Degenerate conditions in which at least one
rotor has zero speed are investigated, as well as particular symmetric wheel speed configurations. The
new control is able to reduce the amount of mechanical power and energy required by about 10–20%,
while only marginally increasing the average required torque.

I. Introduction
Actuation methods to control the orientation of a spacecraft typ-

ically fall into the categories of fuel consuming thrusters,1, 2, 3 in-
ternal momentum exchange devices requiring electrical power,4, 5

or external environmental influences such as the gravity gradi-
ent, atmospheric, or magnetic torques.6, 7, 8 The attitude control of
spacecraft continues to be a rich area of research with many new
issues being investigated. While some papers focus on develop-
ing robust adaptive attitude control strategies using thrusters,9 this
paper focuses on the spacecraft attitude control using momentum
exchange devices. In particular, this paper does not develop a new
attitude control algorithm. Rather, it investigates how to effective
map a required control torque from a given attitude control law to
the set of reaction wheel motor torques. The spacecraft is assumed
to contain a redundant cluster of Reaction Wheels (RWs). These
reaction wheel clusters are also referred to as a Reaction Wheel As-
sembly (RWA), or systems of momentum wheels. The RWs exert a
torque onto the spacecraft by spinning up or down the flywheel.10

These mechanically simple devices are limited in the amount of
torque they can produce, and have rotational speed limits to which
the flywheel can be spun up to. Having four or more RW allows
for full three-axis attitude control even if a particular RW has a me-
chanical failure. It is possible to control the attitude motion using
only three orthogonal RWs and use the 4th only in case of a failure,
or to use all RWs at all time. The later solution will result in more
wear on the 4th wheel, but can yield reduced torque requirements.

Given a particular attitude-control strategy, this redundant RW
setup yields an infinity of possible RW motor torque solutions that
all stabilize the attitude motion. To keep the RW motors as small
as possible, a simple solution is to determine the traditional min-
imum norm RW motor torque solution.10 Using all RWs at once,
this strategy results in smaller individual wheel torques than the
minimum three wheel solution. The focus of this paper is to inves-
tigate alternate RW motor torque distributions that do not minimize
the motor torques, but rather the power required to produce these
torques. As with the minimum torque solution, the optimization
is not performed across the entire attitude maneuver. Instead, the
minimization occurs over an instant of time where a torque solu-
tion is determined that requires the smallest instantaneous power
level. The attitude control method is not changed in this process.
In fact, the presented torque distribution strategies can be applied
to any redundant RW attitude-control strategy and the results are
not tied to a particular attitude control law. Of interest is how such
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a power-minimizing torque-distribution strategy will result in re-
duced reduced maneuver energy requirements.

A particular motivation of this work is the attitude control of
small satellites which contains its own set of challenges. The small
spacecraft are very limited in the amount of on-board propellant,
and thus cannot afford to use this fuel to perform the attitude con-
trol.11, 12 Instead the use of momentum wheels such as RW or
Control Moment Gyroscopes (CMGs) is considered as a more en-
ergy efficient attitude control method.13, 14 However, note that the
RW and CMG devices of a small satellite typically operate at much
higher spin rates than those of a more typically sized spacecraft.
This is important when considering instantaneous power usage be-
cause the power is proportional to the rotor speeds. Further, the
amount of electrical power that a small satellite can produce is very
limited. Due to the small size there is little surface area to reject
the excess heat. The focus of this paper is the attitude control of a
spacecraft which is limited in its available power and energy. While
this work is motivated by the small satellite attitude problem, the
results are general and can be applied to general spacecraft con-
taining a redundant set of reaction wheels.

The design and control of RW clusters has been discussed in
previous publications, but none offer a locally power-optimal feed-
back control law. For example, Reference 15 discusses the optimal
RW alignment to produce optimal RW torque or power solutions.
Vadali in Reference 16 discusses optimal control solutions that
minimize various performance aspects across a maneuver. Being
an optimal control solution, such control torque calculations re-
quire knowledge of both the initial and final attitude states. In
contrast, the novel RW motor torque distribution strategies devel-
oped in this paper are applicable to feedback control methods that
require only the instantaneous attitude states, and not the knowl-
edge of the entire maneuver. The torque solutions do not lead
to maneuver optimal solutions, but provide simpler to implement
feedback control strategies. The power-optimal RW spacecraft atti-
tude control with a single reaction wheel is discussed by Skaar and
Kraige in References 17 and 18. However, here too optimal attitude
trajectory paths are determined assuming the initial state errors are
given. Reference 19 studies the attitude control of a spacecraft with
a redundant set of RWs where the flywheels are also used as an en-
ergy storage mechanism. The nullspace of the RWA is exploited
to determine motor torques that satisfy both attitude stability con-
ditions, as well as power generation requirement. In contrast, this
paper investigates how the RW nullspace can be used to modify
the traditional minimum torque solution and yield a power-optimal
torque solution at that instant.

