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A single double-gimbal variable-speed controlmoment gyroscope is considered as amethod for three-dimensional

spacecraft attitude control. First, the system’s equations of motion are developed, where gimbal and wheel

accelerations are prescribed as control inputs. The resulting necessary motor torques as well as system energy

rates are computed for verification. Next, a novel control algorithm is developed from the stability constraint for

reference trajectory tracking. In contrast with the control development for single-gimbal variable-speed gyros, a

Newton–Raphson scheme is required to solve for the desired double-gimbal variable-speed control moment

gyroscope control variables because they appear in cross product and quadratic form, preventing analytical

solutions. Analysis of the control theory suggests that the same torque amplification effects exist as in a single-gimbal

control moment gyro, but control by a single double-gimbal variable-speed control moment gyroscope device is not

robust due to potential configurations that result in control singularities. When these singularities are avoided, a

simulation with successful reference trajectory tracking is achieved. Allowing double-gimbal gyros to have variable

wheel speeds provides additional torquing capabilities, which is significant if failure modes are considered. As will

be shown, a single double-gimbal variable-speed control moment gyroscope device can provide limited three-

dimensional attitude control.

I. Introduction

M OMENTUM exchange devices have long been the preferred
solution for long-term attitude control of spacecraft. The

benefits over thrusters are that they do not expend nonrenewable fuel
reserves nor expel caustic exhaust materials. Rather, momentum
exchange devices require only electrical energy that is readily
renewable with solar panels. A reaction wheel, the simplest momen-
tum exchange device, can exert a torque on the spacecraft in a single
orientation when its wheel speed is varied by the motor [1,2]. A
single-gimbal control moment gyroscope (CMG) provides addi-
tional control by gimbaling a wheel spinning at a constant
speed. This produces larger effective torques on the spacecraft but
necessitates more complex control laws. While a CMG can easily
encounter control singularities, a variable-speed CMG (VSCMG)
introduces an extra degree of freedom that can be used to avoid these
singularities, although it is similarly engineered [3–6].

The torque amplification mentioned above can be deduced
mathematically by considering the equations of motion (EOM) of a
VSCMG, as developed by Schaub et al. [7], Schaub and Junkins [8],
and McMahon and Schaub [9]. The dominant angular momentum
term is a cross-coupled term between the gimbal angle rate _� and the
reaction wheel rotation rate �. When � is large, i.e., the reaction
wheel is spun up, and _� is larger than the body angular rates !,
this term dominates the torquelike quantities in the EOM and
significantly affects the spacecraft angular acceleration with a rela-
tively small _�. Since the expressions for the required motor torques
do not contain this cross-coupled term, this mode of operation
provides large torques on the spacecraft motion without exerting
large amounts of energy.

In the 1960s and 1970s, there was a research thrust to develop
control laws for one or more double-gimbal CMGs with fixed wheel
speed, which allows the flywheel to gimbal about two independent
axes [10–13]. Such devices were used for attitude control on the
Skylab space station and its Apollo Telescope Mount, and they have
more recently been implemented on the International Space Station
[14]. In contrast with single-gimbal CMGs, each device is capable of
producing two torque vectors. However, this increased actuation
capability comes at a price. The resulting large set of control
torques of a cluster of double-gimbal devices can oppose each other,
resulting in higher energy usage in contrast with single-gimbal
devices. The benefit of such devices includes reduced issues with
CMG singularities, as well as better capabilities to absorb external
disturbance torques. The latter feature allows double-gimbal systems
to operate longer before a momentum dumping maneuver is
required. A drawback of both the variable-speed and double-gimbal
CMGs is that they exhibit only two degrees of freedom, and a single
such mechanism can therefore never provide full three-dimensional
(3-D) attitude control. Moreover, the double-gimbal CMG control
laws that are available in the literature [11,12] were developed
neglecting inertia contributions from frame structures and motors,
and they implemented momentum vector tracking with feedback
servocontrol rather than complete nonlinear attitude control.

