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Abstract The relative attitude is studied between two charge controlled spacecraft
being held at a fixed separation distance. While one body has a spherical shape,
the 2nd body is assumed to be non-spherical and tumbling. The attitude control
goal is to arrest the rotation of the 2nd body. While prior work has identified the
existence of torques between charged bodies, this is the first analytical study on a
charged feedback attitude control. Using the recently developed multi-sphere method
to provide a simplified electrostatic force and torque model between non-spherical
shapes, Lyapunov theory is used to develop a stabilizing attitude control using
spacecraft potential as the control variable. Zero and non-zero equilibrium poten-
tials are considered, with the later suitable for the electrostatic tug concept. With a
pulling configuration, the cylinder will come to rest with the long axis aligned with
the inter-vehicle axis in a stable configuration. For a pusher, the cylinder will set-
tle 90 degrees rotated from this axis. Numerical simulations illustrate the control
performance.
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Introduction

Electrostatic actuation in space has been proposed as early as 1966 by Cover et. al.
in Reference [1]. Active charging is proposed to actuate a membrane attached to a
solid outer structure of a geostationary satellite. The Geosynchronous Orbit (GEO)
region is shown to require very low current emission to maintain a non-equilibrium
potential on a space object, yielding Watt-levels of power requirements. The required
mass emission for this electrostatic or Coulomb actuation is so low, this mode of
actuation is often referred to as essentially propellantless. Later, in 2003, Refer-
ence [2] reiterates the virtues of Coulomb actuation at GEO, and studies the prospects
of using Coulomb forces to control the relative motion of free-flying spacecraft
dozens of meters apart. Novel charged astrodynamics equilibria are identified illus-
trating the new types of close proximity flying missions that are enabled through this
low-propellant relative motion control method.

However, the fuel-efficiency comes at a cost of complex, strongly-coupled non-
linear relative differential equations of motion, yielding a non-affine control problem
for the general N-cluster scenario. Coulomb formation flying (CFF) dynamics and
control has been studied in numerous publications, but much work remains to
be done to fully understand the complex relative motion behaviors, and identity
promising mission scenarios. Analytical solutions for fixed formation shape charged
equilibria are discussed in References [3—5], while feedback control on 2- and 3-
craft formations are discussed in References [6—8]. Hybrid relative motion control
employing both inertial thrusters and electrostatic actuation allows for more gen-
eral relative motion control where the electrostatics don’t provide full controllability
[9-13]. Other charged astrodynamics research has focused on charging spacecraft
to large potentials to exploit the interaction with the planet’s magnetic and generate
Lorentz-Augmented Orbits (LAO) [14-16].

Most prior studies have focused on studying the electrostatic forces and the rel-
ative translational motion that results. Flying two charged spacecraft dozens of
meters apart can yield electrostatic torques as well as forces. Reference [2] uses
the NASCAP software (NASA/Air Force Spacecraft Charging Analysis Program) to
model the expected force and torque levels for a range of spacecraft potentials at GEO
conditions. The torques are identified as a significant influence if the craft are fly-
ing very close, on the order of 1-3 craft radii, but no dynamic analysis is performed.
The prospects of using electrostatic torques for attitude control is mentioned in Ref-
erence [17], but no attitude dynamics are simulated. A reason for the lack of charged
relative attitude dynamics studies is the complexity in modeling the electrostatic
torques. Because the torques are only significant at very close separation distances
of a few craft radii, common simplifying assumptions, such as the vehicle capaci-
tance being evaluated using isolated body models, are no longer valid. The presence
of another charged body impacts the capacitance of each vehicle, as has been exper-
imentally demonstrated [18, 19]. While it is possible to use numerical finite element
solvers to determine the electrostatic fields about a cluster of general shapes, it can
take minutes and longer to evaluate a single force solution. This is not suitable for
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numerical simulations of the attitude dynamics where a single test run can require
10,000’s of force evaluations.

A recently proposed electrostatic force modeling technique, called the Multi-
Sphere Method (MSM) is able to provide a reduced order model suitable for
faster-than-realtime dynamic simulations [20, 21]. Both bodies are assumed to have
a conducting outer surface, such that constant surface potential is maintained with
active charge emission. The general shape is discretized through a series of spheres,
all held at the same potential of the spacecraft. Using the position dependent
capacitance model of a series of spheres [22, 23], the electrostatic force evalua-
tion is reduced to a linear algebra problem that can be solved in a fraction of a
second.

