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Abstract

The concept of a spinning 2-craft Coulomb tether is introduced. Here a physical tether is replaced with an

electrostatic force field resulting in an attractive Coulomb force between the 2 craft. This results in conic section

motions similar to the two-body gravitational problem, with spinning in-plane and out-of-plane motions. The spacecraft

charge is assumed to be regulated with an active charge servo system. The stability of a Coulomb tether with constant

spacecraft charges is investigated. The reduced equations of motion for a deep space mission are obtained and

linearized to determine eigenvalues of the perturbed motion. This analysis shows that if the plasma Debye length is

smaller than the spacecraft separation distance the radial motion is guaranteed to be unstable. For larger Debye lengths

the nonlinear radial motion is locally stable. The perturbed out-of-plane motion is shown to always be stable regardless

of Debye length. Further, open-loop charge solutions are obtained to perform reconfiguration where the circular orbit

radius is changed to a new value. This maneuver is related to the classical Hohmann transfer orbit between circular

orbits. However, in the Coulomb tether concept the reconfiguration is achieved by varying the effective gravitational

parameter through spacecraft charge changes.

Index Terms

Two-satellite Coulomb tether formations, relative equilibria, stability, Coulomb tether reconfiguration.

I. INTRODUCTION

Coulomb thrusting is a novel method to control the close relative motion of spacecraft using electrostatic

(Coulomb) force fields. This concept was introduced by King and Parker in [1] in 2001 where they explored

the natural spacecraft charging that occurred on a GEO satellite. Instead of treating this Coulomb force as a

perturbation, they proposed to use it instead as an active means of relative motion control. Through active charge

emission of electrons and ions the spacecraft potential is regulated to desired values. The ensuing motion of two

constant charge craft in deep space resembles the motion in the classical gravitational two-body problem, where a

line-of-sight force produces in-plane and out-of-plane motion depending on electrostatic repulsion or attraction.
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This has led to a multitude of novel relative motion missions. The concept of virtual Coulomb structures has the

electrostatic forces perfectly cancel out the differential gravitational acceleration, resulting in a spacecraft cluster

whose satellite positions appear frozen as seen by the rotating chief local-vertical-local-horizontal (LVLH) frame

[1], [2], [3], [4]. However, all charged static relative equilibria solutions in orbit or in deep space found to date are

unstable and require active charge feedback to stabilize. In this paper a spinning charged two-craft system in deep

space is studied, where no gravitational influences affect the spacecraft system. Such a system could be used to

perform interferometric sensing missions where only 2 craft perform the imaging process.

The first feedback stabilized charged virtual structures is the nadir aligned Coulomb tether concept discussed

in [5] and [6]. Here the physical tether connecting 2 spacecraft is replaced with a Coulomb force field. However,

while a physical tether must always be in tension, the Coulomb tether can exert both attractive and repulsive forces

between the 2 craft. In contrast to a cable tether which can have lengths of multiple kilometers, the Coulomb tether

concept is only applicable for relative small separation distances of up to 100 meters at geostationary Earth orbits, or

up to 50 meters at 1 AU in deep space [1]. In a vacuum the electrostatic force field strength drops off quadratically

with increasing separation distances. In the space plasma environment the free-flying ions and electrons partially

shield the electrostatic force between spacecraft depending on the plasma density and temperature [1], [7]. This

shielding can be modeled through an exponential field strength drop-off, where the force reduction is controlled

through the plasma Debye length [8].

The potential Coulomb tether applications include deploying a free-flying sensor and tethering it to the mother

craft using Coulomb forces, or using this electrostatic force to achieve a rendezvous and docking approach. In the

case of an Earth-orbiting system, Natarajan shows in [5] that sensing only the separation distance is sufficient to

develop a charge feedback control law which asymptotically stabilizes both the separation distance and the in-plane

motion. The out-of-plane motion for the nadir aligned Coulomb tether is naturally stabilized through the gravity

gradient torque acting across the cluster.

The first spinning charged spacecraft clusters are explored in [9]. Here the charged 3-body problem is written

in a form similar to Lagrange’s invariant shape gravitational 3-body problem yielding the famous collinear and

triangular libration points. Similar results are obtained for the spinning 3 charged spacecraft problem. However, this

analysis only investigates the charges required for a relative equilibria and discusses the resulting trajectory shapes

and boundedness. The stability of any spinning charged spacecraft cluster has not yet been explored.