This paper proposes control of a spacecraft using a double-gimbal
VSCMG (DGV) with a nonlinear attitude control strategy that
accounts for the gimbal frame inertias. Since it contains three torque-
producing motors, a single DGV allows for full control of the 3-D
spacecraft attitude. The caveat is whether or not singularity config-
urations could occur as in the VSCMG. Furthermore, it is desired to
determine mathematically whether the same torque amplification
effects occur in a DGV. To answer these questions, the EOM and a
control stability constraint of the device are developed. Then, a DGV
feedback control method is created that avoids any local gimbal rate
linearizations. Finally, the dynamics of a spacecraft with a single
DGV system is simulatedwith a control law that uses both the gimbal
torques and the reaction wheel mode of the device. The single DGV
configuration is employed to illustrate the three-axis control capa-
bilities and study the basic DGV control issues. Eventually, multi-
DGV configurations would provide enhanced robustness to singular
DGV configurations, as well as reduce the flywheel motor
torque requirements. However, this paper illustrates that a single
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double-gimbal CMGdevice can provide limited three-axis control in
case a mechanical failure renders only a single device operable.

II. Double-Gimbal Variable-Speed Control Moment
Gyroscope Equations Of Motion

Derivation of the EOM for the DGV is approached in an alternate
way to the developments of [7]. In the single-gimbal case, the
moments of inertia for each component are expressed in the same set
of coordinates, which are rotated by the appropriate gimbal angle
from the original orientation of the VSCMG. Because there are two
gimbal angles in the DGV configuration, and the structure frames
obtain different orientations, this approach does not simplify easily.
Instead of taking inertial derivativeswhen applying Euler’s equation,
the transport theorem is more heavily used while extracting gimbal
angles and rates from coordinate vectors to analyze the effect of
various terms.

A representation of the DGV is shown in Fig. 1. The F frame
defines the orientation of the entire device in the spacecraft body but

stays fixed with respect to the craft, where f̂1, f̂2, and f̂3 are the
orthogonal unit vectors of frame F, and likewise for the other
reference frames. Coordinate frame rotations to the G andH frames
are given by Euler angle rotations through angles and �. Here, �AB�
is the direction cosine matrix that defines the orientation of the A
frame relative to the B frame, and �Mi���� denotes a positive rotation
by angle � about the ith axis. As such, if the gimbal angles are known

at a given time, any unit vector ĝi or ĥi can be expressed in F frame
coordinates by the relations

�GF� � �M3� �� (1)

�HF� � �M2�����M3� �� (2)

and rotation to the spacecraft body frame is given by

�BF� � �f̂1; f̂2; f̂3� (3)

Now, the rotation of each frame with respect to the one outside it
can bewritten in terms of these unit vectors and various angular rates:

! B=N �! (4)

! G=B � _ f̂3 (5)

! H=G � _�ĝ2 (6)

!W=H ��ĥ1 (7)

These relations are used to solve for the time derivative of the
angular momentum Hi of each spacecraft/device component i
(spacecraft body B, the G and H structure frames, and the reaction
wheel W) so that Euler’s rotational EOM can be applied to the
combined angular momentumH as follows:

H �HB �HG �HH �HW (8)

For the spacecraft body, there is the following well-known
relation, using �Ii� for the moment of inertia of component i about its
center of mass:

H B � �IS�!) _HB � �IS� _!�! � �IS�! (9)

For the other components, the derivation requires some more
attention. Starting with the G structure frame,

H G � �IG�!G=N � �IG��!� _ f̂3� (10)

By several iterations of the transport theorem, where
id

dt
is used to

define a frame-dependent time derivative with respect to frame i,
Eq. (11) results. �IG� is removed from the derivative in the second line
because it is constant in theG frame. TheG frame derivative of!G=N
is equivalent to its N frame derivative, and finally, the transport

theorem is used for the N frame derivative of _ f̂3:

