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A B S T R A C T

Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the
attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering
commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to
achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer
control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks
the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer
control loops which must have sufficiently different response time scales. The benefit is that the outer steering
law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a
large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly
saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral
feedback. This approach provides a convenient modular framework that makes it simple to interchange outer
and inner control loops to readily setup new control implementations. Numerical simulations illustrate the
expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

1. Introduction

Autonomous attitude control is a challenging as it must often ac-
count for a range of control and sensor constraints such as rotational
rate limitations of the vehicle, or deal with conic sun inclusion or
avoidance constraints [1–3]. While the torque based control solutions
can analytically predict a stable closed-loop response, shaping the
closed loop dynamics to have desired features like rate limits, variable
response stiffness or kinematic constraints can be very challenging.
Three-axis spacecraft attitude control continues to be an active area of
research. Extensive work has been performed on both nonlinear [1,4–8]
and linear [9] attitude closed loop solutions, as well as robust attitude
control [10]. Such control solutions seek a stabilizing control torque
which drives both the attitude and rate errors to zero. In essence, the
linearized closed loop dynamics resemble mathematically a spring-
mass-damper system. A particular challenge of the attitude feedback
control development is handling complex rigid body kinematics si-
multaneously with the rigid body kinetics equations. For example,
popular non-singular control solutions are developed for quaternions or
Euler parameters [4,11] or Modified Rodrigues Parameters (MRPs)
[6,12,13]. If Lyapunov's direct method is employed to argue closed loop

stability, care must be given in how the Lyapunov candidate function is
formulated to provide insight into both the convergence of attitude and
rate errors.

In contrast, the robotic control community often employs a very
different approach. Their multi-link manipulator equations of motion
are much more complex than those of a single rigid body. Instead of
developing a torque level control to achieve the desired tracking, a
kinematic steering control is implemented where the rates are treated
as a control variable in an outer control loop [14,15]. To implement
such a kinematic control, called a steering control, an inner speed
control loop is required that has a much faster response time than the
outer loop. Using the separation principle stability is examined by ar-
guing that each loop individually is stable. In the field of spacecraft
attitude control the use of steering laws is common when employing
single-axis Control Moment Gyroscopes (CMGs). Here the control so-
lution is written in terms of the gimble rates, not in terms of gimbal axis
torques [16–21]. An inner control loop is assumed to track the desired
gimble rate trajectory.

The presented attitude control technique is related to Backstepping
Control method [22]. Here a desired kinematic response is created first
which is then combined with a servo control. However, a benefit of the
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backstepping method is that the inner servo and outer kinematic sta-
bility is developed simultaneously, thus avoiding the need for the se-
paration principle regarding the inner and outer loop response times.
For example, Reference [23] presents an attitude control using the
backstepping method for a regulation problem where all attitude and
rate measures are driven towards zero. Here too the rates are smoothly
saturated, but the stability proof is more complex due to the direct
integration of the inner and outer loops. In contrast, if the separation
principle is employed between the loops, then more general outer at-
titude control behaviors can be designed independent of the inner servo
loop. For example, Reference [3] presents an interesting outer steering
loop that achieves autonomous conically constrained attitude motion.
Here body fixed vectors are either force to remain outside a cone (i.e.
sensor avoiding staring at sun) or inside a cone (i.e. solar panel normal
remaining within a fixed angle relative to sun heading). This dual in-
dependent control loop setup is convenient in that it provides a readily
modular design that allows the control loops to be interchanged in the
software design process. The in-development Basilisk astrodynamics
simulation software framework2 creates a physics and control algo-
rithm simulation framework where components can easily be ex-
changed. Reference [24] illustrates how Basilisk control guidance
modules can be exchanged to create complex attitude guidance solu-
tions.

This paper investigates creating kinematic steering laws to achieve
novel three-axis attitude control laws suitable for general reference
attitude tracking. Lyapunov's direct method is employed on the kine-
matic differential equation to establish necessary outer loop stability
conditions. Specific implementations using the MRPs are developed
that enforce pre-specified spacecraft rotational speed limits on the
nominal closed loop control. Next, a spacecraft angular velocity vector
based closed loop servo control is investigated for the inner speed servo
loop. The nonlinear rate servo module employs robustness modifica-
tions using integral terms to reject unmodeled external torques. The
modular control solution is implemented using the Basilisk framework
to investigate how the overall control can be broken up into modular
components.