Beyond looking at electrostatic force fields to control satellite relative motion, MIT is investigating the use of

electromagnetic force fields to control the satellite relative orbits [10]. This concept can produce general force

vectors between the craft, but requires sophisticated magnetic coils and an active attitude control system to absorb

momentum. Mason Peck has also looked at using electrostatically charged spacecraft control [11]. However, he is

looking to exploit the Lorentz force which arises from a charged body flying through a planets magnetic field.

This paper investigates the orbital stability of a spinning charged 2-craft cluster as illustrated in Figure 1. The

spinning Coulomb tether formation contains spacecraft with opposite charges, resulting in an attractive force which

balances the centripetal force. This configuration is a constant charge relative equilibria solution of this system. Of
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Fig. 1. Illustration of a 2-craft Coulomb tether formation spinning with a constant separation distance in deep space.

interest is the question of whether this system, under the assumption that all system parameters are known, is stable

under small position, velocity or spacecraft charge errors. Another question of interest is: How can charge be used

to vary the circular trajectory radii and reconfigure the shape of the spinning 2-craft system. In this analysis the

spacecraft are assumed to be operating in deep space and the orbital motion is ignored. However, the spacecraft are

not operating in a pure vacuum, but are in a space plasma environment of rarified charge particles. This will cause

the electric field strength calculation to deviate from the standard inverse square of separation distance relationship.

In particular, the influence of this plasma environment on the stability of the system is investigated.

The spinning 2-craft Coulomb tether concept has a direct application for interferometric sensor missions. Here the

optical measurements acquired by free-flying spacecraft are optically combined to yield an equivalent optical image

of a much larger base-line [12], [13], [14], [15], [16] With the spinning Coulomb tether concept the 2 craft are

sweeping out bounded paths as they complete a revolution. If the target is not moving fast relative to the Coulomb

tether rotation speed, then these measurements can be used for interferometric sensing. As illustrated in Figure 1, if

the 2 spacecraft have unequal masses, then the inertial trajectories will have different radii, sweeping out 2 different

disks in one revolution. The spinning Coulomb tether could be deployed away from Earth on a heliocentric orbit

to search for near Earth asteroids. The relatively short separation distance of less than 100 meters would provide a

wide field-of-view sensor. Further, the focal length of this aperture dish could be varied by changing the spacecraft

charge, which results in larger or smaller relative orbits [12], [13], [14], [15], [16]. Another application involves
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a deep space mother ship deploying a free-flying sensor. The spinning Coulomb tether concept could provide a

purely electrostatic means of keeping this sensor flying about the mother craft while taking images or other sensor

measurement.

This paper is organized as follows. First the basic charged relative equations of motion are presented for a body

in a space plasma environment, and their limitations are discussed. Under certain plasma conditions and assuming

constant charge levels comparisons to the gravitational 2-body problem can be made. Then the passive stability of

a constantly charged spinning 2-craft Coulomb tether concept in a space plasma environment is investigated for

a circular relative equilibria. Finally, simple Hohmann-like open-loop maneuvers are investigated which allow the

circular orbit radii to be changed over time. Numerical simulation illustrate the resulting performance.

II. PROBLEM STATEMENT

This spinning 2-craft Coulomb tether study assumes that the spacecraft are flying in deep space and are not

orbiting any celestial body. Figure 2 shows an inertial frame N : {n̂1, n̂2, n̂3} with its origin at the inertial cluster

center of mass. Let ri be the inertial position vector of the i
th spacecraft, qi the spacecraft charge, and mi the mass.

The equations of motion are then given by

m1r̈1 = kc
q1q2

d2
e−d/λd ı̂r (1a)

m2r̈2 = −kc
q1q2

d2
e−d/λd ı̂r (1b)

where ri = |ri| and d = r1 + r2, while ı̂r = r1/r1 is the unit direction vector of craft 1. The parameter

kc = 8.99 · 109 Nm2
/C2 is the Coulomb constant. Due to the spacecraft flying in a space plasma environment, the

typical 1/d
2 electrostatic force magnitude function is modified with the exponential term. The additional drop off

depends on the plasma Debye length parameter λd [8]. A charged spacecraft in a plasma will statistically attract

more plasma particles with opposite charge to its own. A second craft a distance d apart would not only experience

the charge of the first craft, but also this opposite charge gathering around it. In essence, this effect causes the

first spacecraft charge to be shielded from the second craft. The stronger the shielding is, the shorter the Debye

length λd. In low Earth orbits the Debye length is on the order of millimeters to centimeters, far too small for the

Coulomb thrusting concept to be practical. However, at GEO the plasma is hotter and less dense which increases

the Debye length to values of 100-1000 meters [1], [17]. Such high Earth orbits has been the typical flight regime

of most Coulomb thrusting research. In deep space at 1 AU the Debye length reduces again due to the colder

plasma and can range between 20-50 meters [1]. Note that once the spacecraft are more than 1-2 Debye lengths

apart, the exponential drop off dominates which makes the Coulomb force ineffective.