The mechanical power required to implement a particular mo-
tor torque is proportional to the wheel speed.10 Thus, if all wheels
are at rest relative to the spacecraft, then the associated mechani-
cal power required is zero. References such as 20 and 21 address
power requirement concerns by having attitude control strategies
that keep the RW speeds small. The RWA nullspace is used to
drive the wheel speeds to a lower value over time. This results
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2 SCHAUB: STABILIZATION OF COULOMB SATELLITE MOTION

in smaller mechanical power requirements, but involves RW speed
minimizations that occur over a maneuver. The new torque dis-
tribution strategy presented in this paper is quite different from
such RW spin minimization strategies. At a particular instant of
time, the wheel speeds are given and cannot be chosen. Given gen-
eral non-zero spin rates, this paper investigates how the RW motor
torque null-space can be used to yield a locally power-optimal RW
motor torque solution. Attitude control strategies that implement
lower RW speeds to reduce power requirement can be used in con-
junction with the locally power-optimal results discussed in this
paper. For example, the zero RW speed crossing can cause issues
for RWAs due to stickage at low speeds. As a result, the RWs can
be setup to operate at a non-zero spin rate. If this nominal spin rate
can be reduced, then the nominal electrical power required for a
particular attitude maneuver is also reduced. The presented torque
distribution strategy can be employed in addition to such nominal
wheel speed considerations.

The paper is setup as follows. First the equations of motion
of a rigid spacecraft containing N reaction wheels are developed,
and the notation is explained. Next, the attitude feedback control
solution is developed which uses the minimal RW motor torque dis-
tribution. Finally the analytical closed-form solution of the locally
power-optimal redundant RW control is developed. Degenerate
conditions where some of the RWs have zero spin rates are inves-
tigated. Numerical simulations illustrate the performance of the
new locally power-optimal feedback control and compare it to the
torque-optimal and 3-rotor solutions. Of interest is how much the
instantaneous power and total energy expenditure is reduced by this
alternate RW motor torque strategy.
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Figure 1: Illustration of a Reaction Wheel Coordinate Frame

II. Problem Statement
The spacecraft is assumed to be composed of a rigid body B

containing N variable-speed reaction wheels. The spacecraft body
fixed coordinate frame is given by B : {b̂1, b̂2, b̂3}. The orienta-
tion of each RW is defined through the body fixed wheel frames
Gi : {ĝsi , ĝti , ĝgi} illustrated in Figure 1. Due to the wheel sym-
metry about ĝsi the actual orientation of the wheel body is not
required. The disk is spinning with a speed Ωi about the spin axis
ĝsi . The motor torque usi acts about the ĝsi axis to accelerate the
wheel as required by the attitude control law.

Reference 10 develops the attitude equations of motion for such
a system. The differential equations of motion are given by

[I]ω̇ = −[ω̃][I]ω − [ω̃][Gs]hs − [Gs]us +L (1)

where L is an external torque vector, and [ω̃] is defined as matrix
equivalent of a vector cross product using

[ω̃] =

"
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

#
(2)

To express the body angular velocity vector in spacecraft body
frame B or wheel frame Gi vector components, the following nota-
tion is used:

ω = ωsi ĝsi + ωti ĝti + ωgi ĝgi = ω1b̂1 + ω2b̂2 + ω3b̂3 (3)

The 3 × 3 matrix [I] is the constant inertia system matrix defined
as

[I] = [Is] +

NX
i=1

“
Jti ĝti ĝ

T
ti

+ Jti ĝgi ĝ
T
gi

”
(4)

where [Is] is the inertia matrix of the rigid spacecraft itself. Due to
symmetry the wheel principal inertias are given by (Jsi , Jti , Jti).
The wheel frames Gi are assumed be principal coordinate frames
for the RW disks such that the wheel inertias are defined through

[IWi ] = Jsi ĝsĝ
T
s + Jti ĝtĝ

T
t + Jti ĝgĝ

T
g (5)

Please note that this [I] inertia matrix definition includes the inertia
of the spacecraft, the ĝti and ĝgi components of the wheel inertia,
as well as the inertia terms due to the RW center of masses being
offset from the spacecraft body center of mass. The RW inertias
Jsi about the spin axis are subtracted out of this inertia matrix ex-
pression.