2. Problem statement

The kinematic control law is developed for a rigid spacecraft whose
orientation is controlled through a cluster of N Reaction Wheels (RWs)
as illustrated in Fig. 1. The control goal is to drive a body-fixed frame
� b b b: { ˆ , ˆ , ˆ }1 2 3 towards a time varying reference frame � r r r: { ˆ , ˆ , ˆ }1 2 3 as
illustrated. The inertial frame is given by N n n n: { ˆ , ˆ , ˆ }1 2 3 . The RW co-
ordinate frame is given byW { }g g g: ˆ , ˆ , ˆi s t gi i i

. Here ĝsi is a unique positive
spin axis unit direction vector, while the other two axes complete a
right-handed coordinate frame. Using MRPs at the attitude error mea-
sure, the overall control goal is � � →σ 0/ . The reference frame or-
ientation N�σ / , angular velocity N�ω / and inertial angular acceleration

N�ω̇ / are assumed to be known.
The rotational equations of motion of a rigid spacecraft with N RWs

attached are given by Ref. [11].

= − + − +∼ω ω ω h u LI I G G[ ] ˙ [ ]([ ] [ ] ) [ ]s s s sRW RW (1)

where us is the set of RW motor torque, L is an external torque, and the
inertia tensor I[ ]RW is defined as

∑= + +
=

( )g g g gI I J J[ ] [ ] ˆ ˆ ˆ ˆs
i

N

t t t
T

g g g
T

RW
1

i i i i i i (2)

The spacecraft inertia tensor without the N RWs is , while Jsi, Jti and
Jgi are the RW inertias about the body fixed RW axis ĝsi (RW spin axis),
ĝti and ĝgi

. The × N3 projection matrix G[ ]s is then defined as

� �

⎡⎣ ⎤⎦= ⋯g gG[ ] ˆ ˆs s sN1 (3)

The RW inertial angular momentum vector hs is defined as

= +( )h J ω Ωs s s ii i i (4)

Here Ωi is the ith RW spin relative to the spacecraft, and the body an-
gular velocity is written in terms of body and RW frame components as

= + + = + +ω b b b g g gω ω ω ω ω ωˆ ˆ ˆ ˆ ˆ ˆs s t t g g1 1 2 2 3 3 i i i i i i (5)

3. MRP steering law

3.1. Steering law stability requirement

As is commonly done in robotic applications where the steering laws
are of the form =x u˙ , this section derives a kinematic based attitude
steering law. Let us consider the well-known simple Lyapunov candi-
date function [11,13].

� � � � � �= +σ σ σV ( ) 2ln(1 )T
/ / / (6)

in terms of the MRP attitude tracking error � �σ / . Using the MRP dif-
ferential kinematic equations [11].

� � � �
�

� �

� � � � � � � �

�

� �

=

= − + +∼
×

σ σ ω

σ σ σ ω

B

σ I

˙ 1
4

[ ( )]

1
4

[(1 )[ ] 2[ ] 2 ]T

/ / /

/
2

3 3 / / / / (7)

where � � � � � �= σ σσ T
/

2
/ / , the time derivative of V is reduced to the ele-

gantly simple form of

� � � �
�= σ ωV̇ ( )T

/ / (8)

To create a kinematic steering law, let � �ω /* be the desired angular
velocity vector of this body orientation relative to the reference frame
� . The steering law requires a feedback control algorithm for the de-
sired body rates � �ω /* relative to the reference frame to make V̇ in Eq.
(8) negative definite. For this purpose, the general control formulation

� �

�
� �= −ω f σ( )/ /* (9)

is proposed where f σ( ) is an even function, chosen by the control
designer, such that

>σ f σ( ) 0T (10)

Substituting Eq. (9) into (8), the Lyapunov rate simplifies to a ne-
gative definite expression:

� � � �= − <σ f σV̇ ( ) 0T
/ / (11)

The steering law in Eq. (9) allows for a broad range of kinematic
response to tracking errors. The control designer can implement any

Fig. 1. Illustration of coordinate frame definitions.