Let τ be the mass ratio which is defined as

τ =
m1

m2
(2)

Because the inertial N frame origin is defined to be the cluster center of mass, the motion of the second satellite

can be determined through

r2 = −τr1 (3)
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Fig. 2. Illustration of coordinates used to describe spinning charged 2-craft cluster.

Using r1 = r1ı̂r, d = r1(1 + τ), the equations of motion of the first craft can be written in the form

r̈1 =
kc

m1

q1q2

(1 + τ)2
e−r1(1+τ)/λd

r1

r
3
1

(4)

Next, let us define the effective gravitational parameter µ1 as

µ1(r1) = µ0e−r1(1+τ)/λd (5)

where

µ0 = −
kc

m1

q1q2

(1 + τ)2
(6)

is a constant, positive parameter due to q1q2 < 0, then the charged spacecraft equations of motion are written as

r̈1 = −
µ1(r1)

r
3
1

r1 (7)

If µ1 is a constant, then these equations are equivalent to the equations of motion of the gravitational 2 body

problem where µ would be the gravitational constant. Analogously, the equations of motion of the second satellite

can be written as

r̈2 = −
µ2(r2)

r
3
2

r2 (8)

where r2 = −r2ı̂r and

µ2(r1) = −
kc

m2

q1q2

(1 + τ)2
τ

2e−r1(1+τ)/λd (9)

For µ1 to be constant in Eq. (5), the radius r1 must be constant or the Debye length must be infinitely large.

This dictates that the constant µ1 scenario is only possible with circular relative orbits if the Debye length is not

much larger than the separation distance. However, if d � λd, then µ1 is a constant and all possible spacecraft
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trajectories must be conic solutions (i.e. circles, ellipses, parabolas or hyperbolas). However, it should be noted that

the charged spacecraft motion can yield both a positive or negative effective gravitational parameter µ, resulting

in either attractive or repulsive inter-spacecraft forces. As discussed in [9], the negative µ1 case always results in

unbounded hyperbolic motion about the unoccupied focus. The positive µ1 case yields equivalent orbit shapes to

the gravitational 2-body problem. For the Coulomb tether problem in this paper, the charge product q1q2 is assumed

to be negative.

Note that as with the gravitational 2-body problem, if the equations of motion are written of one satellite relative

to another, the same vector equation is obtain as in Eq. (7), but with a different µ definition. If both case the

solutions are conic sections for the large Debye length situation.

From a stability point of view, if λd � d and µ1 is a constant, then all charged relative trajectories will be

stable. This scenario yields a Hamiltonian system with only conservative forces acting on it. The response is now

equivalent to the motion of satellites about a planet whose orbits are stable.

Of interest is what occurs when the plasma Debye length is not ignorable and the Coulomb force is no

longer modeled through the vacuum electrostatic potential function −kcq1q2/r. Let us consider the inertial angular

momentum vector of craft 1 about the center of mass:

H1 = r1 ×m1ṙ1 (10)

Taking the inertial time derivative yields

Ḣ1 = r1 ×m1r̈1 = 0 (11)

because the Coulomb force is always aligned with r1 regardless of the Debye length. Thus, whatever plane the

initial position and velocity vectors form, all resulting motion will be within this plane even if the plasma charge

shielding effect is considered.

The constant charge product q1q2 required to maintain a circular orbit of radius rc and velocity vc is found as

follows. Equating the centripetal acceleration magnitude with the inertial acceleration magnitude in Eq. (1) yields

v
2
c

rc
= −

kc

m1

q1q2

r2
c (1 + τ)2

e−r1(1+τ)/λd (12)

Solving for q1q2 we find the charge solution which will maintain a circular trajectory to be:

q1q2 = −v
2
crc

m1

kc
(1 + τ)2er1(1+τ)/λd (13)

This paper investigates the stability of this circular spinning Coulomb tether in the presence of the plasma shielding

effect.