_HG �
Gd

dt
��IG�!G=N� �!G=N � ��IG�!G=N�

� �IG�
�
Nd

dt
�!� _ f̂3�

�
�!G=N � ��IG�!G=N�

� �IG�� _!� � f̂3 �! � � _ f̂3�� �!G=N � ��IG�!G=N� (11)

The same approach is taken for the H structure frame and the
reaction wheelW to achieve

H H � �IH �!H=N � �IH ��!� _ f̂3 � _�ĝ2� (12)

_H H � �IH �� _!� � f̂3 � ��ĝ2 �! � � _ f̂3 � _�ĝ2� � � _ f̂3�

� � _�ĝ2�� �!H=N � ��IH�!H=N� (13)

and

HW � �IW �!W=N � �IW ��!� _ f̂3 � _�ĝ2 ��ĥ1� (14)

_HW � �IW �� _!� � f̂3 � ��ĝ2 � _�ĥ1 �! � � _ f̂3 � _�ĝ2 ��ĥ1�

� � _ f̂3� � � _�ĝ2 ��ĥ1� � � _�ĝ2� � ��ĥ1��
�!W=N � ��IW �!W=N� (15)

Since these equations all need to be expressed in body coordinates,
the moment of inertia matrices need to be modified as follows from
their diagonal measured form. The unit vectors are also to be
expressed in body coordinates as discussed earlier:

B�IG� � �BF��FG�G�IG��GF��FB� (16)

B�IH � � �BF��FH�H �IH ��HF��FB� (17)

B�IW � � �BF��FH�H �IW ��HF��FB� (18)

The modified angular momentum derivatives _H0i and combined
moment of inertia �I� are defined as

_H 0
i � _Hi � �Ii� _! (19)Fig. 1 Depiction of a DGVwith coordinates and gimbal angles labeled.
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�I� � �IS� � �IG� � �IH � � �IW � (20)

The full EOM of a DGV then become

�I� _!��! � �IS�!� _H0G � _H0H � _H0W �L (21)

Note that the gimbal rates can be isolated from every term in
Eqs. (11), (13), and (15), because they are scalars. The cross-product
terms also contain the gimbal rates, including cross-coupled term.
These will be expanded for the control law derivation, resulting in
further simplification that is not necessary for simulation of the
EOM. If the DGV is not located at the center of mass of the
spacecraft, the offcenter inertia components can be incorporated in
the spacecraft inertia �IS� using the parallel axis theorem [15]. �IS�
remains a constantmatrix in theB frame evenwith the offcenterDGV
inertia added, so Eq. (9) holds.

III. Equations of Motion Verification

The rotation of a spacecraft with one DGV is simulated by

propagating the state vector x� ��;!;  ; _ ; �; _�;��T usingEq. (21).
Modified Rodriguez parameters (MRPs) are used to define the
spacecraft attitude, denoted by � [3,16,17]. The gimbal and wheel

accelerations � , ��, and _� are specified by a determined control law,
assuming a servoloop is implemented by the motors. The resulting
motor torques ui on the wheel W, the H structure frame (inner
gimbal), and the G structure frame (outer gimbal) can then be
found by

�HF��FB��B _HW� �
H uW
	
	

2
4

3
5 (22)

�GF��FB��B _HH � B _HW� �
G 	

uH
	

2
4

3
5 (23)

�FB��B _HG � B _HH � B _HW� �
F 	
	
uG

2
4

3
5 (24)

A good check to see whether the simulation is running correctly is
to compare the numerical derivate of the analytical kinetic energy
equation (25) and the analytical expression for the kinetic energy rate
equation (26) according to the work-energy-rate principle [15]:

T � 1
2
!TB=N �IS�!B=N � 1

2
!TG=N �IG�!G=N � 1

2
!TH=N �IH �!H=N

� 1
2
!TW=N �IW �!W=N (25)

_T �!TB=NL� _ uG � _�uH ��uW (26)

The EOM were simulated using MATLAB®, with a control law
specifying zero gimbal and wheel accelerations (so that the motors
essentially maintain constant wheel speeds). The DGV is aligned
with the spacecraft body principal axes, and gimbal angles start at
zerowhile no external torques are present. The simulation parameters
are given in Table 1, while Figs. 2 and 3 show the spacecraft motion,
and the motor torques and energy rates. Figure 3b compares the
numerical and analytic energy rates as mentioned above, which
were found tomatchwithin expected numerical deviations. Note that
the kinetic energy is expected to vary for a nonrigid spacecraft, even
without external torques, because there are motors doingwork on the
DGV subcomponents.