2 http://hanspeterschaub.info/bskMain.html.
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even function f () while guaranteeing global asymptotic stability.

3.2. Saturated MRP steering law

This section explores particular implementations of f to consider
different pointing scenarios. A very simple example is to set a linear
steering law of the form

� � � �=f σ σK( )/ 1 / (12)

where >K 01 . This yields a kinematic control where the desired body
rates are proportional to the MRP attitude error measure. As the MRP
error measure norm is bounded by unity, the kinematic speed command
is also bounded. However, it is monotonically increasing until the
maximum error of 180° is reached.

If the commanded rate should saturate at an earlier tracking error
angle, then f () could be defined as

� � = ⎧
⎨⎩

≤
>

f σ
K σ K σ ω

ω σ K σ ω
( )

if
sgn( ) if

i i

i i
/

1 1 max

max 1 max (13)

where � � =σ σ σ σ( , , )T
/ 1 2 3 . A smoothly saturating function is given by

⎜ ⎟= ⎛
⎝

⎞
⎠

f σ σ K π
ω

ω
π

( ) arctan
2

2
i i

1

max

max

(14)

where

� � =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

f σ
f σ
f σ
f σ

( )
( )
( )
( )

/

1

2

3 (15)

As → ∞σi the function f smoothly converges to a maximum rate
command of ± ωmax. For small � �σ / , this function linearizes to

� � � �≈f σ σK( )/ 1 / (16)

If the MRP shadow set parameters are used to avoid the MRP sin-
gularity at 360°, then � �σ / is upper limited by 1. To control how ra-
pidly the rate commands approach the ωmax limit, Eq. (14) is modified
to include a cubic term:

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

f σ K σ K σ π
ω

ω
π

( ) arctan ( )
2

2
i i i1 3

3

max

max

(17)

The order of the polynomial must be odd to keep f () an even
function. A nice feature of Eq. (17) is that the control rate is saturated
individually about each axis. If the smoothing component is removed to
reduce this to a bang-band rate control, then this would yield a Lya-
punov optimal control which minimizes V̇ subject to the allowable rate
constraint ωmax. In all the presented f () functions the computational
complexity is very minimal, and the rate steering command is ready
evaluated.

Fig. 2 illustrates how the parameters ωmax, K1 and K3 impact the
steering law behavior. The maximum steering law rate commands are
easily set through the ωmax parameters. The gain K1 controls the linear
stiffness when the attitude errors have become small, while K3 controls
how rapidly the steering law approaches the speed command limit.

The required velocity servo loop design is aided by knowing the
body-frame derivative of � �

� ω /* to implement a feed-forward compo-
nent. Using the f () function definition in Eq. (15), this requires the
time derivatives of f σ( )i .

�

� �

�

� �
� �
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∂

∂
= −
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∂
∂

∂
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d

˙

˙

˙

˙

f
σ
f

σ
f

σ

/
/

/
/

1

2

3

*
*

*
*

1

2

3 (18)

where

� � � �
�

� � � � � �=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= = −[ ( )] [ ( )] ( )σ σ ω σ f σ
σ
σ
σ

B B˙
˙
˙
˙

1
4

1
4/

1

2

3

/ / / /* * * * *

(19)

Using the general f () definition in Eq. (17), its sensitivity with re-
spect to σi is

∂
∂

=
+

+ + ( )
f
σ

K K σ

K σ K σ

( 3 )

1 ( )i

i

i i
π

ω

1 3
2

1 3
3 2

2

2

max (20)

Next, let us investigate the closed loop performance. For small er-
rors, assuming a perfect rate-servo sub-system, the closed loop dy-
namics is given in Eq. (16). Using the MRP differential kinematic
equation approximation =σ ω˙ /4, this is rewritten as the first order
differential equation

� � � �= −σ σK˙
4/

1
/* *

(21)

The corresponding half-life of the exponential outer closed-loop
dynamics is

=T
K

4 ln 2
1/2,Outer

1 (22)

When picking the K1 gain, it is critical that this decay time is suf-
ficiently larger than the decay time of the rate-servo inner loop.