III. STABILITY ANALYSIS

A. Reduced Equations of Motion

Before investigating the stability of the circularly-restricted Coulomb tether, let us reduce the equations of motion

to a more convenient form using the spherical position coordinates (r, θ,φ) illustrated in Figure 2. This leads to

conditions for a relative equilibria.
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The system has six degrees of freedom which are the positions of the craft in space. However, setting the origin

of the coordinate system at the center of mass of the two-craft system, one only needs to consider the motion of

one of the craft. The second spacecraft spherical coordinates are related to the first craft coordinates through:

r2 = τr1 (14a)

θ2 = π + θ1 (14b)

φ2 = −φ1 (14c)

We will work in terms of the coordinates r1, θ1 and φ1. From here on we rename these coordinates r, θ, and φ

as shown in Figure 2. In terms of these spherical coordinates, the inertial kinetic energy of craft 1 is given by

K(r, ṙ, θ, θ̇,φ, φ̇) =
m1

2

�
ṙ
2 + r

2 cos2φ θ̇
2 + r

2
φ̇

2
�

(15)

The Lagrangian for this system is simply the kinetic energy:

L(r, ṙ, θ, θ̇,φ, φ̇) = K(r, ṙ, θ̇,φ, φ̇) (16)

The Lagrange-d’Alembert principle:

δ

�
L(r, ṙ, θ, θ̇,φ, φ̇)dt

+
�

F (r, ṙ, θ, θ̇,φ, φ̇) · (δr, δθ, δφ)dt = 0 (17)

can be used to derive the equations of motion, where F is the vector of generalized forces acting on the system.

In the present case the generalized force is given by

F (r, ṙ, θ, θ̇,φ, φ̇) =



kcq1q2e
− r(1+τ)

λd

r2(1 + τ)2
, 0, 0



 (18)

The Lagrange d’Alembert principle then gives the following equations of motion

d
dt

�
∂L

∂ṙ

�
−

∂L

∂r
=

kcq1q2e
− r(1+τ)

λd

r2(1 + τ)2
(19a)

d
dt

�
∂L

∂θ̇

�
= 0 (19b)

d
dt

�
∂L

∂φ̇

�
−

∂L

∂φ
= 0 (19c)

We observe that the Lagrangian is independent of θ, which is therefore a cyclic variable. Associated with the

cyclic variable θ is a conserved quantity, namely the angular momentum about the axis perpendicular to the plane

of the orbit of the spacecraft pair. While the kinetic energy is not conserved for the general Debye length case, the

cluster angular momentum is conserved because the Coulomb force is an internal force in all cases. Carrying out

a Routhian reduction [18], we can use conservation of this quantity to derive the equations of motion, which are

going to be independent of θ. Note that the generalized angular momentum is given by

pθ =
∂L

∂θ̇
= m1r

2 cos2φ θ̇ (20)
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which is conserved according to Eq. (19b). For this system pθ is the n̂3 vector component of the inertial angular

momentum vector H1 = (H1, H2, H3) in Eq. (10). Thus, given the initial conditions we can set H3 = pθ. If φ = 0o

then pθ is the angular momentum magnitude. Using Eq. (20) we are able to express θ̇ in terms of the radius r as

θ̇ =
H3

m1r
2 cos2φ

(21)

The Routhian is given

R(r, ṙ,φ, φ̇) =
�
L−H3θ̇

�

θ̇= η

m1r2 cos2φ

=
1
2

�
m1ṙ

2 + m1r
2
φ̇

2
−

H
2
3

m1r
2 cos2 φ

�
(22)

The reduced equations of motion are then given by

d
dt

�
∂R

∂ṙ

�
−

∂R

∂r
=

kcq1q2e
− r(1+τ)

λd

r2(1 + τ)2
(23a)

d
dt

�
∂R

∂φ̇

�
−

∂R

∂φ
= 0 (23b)

which result in

m1r̈ −m1rφ̇
2
−

H
2
3

m1r
3 cos2 φ

=
kcq1q2e

− r(1+τ)
λd

r2(1 + τ)2
(24a)

m1r
2
φ̈ + 2m1rṙφ̇ +

H
2
3 tanφ

m1r
2 cos2 φ

= 0 (24b)

For the following stability analysis the lack of θ in the reduced equations of motion provides an ideal simplification.