The N -dimensional torque vector us is the RW torque control
vector and is defined as

us =

0BB@
...
usi

...

1CCA (6)

where usi are the ith RW motor torques defined through

usi = Jsi

“
Ω̇i + ĝT

si
ω̇
”

(7)

The N -dimensional momentum vector hs is defined as

hs =

0BB@
...

Jsi (ωsi + Ωi)
...

1CCA (8)

Finally, the 3×N projection matrix [Gs] is given by

[Gs] = [ĝs1 · · · ĝsN ] (9)

Numerically Eq. (1) requires that all vector components are taken
with respect to the same coordinate frame before performing matrix
algebra.

The rotational kinetic energy T of a rigid spacecraft withN RWs
is given by10

T =
1

2
ωT [Is]ω +

1

2

NX
i=1

Jsi (Ωi + ωsi)2 + Jtiω
2
ti

+ Jtiω
2
gi

(10)

The kinetic energy rate, also known as the work rate or power equa-
tion, is found after differentiating Eq. (10), or simply by applying
the Work-Energy-Rate principle,22, 10 to be

Ṫ = ωTL+

NX
i=1

Ωiusi (11)

The mechanical power equation to implement the ith motor torque
is simply Ωiusi where Ωi is the wheel angular velocity of the
wheel relative to the spacecraft. The ωsi term drops out and does
not contribute to the power expression. Therefore, in the absence
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of an external torque vector L, the mechanical power Pi required
by each RW motor is given by

Pi = Ωiusi (12)

Note that this is simply the mechanical reaction wheel power and
does not take into consideration the power Po required to operate
the support electronics. This power bias to operate the wheels is
nominally constant, and thus does not influence the power mini-
mization algorithm.

III. Minimum Torque Redundant Reaction
Wheel Control Law

To control the spacecraft attitude, a feedback control law us is
required to stabilize the spacecraft to a desired orientation. The
following development does not depend on the specific type of at-
titude feedback control law that is chosen. Instead, all redundant
RW feedback control strategies lead to an algebraically equivalent
condition that maps the RW motor torques us to a required con-
trol torque Lr . The novel content of this paper is how the Lr is
mapped into us to provide the locally L2 power-optimal solution.

To setup the redundant RW control problem, let σ be a set of
Modified Rodrigues Parameters (MRPs)23, 24, 25, 26, 10 which define
the orientation of the body frame B with respect to a reference
frame R. The vector ω is the body angular velocity of the space-
craft body, while ωr is the desired reference angular velocity vec-
tor. The angular velocity error vector δω be defined as

δω = ω − ωr (13)

To develop a stabilizing feedback control law for this attitude tra-
jectory tracking problem, the following positive definite Lyapunov
function V can be used:10, 25, 1

V (σ, δω) =
1

2
δωT [I]δω + 2K ln

“
1 + σTσ

”
(14)

After setting the time derivative of V equal to the negative semi-
definite function

V̇ = −δω[P ]δω (15)

and substituting the equations of motion in Eq. (1), the required
RW motor torque vector is defined through the constraint:

[Gs]us = Kσ + [P ]δω − [ω̃] ([I]ω + [Gs]hs − ωr)

− [I] (ω̇r − ω × ωr) +L = Lr (16)

The left hand side of Eq. (16) contains a projection matrix [Gs]
which maps the actual RW motor torques in the actual torque ex-
erted onto the vehicle. The right hand side of Eq. (16) is the
reference control torqueLr that is required by the chosen feedback
control strategy.

[Gs]us = Lr (17)

Note that while there are an infinity of us choices which produce
the required torque, all control solutions will yield the same attitude
closed loop dynamics with the sameσ and δω time histories. How-
ever, the RW spin rates Ωi will be different for different choices the
RW torques.