The MSM is used in this study to investigate potential feedback control strategies
to arrest the motion of a tumbling object. This is the first study where the charged
relative motion dynamics are consider and simulated. One motivation of this work
is a recently introduced electrostatic tug concept where charge transfer is employed
to create an electrostatic force with a space tug to move large geostationary space
debris [24]. Here active inertial control is applied to maintain a fixed separation dis-
tance while engaging the electrostatic tractor [25]. If the debris rotational momentum
could be arrested without physical contact, it would make any docking mission with
space debris much simpler. Other applications include performing general CFF orbit
corrections where a sub-set of the cluster nodes have inertial thrusting capabilities,
and the remaining objects are electrostatically tugged [25].

If the net charge and charge distribution on each body were fixed, then the electro-
static attitude problem would be similar mathematically to the gravity gradient torque
attitude problem of orbiting spacecraft. Unlike the small second body assumption
made when computing the gravity gradient equilibria of a spacecraft, the electro-
static relative equilibria between two charged bodies makes no such relative size
assumption. Further, because with active charging the potential is controlled, the
charge distribution for closely neighboring objects varies as a function of the relative
position and orientation of the objects [19, 22, 23].

The scope of this work considers only one-dimensional rotational motion, and
assumes the non-tumbling vehicle (i.e. tug) is spherical in shape. This initial study
considers the non-spherical, tumbling space body to be cylindrical. Further, the
important issue of robustness is left to future work where experimental demonstra-
tions of these attitude control solutions are being developed. Because the separation
distances are only dozens of meters, and the GEO Debye length is around 200 meters,
[26] the space plasma will have a negligible impact on the electrostatic actuation.
Thus, vacuum conditions are assumed for this paper. The space weather or neigh-
boring plasma will have an impact on the required electrical power requirements.
As discussed in Reference [1], these power requirements are very low around Watt-
levels. The potential levels considered in this study range up to 20kV. This potential
level has been observed to naturally occur at times in GEO [27]. As in prior Coulomb
formation flying research, this work assumes a potential servo control is present
which is able to create desired potential levels using charge emission. Thus for the
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purposes of this study the vehicle potential is treated as the fundamental control
variable.

For GEO space debris reorbiting to a disposal region, the cylinder shape is of
interest as many old dual-spinner configurations and rocket bodies need to be moved
outside the GEO zone. The only control used are the spacecraft potentials which are
assumed to be of equal magnitude for each body. This assumption is the preferred
potential arrangement for an electrostatic tug, and thus has great practical relevance.
Of interest is wether the tumbling body be brought to rest, and are repulsive and
attractive forces required? Further, if the nominal spacecraft potential is non-zero, as
in the electrostatic tug scenario, to what attitudes will the tumbling body converge?

The paper is organized as follows. First, the multi-sphere method is reviewed, and
a particular solution is provided for a representative cylindrical spacecraft body. A
simplified electrostatic torque model is considered suitable for the feedback control
development. The charged relative attitude orientations for a slender cylinder are dis-
cussed along with their stability. Finally, nonlinear control strategies are considered to
detumble the second object while maintaining a fixed separation distance. Numerical
simulations illustrate the closed loop performance.

Multi-Sphere Method

In order to develop the stability arguments for the remote attitude control of space-
craft by charge transfer, the relative motion dynamics must be modeled. There is
no simple analytic solution for the electrostatic interaction between charged con-
ductors with generic geometries. Several options exist for the numerical modeling
of spacecraft charging and interactions, including finite element methods, finite dif-
ference methods, boundary element methods, and Monte Carlo methods [28, 29].
Each of these approaches, however, are too computationally expensive to allow
for faster-than-real-time simulations of the electrostatically induced relative motion
dynamics.

Simpler methods such as the point charge approximation and finite sphere model
that have been used for Coulomb charge control analysis in the past [19, 25, 30] are
limited to line-of-site forces and incapable of predicting electrostatic torques. The
recently developed Multi Sphere Model (MSM) [20] uses a set of conductive spheres
throughout the geometry of a spacecraft to capture the 3D electrostatic effects.
Specifically, this reference provides detailed analysis of the interaction between a
charged cylinder and a sphere, and this system will be used to study the de-spin con-
trol concepts that are the basis of this manuscript. While it is possible to capture the
induced charge effects that occur with very close proximity scenarios with a larger
set of spheres distributed on the surface of the objects [21], the 3D effects that result
in torques exerted on the cylinder at larger separation distances are sufficiently cap-
tured when three spheres are used in the cylinder model. While the voltage of the
three spheres representing the cylinder are held at the same potential, the resulting
approximated charge distribution will be non-homogeneous.