For the un-perturbed orbit, θ is the in-plane angular position of the spacecraft. If a perturbed orbit has a slightly

different θ̇ rate, or orbit period, then this neighboring trajectory is still considered stable in the orbital sense.

B. Stability of Circularly Spinning Coulomb Tether

Let our circular orbit correspond to r = rc > 0 (a constant), ṙ = 0, φ = φc = 0 and φ̇ = 0. The generalized

angular momentum corresponding to this orbit is given by

H
2
3 = −

m1rckcq1q2e
− rc(1+τ)

λd

(1 + τ)2
(25)

We immediately note that for a bounded circular orbit, we require that

q1q2 ≤ 0 (26)

Linearizing equations (24) about the nominal circular orbit, we obtain

m1δr̈ +
kcq1q2e

− rc(1+τ)
λd

r2
cλd(1 + τ)2

�
1 + τ −

λd

rc

�
δr = 0 (27a)

m1r
2
cδφ̈−

kcq1q2 exp−
rc(1+τ)

λd

rc(1 + τ)2
δφ = 0 (27b)

where we have substituted H
2
3 by the expression in Eq. (25).
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Note that the linearized equations are decoupled. Regarding the linearized radial equation of motion, the eigen-

values are given by

sr = ±
H3

m1r
2
c

�
1
λd

�
1 + τ −

λd

rc

�
(28a)

= ±

����
−

kcq1q2e
− rc(1+τ)

λd

m1r
3
cλd(1 + τ)2

�
1 + τ −

λd

rc

�
(28b)

Noting that q1q2 < 0, one eigenvalue will have a real positive value if

λd ≤ rc(1 + τ) (29)

Thus, if the spacecraft separation distance d = rc(1+τ) is greater than the Debye length λd, the circularly spinning

Coulomb tether with constant charges is guaranteed to be unstable. For small separation distances where d < λd

the eigenvalues are purely imaginary, providing only marginal stability of the linearized in-plane motion.

Regarding the out of plane motion, the linearized φ equation has the following eigenvalues

sφ = ±ı
H3

m1r
2
c

(30a)

= ±ı

����
−

kcq1q2e
− rc(1+τ)

λd

m1r
3
c (1 + τ)2

(30b)

Because q1q2 < 0, we immediately see that the linearized φ equation is marginally stable regardless of the Debye

length value. However, in this case it can be argued that this linearized stability result does yield a stable equilibrium

motion for the nonlinear system. Recall that the angular momentum vector H1 is conserved, which led to the

argument that the spinning 2-craft Coulomb tether motion will always be planar. If the orbit plane is not in the

nominal (n̂1, n̂2) plane, but rather is inclined by an angle i, this angle is determined through the initial r1(t0) and

ṙ1(t0) vectors. The spherical coordinate φ will then be bounded by this constant inclination angle.

|φ(t)| ≤ i (31)

Thus, regardless of initial conditions, the out-of-plane angle φ(t) is guaranteed to be Lagrange stable or bounded for

the nonlinear system thanks to the conservation of angular momentum in the presence of plasma charge shielding.

To investigate the nonlinear stability of the radial motion we can consider only the reduced radial equations of

motion in Eq. (24a) for the planar motion without loss of generality. The nominal circular orbit angular momentum

H in is written using Eq. (6) as

H
2 = µ0m

2
1rce

− rc(1+τ)
λd (32)

Using H3 = H and φ = 0 for the planar case, the radial equations of motion in Eq. (24a) are reduced to the form

r̈ + F (r) = 0 (33)

with

F (r) =
µ0

r3

�
re−

r(1+τ)
λd − rce

− rc(1+τ)
λd

�
(34)
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where rc is the nominal circular orbit radius. Note that the angular momentum expression has been absorbed into

the equivalent gravitational constant µ0 in this formulation. If r = rc, then r̈ = 0 and the circular reference motion

is retained.