4. Angular velocity servo sub-system

4.1. Servo with angular rate error integral measure

To implement the kinematic steering control, a servo sub-system
must be included which produces the required torques to make the
actual body rates track the desired body rates. The angular velocity
tracking error vector is defined as

N N� � � �= = −ω ω ω ωδ / / /* * (23)

where the � * frame is the desired body frame from the kinematic
steering law. Note that

N N� � � �= +ω ω ω/ / /* * (24)

where N�ω / is obtained from the attitude navigation solution, and
� �ω /* is the kinematic steering rate command. To create a rate-servo

system that is robust to unmodeld torque biases, the state z is defined
as:

�∫=z ωδ td
t

tf

0 (25)

The rate servo Lyapunov function is defined as

= +ω z ω ω z zV δ δ I δ K( , ) 1
2

[ ] 1
2

[ ]ω
T T

IRW (26)

where the vector ωδ and tensor I[ ]RW are assumed to be given in body
frame components, K[ ]I is a symmetric positive definite matrix. The
time derivative of this Lyapunov function is

= ′ +ω ω zV δ I δ K˙ ([ ] [ ] )ω
T

IRW (27)

where
�

′ ≡x x
t

d
d is the short-hand notation for a time derivative relative

to the body-fixed frame � . Using the identities N N� �′ =ω ω̇/ / and
N N N N� � � �′ = − ×ω ω ω ω˙/ / / / [11], the body frame derivative of ωδ

is

N N N N� � � � � �′ = − ′ − + ×ω ω ω ω ω ωδ ˙ ˙/ / / / /* (28)

Substituting Eqs. (1) and (28) into the V̇ω expression in Eq. (27)
yields
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N N

N N N

� �

� � � � �

= − + − +

+ − ′ + − ×

∼

( )
ω ω ω h u L

z ω ω ω ω

V δ I G G

K I

˙ ([ ][ ] [ ] ) [ ]

[ ] [ ] ˙
ω

T
s s s s

I

/ RW /

RW / / / /* (29)

Let =P P[ ] [ ]T be a symmetric positive definite rate feedback gain
matrix. The servo rate feedback control is defined as

N N

N N N

� �

� �
� � �

= + − +

− ′ + − × +

∼[ ]
( )

u ω z ω ω h

ω ω ω ω L

G P δ K I G

I

[ ] [ ] [ ] ([ ] [ ] )

[ ] ˙

s s I s s/ RW /

RW / / / /

*

* (30)

Defining the right-hand-side as Lr , this is rewritten in compact form
as

=u LG[ ]s s r (31)

The array of RW motor torques can be solved with the typical
minimum norm inverse

= −u LG G G[ ] ([ ][ ] )s s
T

s s
T

r
1 (32)

The computational complexity of this inner rate-servo control is
equivalent to the traditional MRP-based nonlinear attitude tracking
control [11,25,26].

To analyze the stability of this rate servo control, the uG[ ]s s ex-
pression in Eq. (30) is substituted into the Lyapunov rate expression in
Eq. (29).

N N

N N

N

� �

� �

�

= − − +

+ +

= − − + = − <

∼

∼
∼

[ ]
ω ω ω ω h

ω ω h

ω ω ω ω h ω ω

V δ P δ I G

I G

δ P δ δ I G δ P δ

˙ ( [ ] [ ]([ ] [ ] ))

[ ] [ ]

( [ ] [ ][ ] [ ] ) [ ] 0

ω
T

s s

s s

T
s s

T

/ RW /

/ RW /

RW /

*

(33)

Thus, in the absence of unmodeled torques, the servo control in Eq.
(30) is asymptotically stabilizing in rate tracking error ωδ .