IV. Control Theory

A. Stability Constraint

Now that the DGV EOM are verified, the next goal is to find a
control law for the gimbal and wheel accelerations that achieves a

Table 1 Parameters for EOM simulation

with trivial control law

Parameter Value Units

B�IS� diag�� 50 150 100 �� kg 
m2

G�IG� diag�� 2 1 1 �� kg 
m2

H �IH � diag�� 1 1 2 �� kg 
m2

H �IW � diag�� 15 10 10 �� kg 
m2

��t0� � 0:4 �0:3 0:2 �
!�t0� � �0:1 �0:05 0:2 � rad=s
_ �t0� 0.03 rad=s
_��t0� �0:01 rad=s

��t0� 3 rad=s
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Fig. 2 Motion of spacecraft with gimbal and wheel accelerations held
to zero.
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Fig. 3 Torques and energy rates with gimbal and wheel accelerations

held to zero.
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desired reference attitude. Where previous double-gimbal CMG
control laws have used desired momentum vector tracking with
feedback control to determine gimbal rates [11,12], a rigorous
nonlinear Lyapunov control law is developed here. Just as in Schaub
and Junkin’s development of VSCMG control [15], Eq. (27) is a
valid Lyapunov function for the DGV control dynamics if Eq. (28)
is satisfied:

V��!; �� � 1
2
�!T �I��!� 2K ln�1� �T�� (27)

� �I� _!� 1

2

B d

dt
�I��!� K� � �P��! � �I�� _!r � ! �!r� (28)

where �!�! � !r and � denotes �B=R, the MRPs of the current
orientation relative to the desired orientation. For proper analysis, it is
necessary to identify where the gimbal and wheel rates appear in
this stability constraint. Equation (21) can be substituted for �I� _!,
but the body derivatives of the moments of inertia need to be
resolved in order to identify further gimbal rate terms. Using the

relations � _BN� � ��B ~!B=N ��BN�, B!B=N ��B!N=B, � _BN�T � � _NB�,
and � ~!�T ��� ~!�, the following manipulations result:

B�IG� � �BG�G�IG��GB� (29)

Bd

dt
�IG� � �B ~!G=B��BG�G�IG��GB� � �BG�G�IG��GB��B ~!G=B�

� _ �� ~̂f3��IG� � �IG��
~̂
f3�� (30)

where in the last line, the moments of inertia need to be expressed in
body coordinates, as in the earlier development. The same approach
yields the following:

Bd

dt
�IH � � _ �� ~̂f3��IH� � �IH ��

~̂
f3�� � _��� ~̂g2��IH � � �IH �� ~̂g2�� (31)

Bd

dt
�IW � � _ �� ~̂f3��IW � � �IW ��

~̂
f3�� � _��� ~̂g2��IW � � �IW �� ~̂g2��

���� ~̂h1��IW � � �IW ��
~̂
h1�� (32)

Using the combined moment of inertia matrices �IGHW � � �IG� �
�IH� � �IW � and �IHW � � �IH � � �IW �, and expanding all terms
including the cross products in the modified angular momentum
derivatives, Eq. (28) can be rewritten as follows, where the gimbal
and wheel rates and accelerations are factored out from the other
expressions:

� f�IGHW �f̂3g � ��f�IHW �ĝ2g � _�f�IW �ĥ1g

� _ f1
2
�IGHW ��! � f̂3� � 1

2
f̂3 � ��IGHW �!� �! � ��IGHW �f̂3�

� 1
2
f̂3 � ��IGHW ��!� � 1

2
�IGHW ���! � f̂3�g

� _�f1
2
�IHW ��! � ĝ2� � 1

2
ĝ2 � ��IHW �!� �! � ��IHW �ĝ2�

� 1
2
ĝ2 � ��IHW ��!� � 1

2
�IHW ���! � ĝ2�g

��f1
2
�IW ��! � ĥ1� � 1

2
ĥ1 � ��IW �!� �! � ��IW �ĥ1�

� 1
2
ĥ1 � ��IW ��!� � 1

2
�IW ���! � ĥ1�g

� _ _�f�IHW ��f̂3 � ĝ2� � f̂3 � ��IHW �ĝ2� � ĝ2 � ��IHW �f̂3�g

� _ �f�IW ��f̂3 � ĥ1� � f̂3 � ��IW �ĥ1� � ĥ1 � ��IW �f̂3�g

� _��f�IW ��ĝ2 � ĥ1� � ĝ2 � ��IW �ĥ1� � ĥ1 � ��IW �ĝ2�g

� _ 2ff̂3 � ��IGHW �f̂3�g � _�
2fĝ2 � ��IHW �ĝ2�g

��2fĥ1 � ��IW �ĥ1�g
� K� � �P��!�L � ! � ��I�!� � �I�� _!r � ! �!r� (33)

Equation (33) can be simplified by some mathematical can-
cellations and further approximations. First, the coefficient of �2,

fĥ1 � ��IW �ĥ1�g, is found to be zero when computed in theH frame,

and the same reasoning results in a zero coefficient of _�
2
. Next,

the gimbal accelerations � and �� are assumed to be very small
and neglected in the remainder of the derivation. Since these
accelerations are prescribed by the control law, it is possible to ensure
they remain small. As in the case of a VSCMG, implementing a
velocity-based control law ensures that both the reactionwheelmode
and the torque amplification effect of the gimbals are used [7–9]. As

such, desired _ , _�, and _� are computed to satisfy Eq. (33). The only
remaining term on the left-hand side that is not used to solve for
control parameters then is the � term, and just like in the VSCMG
derivation, it is feedback-compensated and included in the desired
torque Lr to be exerted on the spacecraft body by the DGV [15].
The following finalized Lyapunov control stability constraint is
obtained:

_�f�IW �ĥ1g

� _ f1
2
�IGHW ��! � f̂3� � 1

2
f̂3 � ��IGHW �!� �! � ��IGHW �f̂3�

� 1
2
f̂3 � ��IGHW ��!� � 1

2
�IGHW ���! � f̂3�

����IW ��f̂3 � ĥ1� � f̂3 � ��IW �ĥ1� � ĥ1 � ��IW �f̂3��g

� _�f1
2
�IHW ��! � ĝ2� � 1

2
ĝ2 � ��IHW �!� �! � ��IHW �ĝ2�

� 1
2
ĝ2 � ��IHW ��!� � 1

2
�IHW ���! � ĝ2�

����IW ��ĝ2 � ĥ1� � ĝ2 � ��IW �ĥ1� � ĥ1 � ��IW �ĝ2��g

� _ _�f�IHW ��f̂3 � ĝ2� � f̂3 � ��IHW �ĝ2� � ĝ2 � ��IHW �f̂3�g

� _ 2ff̂3 � ��IGHW �f̂3�g
� K� � �P��!� L � ! � ��I�!� � �I�� _!r � ! �!r�

��f1
2
�IW ��! � ĥ1� � 1

2
ĥ1 � ��IW �!� �! � ��IW �ĥ1�

� 1
2
ĥ1 � ��IW ��!� � 1

2
�IW ���! � ĥ1�g � Lr (34)

This result can be rigorously compared with and verified by

the stability constraint for a single-gimbal VSCMG. Setting _� and
�IH � to zero essentially removes the inside gimbal from the DGV,
resulting in the same configuration as Schaub and Junkin’s VSCMG
development [15]. Now, theH frame coincides with the G frame, in
which �IG� and �IW � are both diagonal. As a result, these moments of
inertia are removed frommany of the cross products in Eq. (34), and
the terms on the left-hand side that do not vanish because of the
zeroed control variables reduce to the corresponding formulations in
the VSCMG stability constraint. The right-hand side of Eq. (34), or
the required torque vectorLr, also agrees directly with the VSCMG
derivation.