Because the radial acceleration only depends on the radius r and not ṙ, the F (r) function can be written as the

gradient of the potential function VF (r)

VF (r) = −
µ0

r
e−

r(1+τ)
λd +

µ0

2r

rc

r
e−

rc(1+τ)
λd

−
µ0(1 + τ)

λd

� ∞

− r(1+τ)
λd

e−s

s
ds (35)

Using r̈c = 0, the equation of motion of radial deviations δr = r − δrc is then

δr̈ = −∇rVF (r) (36)

This potential function can be approximated about r = rc through the Taylor series expansion:

VF (r + δr) = VF (rc) + k1δr
2 + k2δr

3 + · · · (37)

where

k1 =
µ0

2r3
c

�
1−

d

λd

�
e−

d
λd (38)

k2 =
k1

3rc

�
d
2

λ
2
d

+ 4
d

λd
− 6

�
(39)

with d = rc(1 + τ) being the spacecraft separation distance. For the case where d < λd (the marginally stable

linearized result) the quadratic term has k1 > 0. The potential function VF is thus guaranteed to have a finite

neighborhood about δr = 0 for which VF is positive definite in δr.

The Lagrange-Dirichlet stability states that an equilibrium point is stable if the second derivative of the potential

function is positive definite [19], [20]. Using the potential function expansion in Eq. (37) it is evident that

d2
VF

dr2

���
r=rc

= k1 +O(δr) > 0 (40)

for some finite neighborhood about the origin.

Alternatively, we can define the candidate Lyapunov function V to study the nonlinear stability of r(t).

V (δr, δṙ) =
1
2
δṙ

2 + VF (rc + δr)− VF (rc) (41)

Note that at the equilibrium states δr = δṙ = 0 that V (δr) = 0. Further, because there exists a neighborhood about

the equilibrium where VF is positive definite, this Lyapunov function is also locally positive definite. Evaluating

the Lyapunov rate V̇ yields

V̇ = δṙ (δr̈ +∇rVF ) = 0 (42)

Because V̇ ≤ 0 the nonlinear radial motion is guaranteed to be locally stable about the equilibrium.
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TABLE I

NUMERICAL SIMULATION PARAMETERS

Parameter Value Units

m1/m2 50/75 kg

kc 8.99× 109 Nm2

C2

q1/q2 10/-10 µC

rc1/rc2 15/10 m

vc1/vc2 11.119/-7.413 mm/s

δr1(t0) 0.3 m

θ(t0) 0.0 deg

φ(t0) 1 deg

20 40 60
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-0.0025

0.0025
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0.0075
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(a) Phase Portrait for (δr, δṙ) Constant Angular Momentum.
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(b) Lyapunov Function for Ranges of δr Values.

Fig. 3. Stability Illustrations of Numerical Simulation.

C. Numerical Simulation

To illustrate the stability of a spinning 2-craft Coulomb tether in deep space for different Debye length cases,

the following numerical simulations are performed. The spacecraft masses, charges, and other relevant simulation

parameters are listed in Table I. Note that m2 > m1 to have both craft travel circular trajectories of different radii.

With the given velocities it will take about 2.35 hours for the nominally circular Coulomb tether to complete one

revolution. With higher charge limits this period could be reduced.

First let us investigate the phase plot of this nominally circular Coulomb tether with simulation parameters as

specified in Table I. The basic equations of motion in Eq. (1) are integrated for a range of initial δr and δṙ

perturbations while holding the angular momentum magnitude H and spacecraft charges constant. The charges q1

and q2, and thus the parameter µ0, are computed for the nominally circular trajectory were craft 1 has a circular

radius of rc1 and speed vc1, while craft 2 has a radius rc2 and speed vc2. The Debye length is set to λ = 50

meters, for which the stability condition d < λd is satisfied. The resulting phase portrait is shown in Figure 3(a).

The tear-drop region around the origin results in stable motions about this equilibrium as predicted. Figure 3(b)
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illustrates the position dependent behavior of the Lyapunov function V . About the origin V (δr, 0) is locally positive

definite. However, it is interesting to note that for a given H and µ0 value, there exists a second circular equilibrium

point. For this setup this equilibrium is hyperbolic, resulting in unstable motion. This would be expected because

here the separation distance has grown larger than the Debye length.
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Fig. 4. Numerical simulation results for stable case 1 with a large Debye length of λd = 50 meters for craft 1 (- - -) and craft 2 (——). The

unperturbed motion is shown in black.

Next the three-dimensional charged spacecraft motion is considered for two different Debye length cases. In case

1 the Debye length is 50 meters, which is larger than the 25 meter nominal separation distance. Case 2 sets λd

= 20 meters which should result in unstable motion. Both cases use the same radial distance error δr and out of

plane motion φ shown in Table I. The initial velocity vectors were not perturbed in these simulations, only the

initial positions. As a result, the perturbed Coulomb tether has an orbit plane inclination of i = φ(t0) = 1o.