Figure 1 shows the cylinder-sphere system using a three sphere MSM to represent
the cylinder. The defining system parameters are the separation distance d, the cylin-
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Fig. 1 3 sphere MSM for cylinder-sphere configuration

der orientation angle 6, and the controlled voltages ¢ and ¢,. The spheres in the
cylinder are separated by / while the remaining relative distances are:

ra = V12 +d?+2ld cos6 (D
rp =d (2)
re = VI2+d? —2ld cosd 3)

Here R; is the radius of the spherical body on the right, while the cylindrical body is
approximated through three spheres of radii R2 4, R2 5 and R ..

The electrostatic forces are determined by the charges residing on each sphere.
These result from the prescribed electric potentials, according to the self and mutual
capacitance relationships in Eq. 4, where k. = 8.99 x 10° Nm?/C? is Coulomb’s
constant [19, 22, 23, 31].

N m .
di = kc& + Z kcq_/ “)
Ri =, Tij
J=1j#
Here R; are the sphere radii, ¢; are the charges on each sphere, and r; ; are the sphere
to sphere separation distances. These relations can be combined for each sphere to
obtain the matrix equation

3 1/Ry 1/rg 1/rp 1)1 q1
9| l/ra 1/Ryq 1/ 1721 da )
02 | Urp 1/1 1/Ryp 1/1 qn
03 1/re 1721 1/l 1/Ra. qc
[Cm]!

The potentials ¢ and ¢, are the potentials of the 2 vehicles, while g is the charge
on the spherical vehicle 1, while g,, ¢, and g, are the charges of the spheres repre-
senting the cylinder. By inverting [Cj;]~!, the charge on each sphere is determined
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at any time. The charge redistribution and interaction with the space environment is
assumed to be orders of magnitude faster than the spacecraft motion. As an exam-
ple, with charge control the response time is on the order of milliseconds in GEO
[32, 33]. The total electrostatic force and torque about the center of the cylinder are
then given by the summations

c
gi
Fy =keq1 )y  —5ri (6)
i=a Fi
c q
Ly = keqi E r_—l3"2,i Xri )
. ]
l=a

The cylinder center is also assumed to be the cylinder center-of-mass. In Eq. 7, only
the outer two spheres contribute to the total torque on the spacecraft, while the MSM
center sphere cannot produce a torque, only a force. By considering the effective
moment arms at each sphere, this summation can be simplified into the following
torque magnitude expression:

®)

d,o d, o
Ly = keqi(d, 0)1d sin6 (QC( ) _ 4a( )>

r2d,0) rid,0)

This expression is still rather complex with the implicit dependency of the charges
on the relative position states d and 6. The following section thus seeks simplified
analytical expressions about nominal relative position states.

A free body diagram of the system is shown in Fig. 2. Note that, because the
individual forces on sphere 1 are equal and opposite to those on the spheres in the
cylinder,

Fi=—F, ©)
Body 1 does not experience a torque, but together with the force and torque on the

cylinder, the translational and rotational momentum due to electrostatic interactions
is conserved. Assuming the cylinder is not capable of active translational control, a

Fig. 2 Free body diagram for MSM cylinder-sphere system
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thrusting force on body 1 is necessary to maintain a constant relative position within
the system:

m
Finug = —F) (1 + —1) (10)

This thrusting force provides the energy necessary to adjust the attitude of the cylin-
der. Though the system continually moves in space, the craft are fixed relative to each
other and can be assumed stationary for the control development.

For this manuscript’s simulations, system parameters are chosen as in Table 1. As
in Reference [20], the cylinder is 3m long by 1m in diameter, while Ry = 0.5m. A
nonlinear fit is performed to determine the optimal sphere parameters that match a set
of accepted numerically determined force and torque values at various orientations
and separation distances.

Analytic Torque Representation

Unfortunately, Eq. 7 does not produce a simple analytic expression for the cylin-
der torque in terms of the voltages and cylinder attitude, because of the 4 x4 matrix
inversion necessary to find the charge on each sphere. By a combination of ana-
lytic software manipulation of the equations, and numerical fitting schemes, several
simplifications can be made.