If the matrix [Gs] is full rank then the RW cluster can produce
the required control torque Lr exactly. If this projection matrix is
not full rank, then Lr can only be partially produced. With RW
clusters the geometry of the spin axis is general chosen such that
the ĝsi vectors span the three-dimensional space, and thus [Gs] is
full rank. Further, for the RW cluster control problem [Gs] is a
constant matrix. If more than 3 RWs are employed, then the [Gs]
matrix contains a non-empty nullspace, resulting in an infinity of
usi combinations that produce the required control torque Lr .

Please note that all RW cluster control formulations can be writ-
ten in the compact form shown in Eq. (17). If a different control
strategy is chosen, then only the required torque definition of Lr

changes. For redundant RW setups, the typical RW motor torque

strategy employed seeks the minimum norm solution u∗s which
leads to the smallest absolute motor torques. This solution is given
by

u∗s = [Gs]T
“

[Gs][Gs]T
”−1

Lr (18)

This solution is convenient when the RW motor torque limits are
of concern. This is the case when the RW cluster is controlling the
attitude of a large and massive spacecraft.

Of interest is exploring an alternate method of mapping the re-
quired control torque Lr into the RW motor torque vector us.
Instead of minimizing the instantaneous torque requirement, the
RW motor power requirements are investigated.

IV. Power-Optimal Control Formulation
Small satellite are very limited in the amount of electrical power

that they can produce or the amount of energy that they can store.
The SNAP-I nanosatellite discussed in Reference 27 is an example
of a power-limited small spacecraft. Such spacecraft concepts are
limited in how much electrical power they can provide while radiat-
ing out excess thermal energy through the small spacecraft surface
area. Reference 13 discusses experimental results of a cluster of
miniature CMG devices to control the small spacecraft orientation.
A key concern in this study is the peak power requirement and the
total energy consumed for a maneuver.

The RW cluster control law solution in Eq. (18) which mini-
mizes the instantaneous motor torques may not be the ideal solution
for a small satellite with strong power and energy consumption
limitations. This section investigates an alternate method of map-
ping the required control torque Lr to the RW control torques us

in Eq. (17). Note that either control strategy uses the same Lya-
punov function in Eq. (14) and have the same required torque Lr

expression, they differ only in the resulting motor torque computa-
tion. Let R be the rank of the 3×N projection matrix [Gs], while
M = N − R is the degree of redundancy in the RW cluster. The
minimum RW motor torque solution u∗ is only one of an infinity
of solutions. Let the general motor torque vector be expressed as

us = u∗s + [N ]t (19)

where [N ] is the N ×M the null-space matrix of [Gs] satisfying

[Gs][N ] = [03×M ] (20)

The vector t contains theM null-space scaling parameters through

t = (t1 · · · tM )
T (21)

For a given RW cluster the goal is to find the null-space scaling
parameters ti such that the instantaneous power consumption is
minimized. The total instantaneous mechanical power P required
is given by

P =

NX
i=1

Ωiusi =

NX
i=1

Pi (22)

However, note that the Pi components can be positive or negative.
A positive power Pi means that the ith RW device requires a power
input to achieve the maneuver. A negative power implies that the
RW could return mechanical energy to the cluster. For example,
consider the case where the spin wheel must be decelerated. In-
stead of applying brakes that would convert the mechanical spin
energy into heat, it is be possible to use a dynamo device that de-
celerates the wheel and converts its mechanical energy into stored
electrical energy. This retrieved energy could be used to accelerate
other wheels. In this case it makes sense to try to minimize the total
instantaneous mechanical power usage in Eq. (22). Following such
a research path the energy retrieval efficiency must be taken into
account. Such optimal solutions can be determined numerically,
but are very challenging to develop analytically. Instead, this paper
focuses on the simpler situation where no energy retrieval mecha-
nism is present. In this case a different cost function must be used
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to account for both acceleration and deceleration contributing to
the total electrical power requirement. The benefit of this approach
is that analytical torque solutions can be obtained.