Next, the servo robustness to unmodeled external torques is in-
vestigated. Let us assume that the external torque vector L in Eq. (1)
only approximates the true external torque, and the unmodeled com-
ponent is given by LΔ . Substituting the true equations of motion and
the same servo control in Eq. (30) into the Lyapunov rate expression in
Eq. (27) leads to

= − +ω ω ω LV δ P δ δ˙ [ ] Δω
T T (34)

This V̇ω is no longer negative definite due to the underdetermined
sign of the ω Lδ ΔT components. Equating the Lyapunov rates in Eqs.
(27) and (34) yields the following servo closed loop dynamics:

+ + =ω ω z LI δ P δ K[ ] ' [ ] [ ] ΔIRW (35)

Assuming that LΔ is either constant as seen by the body frame, or at
least varies slowly, then taking a body-frame time derivative of Eq. (35)
is

′′ + ′ + = ′ ≈ω ω ω LI δ P δ K δ[ ] [ ] [ ] Δ 0IRW (36)

This body-frame relative constant LΔ assumption is commonly ap-
plied to consider slowly time varying torques such at atmospheric drag
or solar radiation pressure torques near the desired attitude, or in-
cluding some minor outgasing of a thruster. As I[ ]RW , P[ ] and K[ ]I are all
symmetric positive definite matrices, these linear differential equations
are stable, and →ωδ 0 given that assumption that ′ ≈LΔ 0.

Next the nominal performance of this inner rate servo-loop is con-
sidered without any unmodeled torques present. Equating Eqs. (27) and
(33), the rate-servo closed loop equations are given as the linear ex-
pression

′ + + =ω ω zI δ P δ K[ ] [ ] [ ] 0IRW (37)

To simplify the following analysis, assume that =I I I I[ ] diag( , , )RW 1 2 3 ,
=P P P P[ ] diag( , , )1 2 3 and =K K K K[ ] diag( , , )]I I I I,1 ,2 ,3 are diagonal ma-

trices. The roots of the characteristic equation of Eq. (37) are

=
− ± −

s
P P I K

I
4

2
i i i I i

i
1/2

2
,

(38)

If =K 0I i, and the integral feedback is turned off, then the root
simplifies to

= −s P
I

i

i (39)

where the inner rate servo loop half life is given by

Fig. 2. Illustrations of MRP steering parameters influence.
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=T I
P
ln 2i

i
1/2,Inner (40)

Note that without the integral feedback the closed loop response is
always an exponentially decaying behavior. The rate feedback gains Pi
must be chosen that ≪T T1/2,Inner 1/2,Outer and the separation principle
guaranteeing the stability of both the out and inner control loops is
valid.

If integral feedback is enabled, then two exponentially decaying
roots appear if <K P I/(2 )I i i i,

2 . For larger KI i, values the servo response
becomes under-damped and oscillatory.

4.2. Linearized closed loop dynamics analysis

The closed-loop control in Eq. (30) is shown to be asymptotically
stabilizing in the presence of a body-fixed disturbance torque. However,
this stability assumes the separation principle holds and that the outer
control decay time constant is much larger than the inner rate-servo
loop decay time constant. In the absence of an unmodeled control
torque, the rate-servo closed loop dynamics are given by Eq. (37). To
develop the linearized Closed Loop Dynamics (CLD) the reference mo-
tion � is set to be identical to the inertial frame N . Here

� �= =ω ω̇ 0N N/ / . Note that

� � � �= − = +ω ω ω ω f σδ ( )N N N N/ / / /* (41)

Next, assume that the inertia tensor is =I I I I[ ] diag( , , )RW 1 2 3 , and the
gain matrices are =P P P P[ ] diag( , , )1 2 3 and =K K K K[ ] diag( , , )I I I I,1 ,2 ,3 .
Using �

� =ω ω ω ω( , , )N/ 1 2 3 and � =σ σ σ σ( , , )N/ 1 2 3 the CLD is then
written as

∫+ + + + + =I ω I f σ P ω f σ K ω f σ t˙ ˙ ( ) ( ( )) ( ( ))d 0i i i i i i i I i i i, (42)

Assuming small angular motions and rates between the body frame
and the inertial frame, the following linearizations hold:

≈f σ K σ( )i i1 (43a)

≈ω σ4 ˙i i (43b)