If the second gimbal rotation is reinstated, it is evident that the

stability relation contains the quadratic terms _ _� and _ 2 that are not
apparent in the constraint for a single-gimbal VSCMG. While this
outcome holds even if wheel speed is fixed, it is not evident in the
previous double-gimbal CMG developments because of simplifica-
tions in the EOM and control law formulations [12,13]. Because of
the quadratic terms, solving for the control variables becomes less
trivial than a simple matrix inversion, as will be discussed in the next
section.

B. Control Algorithm

With the control stability constraint verified, it is used to solve for a

desired _ , _�, and _� the control variables on the left-hand side of
Eq. (34). Let us simplify the constraint by grouping the coefficient
vectors of the control variables as the vectors a through e:

_� desa� _ desb� _�desc� _ des
_�desd� _ 2

dese� Lr (35)

Using the control vector u� � _�des
_ des

_�des �T, this becomes

�R�u� uT �S�u�Lr (36)
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where matrices �R� and �S� are [3 � 1] and [3 � 3], respectively, but
their entries are [3 � 1] vectors as follows:

�R� � �a b c � (37)

�S� �
0 0 0
0 e 1

2
d

0 1
2
d 0

2
4

3
5 (38)

This nonlinear matrix equation cannot be solved analytically
for u; instead, a Newton–Raphson (N–R) iteration is used to find the
root of the relation

f �u� � �R�u� uT �S�u� Lr (39)

For the initial guess, the control vector is solvedwith the quadratic
terms neglected:

u 0 � �R��1Lr (40)

Incremental corrections are made until the error jf�u�j is
sufficiently small using

u � u0 � �J��1f�u� (41)

where �J� is the Jacobian of f with u:

�J� � �a b� u3d� 2u2e c� u2d � (42)

In the numerical control simulation presented later in this paper,
where no singularities are encountered, the initial error jf�u0�j stays
almost three orders ofmagnitude below the required torque size jLrj,
and nomore than two iterations are required to achieve an accuracy of
10�9 N 
m in jf�u�j.When singularities are not avoided, the amount
of necessary iterations can become much larger.

The wheel acceleration from the control vector u can be
implemented directly in themotor servo, but to determine the desired
gimbal accelerations for their motor servos, a proportional control
with feedforward term is required:

_� srv � _�des (43)

� srv ��K _ � _ � _ des� � � des (44)

�� srv ��K _�� _� � _�des� � ��des (45)

where

� des �
_ des�t� � _ des�t� tstep�

tstep
(46)

�� des �
_�des�t� � _�des�t� tstep�

tstep
(47)

As with CMG gimbal rate servocontrols solutions, exact control
is not expected with this steering law because of the gimbal
acceleration terms that are neglected. The best results are achieved

when gimbal accelerations � and �� are kept small, a similar
requirement as for effective CMG control.

C. Control Singularities

The dominant terms from Eq. (33) that appear in the steering
law are

_�f�IW �ĥ1g � _ �f�IW ��f̂3 � ĥ1� � f̂3 � ��IW �ĥ1�

� ĥ1 � ��IW �f̂3�g � _��f�IW ��ĝ2 � ĥ1� � ĝ2 � ��IW �ĥ1�

� ĥ1 � ��IW �ĝ2�g (48)

The second two lines are equivalent to the torque amplification
term in the VSCMG control law, since a small gimbal rate can
produce a large torque quantity when� is large. If the operations in
Eq. (48) are performed in the H frame, and the wheel moment of
inertia matrix is expressed as