Let P = (P1 · · · PN )
T be a vector containing the RW

powers Pi. Using Eq. (12), the list of RW powers P is expressed
as

P = [Ω]us (23)

where the diagonal matrix [Ω] is defined as

[Ω] = diag(Ωi) (24)

Let the positive cost function J be defined in terms of the L2 norm
of P :

J =
1

2
(|P |2)2 =

1

2

NX
i=1

P 2
i =

1

2
P TP (25)

This cost functions takes into account that both acceleration and
deceleration of RWs requires electrical power. Next the torque vec-
tor us must be found which minimizes this cost function. Using
Eq. (19) and (23) the cost function J is rewritten as

J =
1

2

“
[Ω](u∗s + [N ]t)

”T“
[Ω](u∗s + [N ]t)

”
(26)

A necessary condition for a minimum of J with respect to the null-
space scaling parameter is

∂J

∂t
=
“

[Ω](u∗s + [N ]t)
”T

[Ω][N ] = 0 (27)

Carrying out the matrix algebra leads to

[N ]T [Ω]2[N ]| {z }
[A]

t = −[N ]T [Ω]2u∗s (28)

Before solving for t the invertibility of [A] must be investigated.
The null-space matrix [N ] is expressed using the M -dimensional
vectors ni as

[N ] =

264n
T
1

...
nT

N

375 (29)

Note that none of the ni vectors are a zero vector. The M ×M
matrix [A] is then written as

[A] =

NX
i=1

Ω2
inin

T
i (30)

Because [N ] has rank M through its definition as the null-space
matrix of [Gs], the rank of [A] is also M if the RW spin rates
are non-zero with Ω2

i > 0. In fact, the matrix [A] has rank M
and is invertible if at least M RWs have a non-zero spin rate. For
example, if there are four RWs on the spacecraft, then the null-
space [N ] of [Gs] is a 4 × 1 matrix with M = 1. Because [N ]
cannot contain columns or rows of zeros, all components of [N ]
are non-zero in this case. Here [A] is invertible as long as at least
one RW has a non-zero speed. If the spacecraft has 5 RWs, then
then at least two RWs will have to have non-zero spin rates. If [A]

is invertible, then the optimal null-space scaling parameter vector t̂
is given by

t̂ = −([N ]T [Ω]2[N ])−1[N ]T [Ω]2u∗s (31)

Setting ∂J/∂t = 0 is only a necessary condition for the
power-optimal solution. To guarantee a minimum power solution
∂J2/∂t2 > 0 must be a positive definite matrix. Differentiating
Eq. (27) with respect to t yields

∂J2

∂t2
= [N ]T [Ω]2[N ] (32)

Using the [N ] definition in Eq. (29) this is rewritten as

∂J2

∂t2
=

NX
i=1

Ω2
inin

T
i (33)

which yields a positive definite matrix by inspection for the general
case with Ωi 6= 0. Thus the solution in Eq. (31) provides the null-
space scaling parameters yielding a minimum instantaneous power
control.

What occurs if the [A] matrix is not invertible? First, consider
the simple case where all the RWs are at rest with Ωi = 0. Study-
ing Eq. (26) it is apparent that the power cost function is zero
regardless of which torque solution is used. Any torque solution
in Eq. (19) would provide a power-optimal solution. In this case it
would make sense to simply use the minimum torque solution u∗s
and set t̂ = 0.

Next the scenario is investigated where some Ωi are non-zero,
yet the [A] matrix is not full rank. Let R be the number of non-
zero RW spin rates Ωi, where R < M to guarantee that [A] is
not invertible. Without loss of generality let us assume that only
the first R rotors have non-zero Ωi. Equation (28) is satisfied if a
vector t is chosen such that

nT
i t = −u∗si

for i = 1, · · · , R (34)

Using Eq. (30) the power-optimal scaling parameter condition in
Eq. (28) is rewritten as

[A]t =
“

Ω2
1n1n

T
1 + · · ·+ Ω2

RnRn
T
R

”
t

= −Ω2
1n1u

∗
s1 − · · · − Ω2

RnRu
∗
sR

(35)

where u∗si
is the ith components of u∗s . Because the square matrix

[A] is not full-rank in this scenario, it is not possible to solve this
equation for a unique t. Instead, there are an infinity of scaling
parameters that yield the desired power-optimal solution. A simple
solution to Eq. (35) is to determine the minimum norm solution to
t. Let the R×M matrix [N ] be defined as