The time derivative of the f () function uses Eq. (19) to find

�≈ = = − = −f σ K σ K
ω K K σ

K
σ˙ ( ) ˙

4 4
( )

4i i
N i

i i1 1
/ , 1

1
1
2*

(44)

The revised linearized CLD are now

∫⎜ ⎟+ + ⎛
⎝

+ − ⎞
⎠

+ =I σ P σ PK K
I K

σ K K σ t4 ¨ 4 ˙ 4
4

d 0i i i i I
i

i I i i1
1
2

, 1
(45)

The roots of the associate characteristic equation are

→ −s K
41

1
(46a)

⎜ ⎟→ ⎛
⎝

± − ⎞
⎠

s κ κ
K
I

1
2

4 I i

i
2,3

2 ,

(46b)

where

= − +κ P
I

K
4

i

i

1

(47)

For the CLD to be stable, note that Pi and K1 must be chosen such
that

>P
I

K
4

i

i

1

(48)

Using the results in Eqs. (22) and (40), this stability condition is
equivalent to saying

<T T1/2,Inner 1/2,Outer (49)

Next, consider the case where a large gain K1 is chosen to increase
the CLD stiffness, but it violates the above stability condition. For

example, such a setup would be attractive for trajectory correction
maneuvers where even a small thruster miss-alignment will cause a
large torque onto the spacecraft. Tight pointing tolerances during a
burn require the control to rapidly respond to a pointing error, and thus
necessitate a large K1 value. In this case the control could be modified
by removing the outer-loop feed-forward component to be

N N

N N N

� �

� � �

= + − +

− − × +

∼[ ]u ω z ω ω h

ω ω ω L

G P δ K I G

I

[ ] [ ] [ ] ([ ] [ ] )

[ ]( ˙ )

s s I s s/ RW /

RW / / /

*

(50)

Not having this feed forward term included means the ωδ tracking
won't be perfect as long as ḟ is not zero. In essence, the neglected outer-
loop feed-forward component is treated as an unmodeled torque in-
fluence on the CLD. However, in this case the linearized CLD become

∫+ + + + =I σ P σ PK K σ K K σ t4 ¨ 4 ˙ ( 4 ) d 0i i i i I i I i i1 , 1 (51)

which are guaranteed locally stable for any positive K1 and P gain va-
lues as long as the integral gain is sufficiently small. Note that if

>K P I4 /i i1 then the control will no longer act as the earlier outlined
steering law as the inner loop is too slow to track the kinematic steering
command. However, the resulting CLD is a stable response if the outer-
loop feedforward component is neglected. This allows for the CLD
stiffness to be increased, resulting in a very stiff control response about
a reference motion.

5. Numerical simulations

5.1. General simulation setup using basilisk

The performance of the outer- and inner-loop attitude control
strategies are demonstrated next using the MRP formulation using a
rigid spacecraft with three reaction wheels attached. The nominal
spacecraft and control parameters are shown in Table 1. A classical
reaction wheel alignment is assumed with the spin axes ĝsi aligned with
the principal body frame. The reaction wheel speeds are given non-zero
initial momentum values, and a body-fixed unmodeled external torque
is included. This torque is not fed forward in any of the feedback control
scenarios discussed next. The control objective is a tracking problem to
align the body frame with the Hill orbit frame. The Earth orbit is de-
fined through a semi-major axis of 10,000 km, an eccentricity of 0.1, an
inclination angle of 0.1°, ascending node of 48.2°, argument of peri-
apses of 347.8° and an initial true anomaly of 85.3°. The dynamical
differential equations are integrated using a fourth order Runge-Kutta
scheme using a 0.1s integration and control update step. Note that this
orbit is chosen for purely illustrative purposes and is not meant to re-
present a particular mission scenario. The eccentricity is large enough
such that the orbit reference frame has an angular acceleration that
must be properly accounted for in the Hill pointing reference state

Table 1
Numerical attitude simulation parameters.