H �IW � �
IW1

0 0
0 IW2

0
0 0 IW3

2
4

3
5 (49)

the result is

_�IW2
ĥ1 � _ ��IW1

� IW2
� IW3

� cos �ĥ2
� _���IW1

� IW2
� IW3

�ĥ3 (50)

It is evident here that the dominant terms of this steering law span

the entire vector space, except when �� 90 deg and the _ � term
vanishes. This is logical because, at that configuration, the two
gimbal frames line up and the torques from the outer gimbal motor
and the wheel motor are collinear. There are other terms in the a
vector of Eq. (36), but they do not contain � and are thus much

smaller. The inclusion of the _ _� term in the control law does not
alleviate the singularity problem either because its associated vector

can be shown to contain only components in the ĥ1 and ĥ3 directions.
There is a chance the system pushes through this singularity, but the
steering law is certainly not robust with a single DGVas there is no
null space to avoid the singularity. Combined with another simple
control device, such as a reaction wheel to avoid singularities, a
single DGV could still provide effective spacecraft attitude control.

D. Control Simulation

The control law discussed above is implemented to track an
arbitrary sinusoidal attitude reference trajectory. Spacecraft param-
eters and initial conditions are the same as in Table 1 with the
exception of ��t0� and the control parameters that are shown in
Table 2.

Figure 4 shows that the velocity-based steering law does a very
successful job of tracking the desired attitude, as long as singularities
where � approaches�90 deg are avoided. It is evident from Fig. 5a
that this is the case with these simulation parameters (wheel speed is
not shown, but it stays close to 100 rad=s). In the beginning of the
simulation, the control law requires largemotor torques to correct the
initial attitude and velocity errors. In reality, the motors might
saturate from this aggressive control, in which case time-dependent
gains could be implemented to keep the desired servo accelerations
within certain bounds.

As the gimbal frames approach the orientationwhere they are lined
up, their motors see higher torques to resist each others’motion. This
can be seen in the simulation in Fig. 6a, where uG and uW increase

Table 2 Parameters for reference tracking

simulation with nonlinear control law

Parameter Value Units

��t0� 100 rad=s
K 100
�P� diag�� 100 100 100 ��
K _ 10

K _� 10
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together and decrease together at roughly 35 and 80 s, respectively.
This coincides with � nearing �90 deg in Fig. 5a.

The error in the initial N–R guess, jf�u0�j, and the number of
iterations required to bring this error down to 10�9 N 
m are shown
in Fig. 7. Thus, while the control formulation requires iterating
numerically to solve for DGV control variables from a quadratic
matrix equation, this process is achieved very rapidly with only one
to two iteration steps. Moreover, the errors in the computed desired
torque stay within 0.15% without N–R iteration, suggesting that
acceptable control would be achieved in this simulation without
consideration of the quadratic control parameter terms. The compu-
tational cost of theN–R iteration represents only 2.08%of the control
update calculation time, so there is no large detriment to determining
the exact solution. When the DGV system approaches a singularity,
however, the error and N–R iterations quickly increase, and more
benefit is achieved by solving for the nonlinear parameters. In a
flight-ready satellite, however, other actuators would be included to
ensure that control singularities are avoided.

V. Conclusions

The goal of this investigation is to derive the full EOM of a DGV
and determine whether a single such device can provide full attitude
control of a spacecraft and employ the torque amplification seen in
single-gimbal devices. The control law dynamics show that this
torque amplification is indeed evident, but the DGV can encounter
control singularities that prevent robust control from a single DGV
device alone. The nonlinear nature of the stability constraint requires
a novel approach in the control algorithm, namely, using a N–R
solving method to acquire the desired control parameters. Since high
accuracy resulted with only two iterations from the initial control
guess using feedback compensation of the nonlinear terms, it is
deduced that the coefficients of the nonlinear terms are generally
small. When singularities where the gimbal frames line up with each
other are avoided, the nonlinear control algorithm achieves very
accurate tracking of a reference attitude trajectory. Future work will
attempt to achieve robust control and singularity avoidance with a
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multi-DGV cluster, using the null space that results from the system’s
extra degrees of freedom.
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