[N ] =

264n
T
1

...
nT

R

375 (36)

and Us =
`
u∗s1 · · · u∗sR

´T , then the desired null-space scaling
parameter vector t is determined using

t̂ = −N T ([N ][N ]T )−1Us (37)

for this degenerate scenario with an infinity of solutions.
While Eq. (37) provides an analytical solution for t̂, in practice

the wheel speeds are rarely perfectly zero. Eq. (37) could be im-
plement by using a finite zero-speed deadband to determine which
wheels are effectively at rest. Because the power required for a
zero-speed wheel is zero, having a small non-zero speed with the
zero deadband calculation results in a very small power-optimality
error. Other numerical options to invert a non-fullrank [A] matrix
include a singularity robust inverse,28 or invert only the non-zero
singular values as employed by Hall and Ford in their control-
moment gyroscope rate computation.29 Minimal power optimality
errors would result from any of these approximate numerical meth-
ods because the wheel power approaches zero as Ωi approaches
zero.

V. Special Configurations
This section investigates particular special RW speed conditions

and spin axis alignments. Of interest is how different the instante-
neous power-optimal solution is from the torque optimal solution
u∗. This is achieved by investigating null-space scaling parameter
set t̂.
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Figure 2: Spacecraft Illustration containing 4 Reaction Wheels

A. Equal RW Wheel Speeds
Consider the scenario where the N RWs have identical wheels

speeds Ωi = Ω. In this scenario theN×N matrix [Ω] is expressed
as

[Ω] = Ω[IN×N ] (38)

Substituting the minimum torque solution in Eq. (18) and Eq. (38)
into the t̂ solution in Eq. (31) yields

t̂ = −([N ]T [N ])−1[N ]T [Gs]T
“

[Gs][Gs]T
”−1

Lr = 0 (39)

Due to the nullspace property where [Gs][N ] = 0, note that for
this equal RW speed configuration the nullspace parameter set t̂ is
always zero. This result is true regardless of the number of RWs, or
their choice in body-fixed spin axes. Thus, in this configuration the
torque- and power-optimal attitude control solution to the control
constraint in Eq. (17) are identical.

B. Traditional Four RW Setup
A popular redundant 4 reaction wheel configuration used in

several analytical attitude and control studies10, 19 has three axis
aligned with the spacecraft body principal body frame axis b̂i, with
the 4th wheel diagonally aligned with the first three as illustrated in
Figure 2. In this scenario the 4 RW spin axis ĝsi are setup as fol-
lows in spacecraft body frame B coordinates:

ĝs1 =

B"1
0
0

#
ĝs2 =

B"0
1
0

#
ĝs3 =

B"0
0
1

#
ĝs4 =

1√
3

B"1
1
1

#
(40)

The 1× 4 null-space matrix [N ] of [Gs] is expressed as

[N ] =
h
− 1√

3
− 1√

3
− 1√

3
1
iT

(41)

First assume that the RW spin speeds are given by Ω1, Ω2, Ω3 and
Ω4, while the required torque is expressed as Lr = (L1, L2, L3).
Substituting the particular projection matrix in Eq. (40) and the
associated nullspace in Eq. (41) into the t̂ expression in Eq. (31)
yields Note that if the ith wheel speed Ωi is much larger than the
remaining spin speeds, then the nullspace correction factor will al-
ways approach

t̂ ≈ Li

2
√

3
(43)

Note that surprisingly this result does not depend on the dominant
Ωi spin speed. Instead only the required torque vector Lr deter-
mines the torque nullspace shift t̂. If the Ωi are all set equal than t̂
becomes zero expected from the equal RW speed discussion.

In the previous configuration the four wheel speeds were kept
general. As a result the RW cluster could contain a net angular
momentum that would resist spacecraft motion and require larger
control torques to overcome. Next the configuration is investigated
where the 4th wheel speed is set such that the total momentum of

the RW cluster is zero initially. Assume that the first three RW spin
rates are equal with Ω = Ω1 = Ω2 = Ω3. The zero RW cluster
momentum condition requires that

Ω4 = −
√

3Ω (44)

Substituting this Ω4 condition into Eq. (42) yields the simple t̂ ex-
pression:

t̂ =
L1 + L2 + L3

4
√

3
(45)

Note that in this configuration the nullspace corrections are pro-
portional to the Lr vector components Li regardless of the Ωi

magnitudes.