Assume first that both bodies have the same potential magnitude ¢» = |¢1]|. Body
1 has a potential ¢; which can have either sign. The tumbling body 2 is assumed to
have ¢, > 0 without loss of generality. If this condition is satisfied, the expression
for the torque L = L, can be separated into dependencies on the control voltage ¢
and cylinder rotation angle 6:

L=yf(¢)g®) (1)

If this separation of potential ¢; and orientation € is not warranted by looking at the
numerical results of the electrostatic field modeling, then the process of extracting the
required control potential from the charged attitude feedback is significantly compli-
cated. For the cylinder shape, this separation is justified by restricting the potentials
to ¢» = |¢1| and assuming the cylinder is symmetric.

Table 1 Parameters for cylinder de-spin system

Parameter Value Units Description

d 15 m Object center-to-center separation
1 1.1569 m MSM Parameters

Ry 4, Ro ¢ 0.5909 m MSM Parameters

R p 0.6512 m MSM Parameters

@ Springer



J of Astronaut Sci (2013) 60:258-277 265

Figure 3 shows the torque solution L as developed in Eq. 7 in terms of the inde-
pendent control voltages ¢ and cylinder rotation angle 8. The separation distance is
shown for d = 2.5 m and d = 15 m. The voltage dependency function is set to:

f(@1) = ¢1ld1] (12)

The orientation angle dependency shows some complicated trends for close proxim-
ity craft (Fig. 3a), resulting from a complicated angle and voltage dependency due to
induced charge effects. For the desired separation distance d = 15m, however, it can
be fit very well to the function

¢(0) = sin20 (13)

as shown in Fig. 3b. In this setup, the slender symmetry cylinder axis is assumed to
be aligned with the inter-spacecraft center of mass axis when 6 = 0°. The optimized
coefficient y is found to be y = 2.234 x 10~!4, a positive value for this zero 6 angle
reference assumption, and resulting in a very accurate fit with R = 0.9998. Note
that if the cylinder were oblate, rather than prolate, the sign of y could switch.

Constant Potential Equilibrium Attitudes

For the following developments, the function f in Eq. 11 must be invertible and
posses the property f(¢)¢ > 0. These requirements are satisfied by the relation in
Eq. 12. The one-dimensional rotational equation of motion is given by

16— yf(g1)g®) =0 (14)

The relative position vectors are held fixed in this study. An inertial control solution
is assumed to be present on body 1 which maintains a constant separation distance
while controlling the tumble rate of body 2. This is a good assumption for the elec-
trostatic tug case where inertial thrusters on the tug craft are used to maintain a fixed
relative position.

To evaluate the equilibrium orientations, and study the associated local stability, let
f..; be the set of orientation angles such that g(6, ;) = 0. Note that the zero reference
orientation is chosen such that 6, ; = 0°. The constant y can be either positive or

20 —_ L: 511129
g £ 002 4 _.ngﬂi
d 2 ; :
= 0 S 0
2 3
) 5002 "
£ —20 L S >
20 S —~100
0720 » 0 0 20 < 0
skvy 0 0w prkvy 100 0(der)
(a) d=2.5m (b) d=15m

Fig.3 Torques on cylinder by MSM at two different separation distances with an analytic fit ford = 15 m
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negative, depending on the three-dimensional shape of the tumbling object. Let a
small departure angle A9 be defined as

AO=0—06,; (15)

The linearized rotational equation of motion about an equilibrium orientation 6, ; is
then given by

IANG +kAO =0 (16)
where the local stiffness & is defined as:
k=—yfignt (17)
AT Y P

Assume that f(¢) and g(6) are given by the fit outlined in Eqs. 12 and 13 for the
3m by 1m cylinder body. For this formulation, # = 0° corresponds to the long axis
of the cylinder being in line with the line-of-sight axis. This scenario leads to y > 0
with the chosen cylinder dimensions. The sensitivity of g with respect to 6 is

dg
— =2cos(20 18
29 (20) (18)
To study the local stability of departure motions about equilibria orientations, the
sign of k is investigated for different scenarios illustrated in Fig. 4. The in-line equi-
librium scenario shown in Fig. 4a has the cylinder long-axis nominally aligned with
the line-of-sight axis.

Case 1 Consider a repulsive scenario with ¢y > 0. The MSM results show that in
this setup the constant y > 0. The g sensitivity in this case is

og 5
30 oo = 2cos(0°) =2 (19)
Assuming a repulsive force setup with f(¢1) > 0, the local stiffness k for this case is
k==2yf(¢1) <0 (20)

i

|
A9 " equilibrium
| orientation
10c; = £90°

Al
equilibrium ‘Q Q
- orientation 1 1
$2 2 0. = 0° or 180°
(a) In-Line Equilibrium Configuration (b) Cross-Track Equilibrium Configuration

Fig. 4 Departure angle illustration with respect to in-line and cross-track equilibriums
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indicating an unstable equilibrium. Studying Fig. 4a, this instability can be under-
stood because the near-end of the cylinder experiences a stronger repulsion force than
the far end, and thus the resulting electrostatic torque will cause a destabilizing effect.