The inertial nonlinear equations of motion in Eq. (1) are integrated for 5 nominal orbit periods in this numerical

simulation. The resulting motion for case 1 is illustrated in Figure 4. The planar projection of the 2 craft trajectories

in Figure 4(a) shows the initial positions of the craft as small spheres, the nominal circular trajectories as black lines.
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The actual perturbed motion oscillates about the nominally circular trajectories, but does not form closed curves.

If the Debye length were negligible here than the perturbed motion would also form conic solutions. However,

with the plasma shielding active the inverse square Coulomb force is weakened further as the separation distances

increase. The radial and out-of-plane motion coordinates are illustrated in Figures 4(b) and 4(c). As predicted, the

angle φ is bounded in magnitude by the perturbed orbit inclination angle of 1 degree.
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Fig. 5. Numerical simulation results for unstable case 2 with a small Debye length of λd = 20 meters for craft 1 (- - -) and craft 2 (——).

The unperturbed motion is shown in black.

If the Debye length is reduced to 20 meters in case 2, then the numerical simulation yields unstable relative

trajectories as illustrated in Figure 5. With the same initial perturbation, the plasma shielding effect is sufficient

to destabilize the relative motion and cause the radial separation distance to grow infinitely large. The angular

out-of-plane coordinate φ remains bounded by the orbit inclination angle and reduces in value as the spacecraft

separate.



14

IV. COULOMB-TETHER LENGTH RECONFIGURATION

One benefit of the Coulomb tether concept is that the spacecraft charges qi can be regulated to desired values.

For example, if the charges are lowered, then the effective gravitation parameter µ is reduced and the craft would

increase their separation distance. This section outlines a method to reconfigure a spinning Coulomb tether and

change the circular orbit radius to a new value.

For the case where the Debye length can be ignored (d� λd), the equations of motion of spacecraft 1 relative

to the cluster center of mass as given by

r̈1 = −
µ1

r
3
1

r1 (43)

where the effective gravitational parameter µ1 is the constant

µ1 = −
kc

m1

Q12

(1 + τ)2
(44)

If Q12 = q1q2 < 0, the µ1 > 0 and a gravity-like attractive force is experienced between the two spacecraft. This

scenario allows us to be motivated by the gravitational orbit boost maneuvers such as the Hohmann transfer [21]

to develop a spinning Coulomb tether reconfiguration maneuver. Following equivalent steps as are used to derive

the energy equation for the gravitational 2-body problem [22], an equivalent energy equation can be found for the

charged spacecraft motion.
v
2
1

2
−

µ1

r1
= −

µ1

2a
(45)

Here r1 and v1 are the radius and speed of craft 1, and a is the semi-major axis of the resulting conic motion.

This energy equation is very useful for the 2-craft Coulomb tether problem because it can be used to determine

the how much speed the craft can have without resulting in unbounded parabolic (a→ ∞) or hyperbolic (a < 0)

motion. For example, to achieve a parabolic trajectory with a given radius r1 and charge product Q12, the condition

v
2
1 = 2µ1 must be true leading to an escape speed of

v1,esc = −
2
r1

kc

m1

Q12

(1 + τ)2
> 0 (46)

For the gravitational 2-body problem the Hohmann transfers are obtain ∆v maneuvers to transfer between 2

circular orbits using an elliptical transfer orbit. During the first burn the velocity magnitude is changed to make

the satellite increase or decrease its radius. The burn is selected such that the next extremal point is at the desired

orbit radius. After applying a second burn the desired circular orbit speed is maintained.

With the spinning 2-craft Coulomb tether problem it is not possible to apply an impulsive velocity change ∆v

using the Coulomb forces. Instead the effective gravitational parameter µ1 is changed to weaken or strength the

attractive Coulomb force. In this manner Coulomb tether reconfigurations are possible which are equivalent to the

Hohmann gravitational maneuver, as illustrated in Figure 6.

Without loss of generality, let’s assume we are going to increase our orbit radius of craft 1 from r0 = r1(t0) to

r1(t1) = γr1(t0), where γ > 0 is a orbit radius scaling parameter. At time t0 the gravity-like parameter µ1 must

be changed such that the given spacecraft speed is greater than the circular orbit speed and the craft fly apart. At
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t1

elliptical transfer orbit

r1(t1)

t0

r1(t0)

original circle

new circle

Fig. 6. Illustration of the Coulomb Tether Reconfiguration Maneuver.

time t1 the craft has reached apoapses and the µ1 parameter must be changed again to maintain the new circular

orbit. Note that each µ1 change is accomplished using Eq. (44) by changing the spacecraft charge levels.