VI. Numerical Simulations
Numerical simulations of a spacecraft containing four RWs are

performed to compare the minimum-torque attitude control so-
lution in Eq. (18) to the minimum-power control proposed in
Eq. (31). As illustrated in Figure 2, the four RW spin axes are
given in Eq. (40). This redundant RW configuration has the first
three RW spin axes aligned with the principal spacecraft body axes,
while a 4th wheel is aligned diagonally to the others. In this setup
the loss of any RW can be compensated for by the remaining three
RWs. To simulate the motion of a micro-satellite, the spacecraft
and RW inertias of the Tsinghua-113, 30 spacecraft built by Surrey
Space Technologies are used:

[I] = diag(2.5, 2.5, 2.5) kg m2

while the RW spin axis inertia is Js = 0.02 kg m2. The maximum
torque that these RWs can produce is 0.01 Nm.

The reference attitude is set to be that of the inertial frame N ,
demonstrating the response of a regulator problem. Two differ-
ent initial spacecraft state vectors are simulated. Scenario 1 has a
large initial attitude error and is representative of doing an aggres-
sive maneuver. Scenario 2 has a small orientation error allowing
performance comparisons for small maneuvers. Both simulation
scenarios use the same initial angular velocity vector.

σ(t0) = (0.414, 0.300, 0.200) Scenario 1
σ(t0) = (0.000, 0.000, 0.000) Scenario 2
ω(t0) = (0.03, 0.05,−0.01) rad/s

The power and torque performance of three control law cases
are studied. Case 1 is the classical RW control strategy with three
mutually-orthogonal RWs. This case uses only RWs 1–3 defined
in Eq. (40) (RW spin axes aligned with body axes). Case 2 uses
all four RWs in Eq. (40) and employs the traditional minimum-
torque control solution in Eq. (18). Finally, case 3 also uses the
four RWs of case 2 but utilizes the novel minimum-power motor
torque distribution solution presented in this paper.

To provide fair comparisons between these three cases, the
wheel speeds Ωi of RWs 1–3 are initialized to a non-zero value
(500 rpm), while the fourth wheel (if used) is initialized to zero.
This results in the RW cluster having a non-zero angular momen-
tum in all three cases. While a four-wheel configuration can be
setup to have non-zero wheel speeds and a zero RWA momentum,
the classical approach of using three orthogonal RW cannot oper-
ate with zero cluster momentum and non-zero wheel speeds. While
an initially zero-momentum RWA configuration would make the
spacecraft more agile and reduce the control torque requirements, it
would not provide a meaningful comparison to the three-RW setup
in case 1. As such, the RWA initialization with Ω1 = Ω2 = Ω3 6=
0 and Ω4 = 0 allows for reasonable performance comparisons be-
tween the three cases to illustrate the power savings possible while
generating similar motor torques levels.

The control feedback gains are set to

K = 0.020 Nm P = 0.045 Nms
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t̂ =
L1(−5Ω2

1 + Ω2
2 + Ω2

3 + 3Ω2
4) + L2(Ω2

1 − 5Ω2
2 + Ω2

3 + 3Ω2
4) + L3(Ω2

1 + Ω2
2 − 5Ω2

3 + 3Ω2
4)

2
√

3 (Ω2
1 + Ω2

2 + Ω2
3 + 3Ω2

4)
(42)
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Figure 3: Spacecraft Attitude Tracking Errors.

These gains are chosen such that the control torques of all three
cases remain within the 0.01 Nm saturation bound. If more aggres-
sive gains were chosen which saturate the RWs, then the power
usage performance would be drastically influenced by how much
saturation occurs and the resulting stability of the saturated re-
sponse. The control law employed is guaranteed stable only for
unsaturated control. By not having the control saturate, the power-
and torque-usage performance comparisons are more informative.

The numerical simulations are run for 240 seconds each. The
attitude response for both large and initial small attitude errors
are illustrated in Figure 3. The spacecraft orientation errors al-
ways converge in the same manner because each case has the same
closed loop equations of motion.

The RW spin rates and motor torque time histories are illustrated
in Figure 4. Note that the Ωi’s of cases 1 and 2 do not differ very
much. The 4thwheel spin rate remains close to zero. The minimum-
power control solution used in case 3 shows a larger usage of the
4th wheel. For all cases the RW motor torque remain within the
0.01 saturation bounds.