Case 2 Keeping the nominal orientation shown in Fig. 4a, next assumes that the
sphere potential is negative with ¢; < 0, and an attractive electrostatic force is
present. Because f(¢1) < 0 now, the local stiffness is

k==2yf(¢1) >0 (2D
indicating a locally stable equilibrium. Due to symmetry of the tall cylinder,
considering 6, ; = 180° yields the same result.

Case 3 Next, consider the equilibria shown in Fig. 4b where the cylinder long axis
is orthogonal to the line-of-sight axis. Here the g sensitivity is

9
2 — 2 cos(£180°) = —2 (22)
00 lo==+900

Assuming a repulsive force configuration with f(¢1) > 0, the local stiffness is

k=2yf(¢1) >0 (23)

Thus, if bodies 1 and 2 are electrostatically pushing on each other, then 6, ; = £90°
are locally stable orientations.

Case 4 Finally, assuming the Cross-Track scenario in Fig. 4b and a pulling configu-
ration with f(¢1) < 0, the local stiffness is

k=2yf(p1) <0 (24)

indicating that such an orientation is locally unstable.

Rate Control with Zero Nominal Potential
Feedback Control Development

The following feedback control developments all have the common goal of arresting
the tumbling of body 2. Both bodies are assumed to be in deep space, absent from
gravitational torques of celestial bodies. In all cases the relative position between the
two bodies is held fixed. This is assumed to be achieved with an inertial thruster
control strategy on body 1, as is described in Reference [25]. First, the scenario is
investigated where the nominal spacecraft potential is zero. Thus, when the tum-
bling motion has been arrested, no electrostatic pulling or tugging should be present.
The inertial thrust to maintain a fixed separation distance will also go to zero as the
tumbling ceases.

The potentials ¢; and ¢, are controlled in a coordinated manner assuming the
potential magnitudes are always equal. This allows for the electrostatic torque model
of the form given in Eq. 11. Further, for the electrostatic tug application this equal
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potential condition will result in the largest electrostatic tractor force. The control
development assumes that the tumbling angle 6 and rate 6 are measured, and that the
spacecraft 1 potential ¢; is the control variable.

Let o > 0 be a constant rate feedback gain. The function 4 is chosen such that

hx)x >0 ifx#0 (25)

forms a positive definite expression. Then, the following tumble rate feedback control
f(¢1) is proposed:

flg1) = h(af) (26)

_sen(g(@)

14
Depending on the final implementation of this control, note that the sgn() function
can cause chatter issues if measurement noise is considered. Without loss of the
following stability claims, this sgn() could be replaced with a smoothed sigmoid
function. The sgn() is retained here as it leads to a simpler analysis. Further, imple-
menting relatively fast changes in potentials is practical, as active charging in space
has a response time of a fraction of a second [34]. Because the function f is invert-
ible, (26) can be inverted to yield the required potential ¢; of body 1. The potential
¢> of body 2 is then controlled to be ¢o = |¢1|. Note that if the approximate elec-
trostatic torque did not have the separation of potential and relative orientation, as
formulated in Eq. 11, then the potential feedback control development becomes sig-
nificantly more complex. In particular, due to the coupling between orientation and
potential, it may not be possible to extract the control potential ¢; analytically, in
which case numerical solvers are required to determine the control. As is, the poten-
tial control development only requires f and g to satisfy some simple conditions to
guarantee stability. In particular, the g(6) function approximation could be further
refined, without having to develop a new rate feedback control strategy.

The function 4 is introduced to yield a general feedback control whose perfor-
mance can be modified. For example, the simple linear function h(aé) = a6 can be
used. However, the resulting control potentials will grow large if large initial tumble
rates 6 are considered. If the available potentials are bounded to be less than ¢max,
then the following / function will smoothly limit or saturate the control without
impacting the following stability discussion:

arctan (océ)

h(af) = f<¢max>yn—/2 (27)

As the tumble rate § — 00, then arctan(oeé) — /2, and

élim h(oz@) = f(dmax)Y (28)

Thus, the control effort for large rates @ is smoothly limited with this A function in
Eq. 27 by

_f(¢max) ifg(@) >0
lim f(¢1) =10 ifg(6) =0 (29)
f=c0 f(@max) ifg@) <0
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Stability Analysis

To investigate the stability of this potential feedback control law in Eq. 26, the
rotational kinetic energy is used as a globally positive definite Lyapunov candidate
function V.