Symbols Value(s) Units

I I I( , , )1 2 3 [500.0, 300.0, 200.0] Kgm2

� ĝs1
[1, 0, 0]

� ĝs2
[0, 1, 0]

� ĝs3
[0, 0, 1]

Jsi 0.0796 kgm2

umax 0.2 Nm
Ω [100.0, 200.0, 300.0] RPM
L [0.01, −0.01, 0.005] Nm
K1 0.05
K3 0.75
ωmax 1.0 deg/s
P 150.0 Nms
Ki 5.0 Nm
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generation. If the kinematic tracking error evaluations are not im-
plemented properly than the closed loop performance would not con-
verge as discussed in the prior analysis. Further, to better illustrate that
the predicted closed loop performance is correct, no general orbital
disturbances are included beyond a body fixed disturbance torque L.
Further, while actuator failures is an important area of attitude control
research, such faults are not within the scope of this paper. The fol-
lowing simulations assume all RWs are operating fully to better de-
monstrate that the presented analysis correctly predicts the expected
closed loop performance.

The Basilisk (BSK) astrodynamics simulation framework [27] is
used to simulate the spacecraft dynamics and implement the MRP
steering control solution in a modular fashion. A flow-diagram of the
BSK modules used are shown in Fig. 3. The rigid spacecraft hub com-
ponent is connected to three balanced Reaction Wheel (RW) effectors,
as well as a disturbance torque module for the unmodeled body-fixed
torque. The simulation is setup to illustrate a regular problem where
� �→ through the hillPoint () module. The attitude tracking error
model takes the actual and reference attitude states and outputs the
tracking error information. The presented MRP steering control is im-
plemented through three discrete modules shown with a thick orange
border. The outer steering loop rate control in Eq. (9) is the output of
the MRP Steering module. The rateServo () modules computer the
body-relative control torque vector solution Lr in Eq. (30). The final
module maps Lr to the set of RW motor torques us. As the 3 RW axes
line up with the � frame, this is a simple identity mapping for this

scenario. The BSK torque mapping module implements a standard
minimum norm inverse if more than 3 RW are controlled. The simu-
lated communication paths (dashed lines) provide the rateServo ()
module with the RW speeds, and pass on the RWmotor torques us to the
RW torque inputs.

No measurement noise is intentionally being modeled here to il-
lustrate the expected asymptotic performance of the steering control
implementation, and robustness to unmodeled body-fixed external
disturbance forces. As this control reduces to a classical linear control
solution for small departures, standard noise impact theories from
linear control apply here as well for small departure motions.

5.2. Large maneuver and detumble response

The first simulation considers a very large reorientation maneuver
where the initial body and inertial frame differ by a principal angle of
159.7°, expressed as N� = −σ t( ) (0.5, 0.6, 0.3)/ 0 . The large angular
motion will illustrate the desired angular rates reaching ωmax when far
away from the desired attitude, and then exponentially converging to
the final orientation. In addition, an initial tumble rate of

N� = − −ω t( ) (0.01, 0.01, 0.01)/ 0 rad/s is provided to illustrate the rate
servo performance which must compensate for large initial tumble
rates. Note that no reference rate smoothing is employed here as might
be added in an actual application. This is to illustrate how robustly the
rates are driven to the desired values even if the actuator mechanism
saturates for a short period.

The nominal control gains shown in Table 1 yield an outer time
decay constant of about 55.45 s, while the inner rate servo loop
(without integral feedback) has a much faster time decay constant of
about 1.84 s. This wide margin in the outer and inner loop response
times satisfies the classical separation principle of using an inner servo
loop.

The resulting performance is illustrated in Fig. 4. The attitude re-
sponse is shown in Fig. 4(a) where after the initial detumble period the
attitude tracking error decay approaches an exponential behavior as
expected from the outer attitude loop control analysis. The rate tracking
errors ωδ expressed in Eq. (23) as shown in Fig. 4(b). For about the first

Fig. 3. Basilisk simulation setup illustration.

Fig. 4. Large Attitude Stabilization using Unknown External Torque.
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minute the reference angular rate (dashed lines) of the outer loop is
requesting about =ω 1.0max deg/s for each axes. As the attitude errors
are reduced, the requested rates decrease exponentially. As the space-
craft is initially tumbling in approximately the opposite direction of the
outer-loop reference rates, the servo loop has to initially aggressively
arrest this tumble and then asymptotically track the desired rates. This
initial effort is also seen in the saturated reaction wheel motor torques
shown in Fig. 4(c).