The electrical power and motor torque levels required for these
three cases are compared in Figure 5. Both the results of the large
and small initial state errors of scenario 1 and 2 are illustrated next
to each other. Figure 5(a) shows the root mean square power lev-
els required across the cluster. The unique control solution for the
3-RW case requires the largest average power levels. Using the
4th wheel in case 2 reduced the overall power required noticeably
with a redundant minimum torque control solution. However, the
proposed minimum-power solution reduces the average RW cluster
power requirements even further. These results are mirrored for the
small initial state error case as well as shown in Figure 5(b). Note
that the new minimum L2 power solution does not guarantee that
the resulting maneuver will utilize less energy than a maneuver
employing the minimum torque solution. The power minimiza-
tion is only performed locally at the current time step. To be fair,
the same can be said about the classical minimum-torque attitude
control solution. This control does not do maneuver-wide torque
minimizations, but rather finds the smallest instantaneous torque
solution to provide the required torque.

Figures 5(c) and 5(d) illustrate the total power used. This is

Table 1: Normalized RMS Energy (J/kg·m2) Usage Compar-
isons

Scenario Case 1 Case 2 Case 3

1 6779.30 5208.08 (-23.1%) 4035.55 (-40.5%, -22.5%)
2 3924.38 3226.40 (-17.8%) 2478.81 (-36.8%, 23.17%)

computed using

Ptotal =

NX
i=1

|Pi| (46)

While the earlier RMS power levels illustrate how well the |P |2 is
minimized on average during the maneuver, it does not reflect the
total power required at any particular time. Further, case 1 operates
with one less RW than cases 2 and 3, and thus might still require
less power for these maneuvers than the 4-RW cases. As shown in
Figure 5(c), the case 1 total power requirement is closer to the case
2 power requirement. The reduction in individual power of case 4
is partially offset by the requirement of an additional wheel. The
new control in case 3 still requires the smallest instantaneous total
power for these two maneuver cases. Similar results were found by
varying the initial conditions.

While case 3 minimizes the instantaneous power requirement,
it is expected that the required motor torques are increased. Fig-
ures 5(e) and 5(f) present the RW motor torque vector norm |us|
for all three cases. Only operating with three RWs (case 1) rou-
tinely requires higher torque levels of the RW motors. However,
while the required torques of case 3 are higher than those of case
2, the differences are very small. For a small increase in the mo-
tor torque levels a significant energy savings is achieved with the
proposed minimum power RW motor torque distribution solution.

The normalized root mean square energy requirements for the
case 1–3 maneuvers are listed in Table 1. The mechanical energy
of accelerating the RW is accumulated across the maneuver and
scaled by the reaction wheel inertial Js.30 Simply employing the
previously at rest 4th reaction wheel during the maneuver (case 2)
decreases the total power used by about 17–23%. The minimum-
power RW control solution with the same initial conditions yields
an average root mean square energy savings of 36–40% over case
1, and 22–23% compared to case 2. Note that these savings levels
do not take into consideration the standby power levels simple to
operate a reaction wheel. These are implementation specific and
are often below 0.1 Watts for Tsinghua-1.13, 30 The improvements
of case 3 over case 2 are valid regardless of the standby power
consumption because both cases employ all four reaction wheels.

VII. Conclusion
The classical minimum wheel motor torque solution for a re-

dundant cluster of reaction wheels is revisited to examine instan-
taneous power-optimum reaction wheel motor torque distributions.
The reaction wheel redundancy creates a null-space in the flywheel
motor torque solution. An analytical solution is provided that de-
termines the solution in the null-space that provides the smallest
electrical power requirement using the L2 norm at the current time
step. If some reaction wheels speeds are effectively zero, then
there are an infinity of power-optimal solutions. While analyti-
cal answers are provided for this situation, approximate numerical
methods could also be employed with minimal impact on the in-
stantaneous power requirement. As with the minimum torque con-
trol solution to a redundant reaction wheel cluster, this control does
not provide for global maneuver-wide optimal solutions. However,
the new control strategy can typically provide around 10–20% en-
ergy savings for a minimal increase in the average torque used.
The power savings of the a four RW setup using the new minimum
power torque distribution over a three RW setup reached 30-40%.
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Figure 4: Comparison of Reaction Wheel Spin Rates and Motor Torques for Cases 1–3 of Scenario 1.

Future research could investigate L1 power-optimal motor torque
solutions where regenerated power of decelerated reaction wheels
can compensate for power required to accelerate other wheels.
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