N
V() =26 (30)

The presented control only aims to arrest the spin rate, and does not seek to
achieve a particular relative orientation angle 8. Taking the time derivative of V, and
substituting the equations of motion /6 = L leads to

V=L0=yf($)s®)¥ (31
Substituting in the control expression in Eq. 26 and simplifying leads to
V= —1g®)h(@)6 <0 (32)

This V expression is globally negative semi-definite as h(a0)0 is a positive def-
inite expression. Note that V can become zero at the equilibrium orientations Ok,
where g(6,,;) = 0. Thus, Eq. 32 guarantees globally stable tumbling rate closed loop
dynamics.

To study convergence, LaSalle’s invariance principle is employed [35]. The
Lyapunov rate V is zero either if the rate 6 is zero and the control goal is achieved,
or if g(6) = 0. The later condition forces V to zero regardless if € is zero. Assuming
there are orientations such that g(6) # 0 (i.e. the second body is not a sphere) it is
not possible for the condition g(6) = 0 to remain true unless 6§ = 0 as well. Thus, the
largest invariant set where V vanishes is (6, ) = {6 = 0}. As a result, this potential
feedback control achieves global convergence in driving the rates to zero. The final
orientation, however, is arbitrary with this control. This is in contrast to the control
presented next, where nominal tugging or pushing is present.

Control with only Positive or Negative Potentials

The potential control in Eq. 26 assumes that both positive and negative potentials
can be created on body 1. This could be implemented by having both vehicles use
their own charge emission devices to control their potentials. However, if one of
the bodies is charged using touchless charge transfer, i.e. charge beaming, then it
is simpler to implement only attractive electrostatic forces. For example, if vehicle
1 is charged negatively using an ion emitter, and the ion emission is aimed at the
second vehicle, the latter will charge positively and create an attractive electrostatic
force. Such indirect charging is of great interest to electrostatic geostationary debris
removal [24, 25, 36]. The following simple modification of the potential control in
Eq. 26 provides the ability to only use attractive or repulsive electrostatic forces to
control the spin rate.

To allow for mono-polarity charges on the control vehicle 1, the control gains
a are set to zero if the potential control in Eq. 26 requires an undesired sign. For
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example, if only non-positive potentials ¢ are desired, the control is chosen through
the logic:

_frtiff<o
¢1_{o if f>0 33)

This simple modification doesn’t change the global stability argument as V remains
negative semi-definite. Similarly, the largest invariant set where V vanishes is the set
where 6 is zero, because § remains constant and non-zero as body 2 rotates through
the region where the control is inactive, and thus it cannot remain there. Thus, con-
vergence is unchanged as well. While this modification doesn’t impact the earlier
stability arguments, naturally, it will impact the performance and cause the control to
take about twice as long to despin the second body.

Rate Control with Nominal Electrostatic Tugging or Pushing

Electrostatic forces have been proposed to reorbit large geosynchronous debris
objects to disposal orbits [24, 25, 36]. Because the large, bus-sized GEO debris can
be tumbling at 10s of degrees per second, not having to mechanically touch the debris
is a significant advantage. While the pulling configuration with a nominal attrac-
tive electrostatic force is the preferred configuration [37], pushing configurations are
also feasible. The earlier rate-control is modified such that the nominal potential ¢ is
non-zero, allowing for continuous pulling (¢1¢> < 0) or pushing (¢1¢2 > 0).

Feedback Control Development

To investigate detumbling a rigid body while also electrostatically pulling or pushing
this object, the following Lyapunov candidate function is considered:

0
V(,0) = %9’2 + ﬁ/o g(x)dx (34)

where 8 > 0 is a feedforward constant of the resulting control. The integral term of
this V expression is locally positive definite if a reference orientation & = 0 is chosen
such that

dg(0)

0 35
00 9=0> (35

This condition has an impact on the final convergence of the rate control. Note that
this Lyapunov function depends both on the rate and orientation variables, as the
pushing/pulling condition will have an impact on the final orientation of the second
body.