Finally, as an unmodeled body-fixed external torque is included in
the simulation, this simulation illustrates that the integral feedback in
the rate servo successfully provides robust to such a disturbance and
still yields exponential convergence. However, as with any angular
momentum based control system compensating for an external torque,
the reaction wheel speeds must continue to grow over time as is illu-
strated in Fig. 4(d).

To illustrate the impact of the integral feedback term in the rate
servo control, the above simulation is repeated with the integral feed-
back turned off. The resulting performance is shown in Fig. 5. The rate
tracking in Fig. 5(b) is no longer asymptotic due to this unmodeled
disturance, and the attitude tracking is now only bounded (i.e.

Lagrange stable) as illustrated in Fig. 5(a).

5.3. Aggressive outer loop gains that violate the separation principle

Next a simulation is run where the outer-loop is set to have a much
more aggressive response to attitude tracking errors. This might be
required during an orbit trajectory correction control burn sequence
where the thruster heading must be maintained within a small margin.
The nominal simulation setup in Table 1 is reused here, but K1 is in-
creased to a value of 2.2. This results in the outer loop having a decay
time constant (see Eq. (22)) of 1.2 s, smaller then the rate servo control
loop time constant of 1.85 s (see Eq. (40)).

In this scenario the linearized stability analysis predicts an unstable
response if an unmodified control implementation of Eq. (30) is em-
ployed. To numerically illustrate this behavior, the simulation is run
with the smaller initial state errors � � = −σ t( ) (0.001, 0.002, 0.003)/ 0 and

� � =ω ın ĥ/ are used to study the local small departure stability. As
predicted in the analysis, violating the separation principle with this
steering and servo control yields a locally unstable response. As the full
nonlinear equations are being simulated, the attitudes do not drive

Fig. 5. Large Attitude Stabilization using Unknown External Torque Without Integral Feedback.

Fig. 6. Small attitude stabilization violating the inner/outer loop separation principle using No external torque.
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towards infinity, but rather are stabilized in a limit cycle through the
nonlinear contributions as illustrated in Fig. 6(a) and (b).

However, if the � �′ω /* term in Eq. (30) is removed, then the linear
stability analysis predicted a locally stable response even with this
aggressive outer loop. Fig. 6(c) and (d) illustrate the resulting conver-
ging performance. The requested and actual rates don't converge in this
scenario, but this is not expected in this setup. The overall response is
locally asymptotically stable, however, as predicted by the linear sta-
bility analysis. In essence, by removing the � �′ω /* term the attitude
steering control reverts to a more classical feedback control. While the
asymptotic stability is only analytically predicted for small departures,
numerical simulations with large departures indicate always resulting
in a stable response as well.

6. Conclusions

This paper discusses a two-stage attitude control implementation
where an outer guidance loop uses the attitude tracking errors to de-
velop the desired body rates relative to a time varying reference frame,
and then an inner servo loop seeks to track these rate commands. This
allows for three-dimensional attitude response to be shaped through
rate commands similar to how many robotic systems are controlled. The
presented modified Rodrigues parameter and principal rotation para-
meter based steering laws provide convenient smoothly saturation be-
haviors for large angular motions resulting in the spacecraft reaching a
predictable maximum coast rate to approach a target orientation. This
large-scale rotation behavior is then coupled with a tunable linear re-
sponse behavior for rotations close to the reference frame, resulting in
the closed-loop tracking error decaying exponentially. The servo loop
musts satisfy the separation principle to provide overall stability. It is
implemented to asymptotically track a desired rate command history.
Robustness to unmodeled torques is achieved by including an integral
rate error measure into the nonlinear rate servo loop. A benefit of this
approach is that the shown rate servo can readily be replaced with al-
ternate rate servo solutions. Finally, if the outer loop decay time is more
aggressive than the inner loop a simple modification is presented that
still leads to a stable closed loop response.
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