Given the initial circular orbit of radius r0 and speed v0, the initial parameter µ1(t−0 ) must be

µ1(t−0 ) = v
2
0r0 (47)

The elliptical transfer orbit will have a semi-major axis of

a =
r0 + γr0

2
= r0

1 + γ

2
(48)

To perform this maneuver we are changing the effective gravitational parameter µ1 instantaneously such that

the resulting elliptical motion will reach the desired final relative orbit altitude. The spacecraft charge can reach

maximum values within milli-seconds, making the instantaneous charge change assumption valid [1]. Thus, to write

the energy equation at time t0 where we enter the transfer orbit by changing µ1(t−0 ) to µ1(t0), we still have a

radius of r0 and the initial circular orbit speed v0.

v
2
0

2
−

µ1

r0
= −

µ1

2a
(49)

Using the semi-major axis a in Eq. (48), this leads to the condition

v
2
0r0 = µ0 = µ1

�
2γ

1 + γ

�
(50)

Because µ1 is proportional to the charge product Q12, we can state that to enter the desired transfer orbit at time

t0, the spacecraft charge product must be:

Q12(t0) = Q12(t−0 ) ·
�

1 + γ

2γ

�
(51)
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The percentage change is
Q12(t0)−Q12(t−0 )

Q12(t−0 )
=

1− γ

2γ
· 100% (52)

At time t1 a new parameter µ1(t1) is needed to re-circularize the orbit. The spacecraft velocity at apoapses is

v1 = v(t1) and the radius is r1 = r0γ. To maintain a circular orbit, the effective gravitational parameter µ1 must

be changed from µ1(t0) to µ1(t1) such that

v
2
1r0γ = µ1(t1) (53)

Expressing the transit orbit energy equation at apoapses we find

v
2
1

2
−

µ1(t0)
r0γ

= −
µ1(t0)

2a

Substituting in the transfer orbit semi-major axis a and solving for v
2
1r0γ yields

v
2
1r0γ = µ1(t0)

�
2−

2
1 + γ

�
= µ1(t0)

2
1 + γ

(54)

Using Eq. (54) and (50) we find

µ1(t1) = µ1(t0)
2

1 + γ
= µ0(t−0 )

1 + γ

2γ

2
1 + γ

=
µ0(t−0 )

γ
(55)

Thus, the final effective gravitational parameter is simply the initial value on the original circular orbit divided by

the scaling factor γ. Finally, the spacecraft charge product Q12 at time t1 must then be

Q12(t1) = Q12(t−0 )
1
γ

(56)

The percent change with respect to the original Q12(t−0 ) is

Q12(t1)−Q12(t−0 )
Q12(t−0 )

=
1− γ

γ
· 100% (57)

The percent change with respect to the intermediate Q12(t0) value is

Q12(t1)−Q12(t0)
Q12(t0)

=
1− γ

1 + γ
· 100% (58)

Thus, by instantaneously change the spacecraft charge product using Eqs. (51) and (57), a Hohmann-transfer like

reconfiguration of the circular spinning Coulomb tether is achieved.

V. CONCLUSIONS

The concept of a spinning 2-craft Coulomb tether is introduced in this paper. This is the first passively stable

Coulomb spacecraft mission scenario that has been investigated. All previous work on virtual Coulomb structures,

static nadir aligned Coulomb tethers, or general spacecraft cluster control required feedback control laws to stability

the cluster shape, size and orientation. The analysis shows that the nonlinear radial motion is locally stable if the

spacecraft separation distance is less than the Debye length, and it is guaranteed to be unstable if it is larger

than the Debye length. The out-of-plane motion is shown to always be bounded thanks to the conservation of

angular momentum. This stability results are verified in two numerical simulations which illustrate both stable and

unstable configurations. Further, open-loop piece-wise constant charge maneuvers are illustrated which are inspired
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by the gravitational Hohmann transfer orbit problem. To reconfigure the separation distance of the Coulomb tether,

instantaneous charge changes are computed which change the effective gravitational parameter and allow the tether

length to expand or reduce to a desired value.
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