Taking the time derivative of Eq. 34, and substituting Eqs. 11 and 14, yields the
following Lyapunov rate expression:

V(©0,0) = (yf(p1)g®) + Bg(6)) 6 (36)
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Let the new potential control expression be:

B sen(g(0))
14

flp) =— h(af) (37)

——
fo

where fy represents the feedforward component of the potential control. Given a

nominal potential ¢nom, the positive feedforward gain 8 is chosen to be

B =—f(Pnom)¥y (38)

such that the appropriate fp results. Note that 8 > 0 requires that ¢poy and y have
the opposite sign.
Substituting Eq. 37 into Eq. 36 yields the reduced Lyapunov rate expression:

. 0 . .
V==(—VggW)—Vgg%LDhWQM@)+ﬁg@09 (39)
= —|g®)|h(ad)d <0 (40)

Note that the integral term in the Lyapunov expression causes a cancellation with
the feedforward potential term, resulting in a negative semi-definite V expression.
The feedforward/feedback control in Eq. 37 is thus at least locally stable. This is
interesting considering V depends on both 6 and @, as it implies that the configuration
is also stable about the reference orientation.

From the earlier linear stability discussion with constant potentials, the two stable
configurations while either pulling (Case 2) or pushing (Case 3) are illustrated in
Fig. 5. For the pulling configuration y > 0, which leads to a feedforward term of

fo=—é <0 (41)

14

indicating that the nominal spacecraft potential must be negative, creating an attrac-
tive force, for this orientation to be stable. In contrast, if 6 is measured from the 90°

Repulsive
Force

$1 <0 ¢1>0

(a) Pulling Configuration with v > 0 (b) Pushing Configuration with v < 0

Fig. 5 Illustration of pulling and pushing configurations
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cross-axis as indicated in Fig. Sb, then y < 0 and the feedforward control component
must be

fo=-F 0 “2)

v

This indicates the nominal potential ¢; must be positive, creating a repulsive force.

Next, the convergence of this feedback/feedforward control is investigated. With-
out loss of generality, y > 0 is assumed. As before, V vanished if either § = or
g(0) = 0. The earlier control resulted in 6 — 0 in all cases, but the final orientation
was arbitrary depending on the initial conditions. With the feedforward component
of the control the attitude will converge to discrete orientations. The closed loop
dynamics using the control in Eq. 37 is

16+ B2(0) + |g(0)|h(@d) =0 (43)

Again, it is not pos§ible for g(#) = 0 to remain true if 6 # 0. However, can g(60)
remain non-zero if 8 is zero? Setting the rate to zero in Eq. 43 yields

16 = —Bg(9) (44)

This indicates that § cannot remain zero unless both § = 0 and g(@) = 0. Thus,
the largest invariant set where V vanishes is = 6..; and 6 = 0. In contrast to the
rate-only feedback, this feedforward/feedback control has the rate converge to zero,
and the orientation converge to a torque equilibrium orientation. For the torque shape
function g(0) = sin(20) two of these equilibria were unstable, and two were stable.
If small perturbations are considered, the second body would not be able to remain
at an unstable equilibrium, but will eventually converge to a stable equilibrium.

To study this stability behavior, consider the Lyapunov surface illustration in Fig. 6
where the function g(0) = sin(20) is used with unit inertia and unit feedforward
gain. The largest Lyapunov level about the origin is highlighted for convenience. For
initial conditions outside this level set, it is possible for the second body to stabilize
about the stable equilibrium 6, = 180°. This illustrates that the control in Eq. 37
is indeed only locally stable. However, if the control objective is changed to arrest

Unstable Maximum Level Set of
Equilibrium V where V <0

Stable
Equilibrium

] 15 1(,6)

90 — =
Local Area of Convergence 45

-180

Fig. 6 Illustration of Lyapunov function and level sets for unit inertia / and gain 8
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Fig. 7 State space flow illustration in relation to Lyapunov level sets

the rate, and align the body with either 6 = 0° or 180°, then the control is globally
asymptotically stabilizing. However, no control is present to chose which of these
two orientations the body will converge to.

The contour plot in Fig. 7a illustrates the closed loop trajectories if the control in
Eq. 37 is active. Depending on the initial conditions, the trajectories can either con-
verge to the stable equilibria at O or 180 degrees, or approach the 90 degree unstable
equilibria. If it is important that the tumbling body settle with a particular end (either
6 = 0° or 180°), then the following strategy can be employed. Figure 7b illustrates
the state trajectories if no control is present, and the second body continues to tum-
ble at a constant rate. The horizontal flow lines can be exploited to move the states of
the tumbling body into a preferred zone where convergence to a particular equilib-
rium orientation is guaranteed. This process is highlighted in red in Fig. 7a. The rate
control is first employed until the rates are small enough to guarantee convergence to
an equilibrium. If this is not the desired equilibrium, turning off the potential control
will allow the body to tumble onward. As the state trajectory enters the local area of
convergence of the desire equilibrium orientation, the feedback control is re-engaged
to arrest the final rates and drive 6 — 6,.

Table 2 Parameters for cylinder tug/de-spin simulation

Parameter Value Units Description
) 100 kg/m? Object densities
mi 52.4 kg Sphere mass
my 235.6 kg Cylinder mass
I 191.4 kg-m? Cylinder transverse moment of inertia
wp 2 deg/sec Initial cylinder rotation rate
a 5x10* - Gain in /2 function
Bnom -15 kV Nominal voltage in f function
Pmax 20 kV Max voltage in 4 function
1 Hz Simulated control and sensor frequency
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Numerical Simulation

A numerical simulation is performed to verify the control laws presented above.
Specifically, rate control with a nominal electrostatic tug is implemented. Here a
rotating cylinder in deep space is de-spun while it is tugged along by the neighbor-
ing spherical craft. The voltage on both objects is affected by voltage control devices
on the spherical craft. Note that no sensors errors, or voltage control errors, are mod-
eled in this study. This allows for a better illustration of the idealized attitude control
performance. How to control the potential on both bodies is a challenging tasks that
warrants its own investigation, coupled with the options of charge/potential sensors.
The simulation is performed with full six degrees of freedom, and a PID thruster

(a) Cylinder angular rate

Y
&0 4
=
3
0 50 100 150 200 250 300 350
Time (hr)
(b) Cylinder angle (end of simulation) (c) Sphere control voltage (end of simulation)
200 20
100 10
£ z
g 0 <
= s —10
—100 —920
—200 —30
260 280 300 320 340 260 280 300 320 340
Time (hr) Time (hr)
(d) Absolute system position
/é\ T T T T T
=
= 200 + 3
.9
'@ 100 e
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§ 0 :
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Time (hr)

Fig. 8 Cylinder tug and de-spin simulation using Coulomb charge control
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control is implemented on the spherical craft to ensure the desired separation is main-
tained. Table 1 shows the MSM cylinder parameters and nominal separation distance,
while Table 2 provides the remaining necessary system and control parameters. The
pulling sphere (for example the electrostatic tug) is of rather small size of Ry = 0.5
meters. Figure 8 displays the simulation results. Even this small tug dimensions can
already exert a significant electrostatic torque.

The potential control expression f(¢;) in Eq. 37 is used, while Eq. 27 defines
the function /. Because Eq. 37 contains a nominal and de-spin term, the true voltage
limits during the de-spin procedure are:

¢lower =y d’nom2 + ¢max2 (45)
¢upper = +\/ _¢nom2 + ¢max2 (46)

Once the cylinder stops making full rotations, the nominal control voltage is indeed
¢nom and this behavior is clearly visible in Fig. 8c.

From Fig. 8a and b it is clear that the cylinder stops spinning after roughly 275
hours or just over 11 days, during which time 2798 full rotations have been com-
pleted. Although 2 deg/sec is not an especially fast initial spin rate, a de-spin by
electrostatic actuation in this time is impressive considering the momentum of the
cylinder and separation distance between the craft. Figure 8d shows that the sys-
tem has been displaced by more than 200 km during the de-spin, which represents a
considerable electrostatic tug.

Conclusion

The relative attitude control using spacecraft potential control is investigated for a
one-dimensional rotation scenario. If the vehicles are within 3-4 craft radii, the elec-
trostatic torques can have a significant impact on the rotational motion. For example,
it is envisioned that electrostatic torques could be used to detumble a large geo-
stationary debris object. Using the multi-sphere method, a simplified electrostatic
torque model is employed to numerically study the charged relative attitude motion.
For a cylinder-sphere scenario, a suitable reduced order torque expression is used for
feedback control development. The potential control is analytically proven to bring
the tumbling objects attitude rate to zero, but the final orientation is arbitrary and
uncontrolled. If the nominal spacecraft potential is nonzero, then a potential feedback
control is shown to cause the object to settle to a stable torque equilibrium orienta-
tion while the tractor force is maintained. Future work will investigate the torques
between more complex shapes, as well as expand the control to encompass general
three-dimensional rotational motion. If the body is fully conducting and has a sym-
metry axis, then rotations about this symmetry axis are not directly controllable with
this method. In this case the complex gyroscopic coupling must be investigated to see
if this spin can be indirectly controlled. Further, the robustness of this attitude con-
trol strategy with respect to attitude sensor and voltage servo control errors should be
considered.
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