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Abstract
Analytic constant charge solutions are investigated for square planar and 3-D tetrahedron 4-

craft static Coulomb formations. The solutions are formulated in terms of the formation geometry
and attitude. In contrast to the 2 and 3 spacecraft Coulomb formations, a 4 spacecraft formation
has new equality and multiple inequality constraints that need to be satisfied for the individual
spacecraft charges to be both unique and real. Unique charge relative equilibriums are important
to reduce the overall power requirement of the spacecraft charge emision. A spacecraft must not
only satisfy three inequality 3-craft constraints to yield a real charge solution, but it must also
satisfy 2 additional equality constraints to ensure that the spacecraft charges are unique. Further,
a method is presented to reduce the number of equality constraints arising due the dynamics of a
4 spacecraft formation. The unique and real spacecraft charges are determined as a function of
the orientation of the square formation in a given principal orbit plane. For the 3-D tetrahedron
formation scenario there is only a unique set of charged products. The implementability constraints
are numerically evaluated to show that only trivial equal-mass tetrahedron formations are possible
where one craft is on the along-track axis with zero charge.

Introduction
Spacecraft formation or general proximity flying is increasingly gaining interest in the

aerospace community. The benefits of a spacecraft formation include lower life cycle
cost, reconfigurability of the formation shape and size, as well as adaptability of the
formation in case of a malfunctioning satellite.1–4 Applications such as synthetic aperture
radar, space interferometry and sensor web formations are more feasible using spacecraft
formation flying, rather than large monolithic structures.1, 2

For small spacecraft separation distances on the order of 100 meters or less, thruster
exhaust plume impingement with neighboring satellites is a major technological hurdle.
Further, conventional chemical thrusting concepts are not very effective in generating the
small micro-Newton level forces required to maintain a cluster dozens of meters in size.
Coulomb thrusting is providing an attractive and a novel solution to these technological
hurdles arising from the control of spacecraft in a tight formation.

Geo-stationary spacecraft naturally charge to kilo-volt levels due to their interaction
with the local space plasma environment and sun light. For spacecraft flying dozens
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of meters apart the resulting electrostatic potentials can cause 100’s of meters of error
motion over an orbit. The concept of Coulomb propulsion varies the spacecraft potential
from its natural equilibrium potential using active charge emission. Missions showing
the feasibility of active charge control include Equator-S,5 Geotail,6, 7 and CLUSTER.8, 9

With static Coulomb formations constant Coulomb forces are used to cancel out the
differential gravitational forces and maintain a fixed formation with respect to the rotating
formation chief Local Vertical/Local Horizontal (LVLH) frame. The electrostatic forces
acting on the spacecraft are internal forces, and thus cannot change the total inertial
angular momentum of the multi-body cluster.

Coulomb thrusting is considered an attractive solution for the control of a tight space-
craft cluster of less than 100 meters in high Earth orbits. While electric propulsion is
a very fuel efficient method to control the spacecraft in a formation compared to tradi-
tional chemical thrusting concepts, the usefulness of electric propulsion is diminished
for small spacecraft separation distances as the ionic exhaust plume could potentially
damage near-by spacecraft. Coulomb propulsion has the advantage of being essentially
propellant-less and offers mass savings up to 98%.10, 11 Coulomb propulsion is a highly
efficient propulsion system achieving Isp to the order of 1013s. The power required to
charge the spacecraft is in the order of watts (W).11 In addition to being a highly efficient
system, Coulomb propulsion is also based on a renewable source, increasing the mission
lifetime as compared to electric propulsion.12

Parker and King performed the initial study on Coulomb thrusting in a NASA Institute
for Advanced Concepts (NIAC) Phase I project. This NIAC report contains a discussion
on Coulomb thrusting, potential applications, and simple techniques to find the static
Coulomb formations using symmetry arguments. The report presents analytic solutions
for 3 and 5-craft formations and numerical solutions for a 6 spacecraft formation. The
report uses simplifying assumptions based on symmetry of the formation to determine
the analytic solutions for charges on a spacecraft.

One of the challenging and interesting applications of Coulomb propulsion discussed
in the NIAC report is the concept of a static Coulomb formation. The Coulomb forces
exactly cancel out the relative motion dynamics creating a virtual Coulomb structure.12, 13

These static solutions are relative equilibrium solutions of the charged relative equations
of motion. Berryman and Schaub in Reference 12 extend the work of the NIAC report
and present complete analytic solutions for 2 and 3 spacecraft formations.

The necessary equilibrium conditions for static Coulomb formations with constant
charges are developed in Reference 14. The conditions require that the center of mass of
the static formation structure should be at the origin of the Hill frame. Also, the formation
principal inertia axes of the static formation structure need to be aligned with the Hill
frame axes. If the center of mass condition is not satisfied the formation drifts relative to
the LVLH frame. The principal axes constraints ensure that the gravity gradient torques
on the formation are zero.

In a virtual Coulomb structure the truss and beam structural members are replaced with
electrostatic force fields. In the presence of external disturbances, the force fields are only
able to provide tension and compression to maintain the structural shape of a spacecraft
cluster. The force fields maintain this static virtual structure as seen by the rotating
Hill frame. Figure 1 shows a Coulomb virtual structure in space. Here the connections
between spacecraft represent the electrostatic force fields acting on the spacecraft. The
first feedback stabilized 2-craft virtual Coulomb structures are discussed by Natarajan in
References 13, 15, 16.

This paper presents analytical open loop charge solutions to establish a 4-craft static
Coulomb formation. The charges required are constant and there is no charge feedback
to maintain the formation shape. The static formations are naturally occurring equilib-
rium solutions which are open-loop unstable. How to stabilize the charged cluster about
these equilibrium with 3 or more craft is an open area of research. The analytic solutions
presented in this paper extend the work done in References 10 and 12. This paper in-
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Figure 1. Illustration of a Coulomb virtual structure formation in a circular chief orbit.
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Figure 2. Illustration of Debye shielding in space plasma environment

vestigates solutions for particular 4-craft formations, and explores the issue of obtaining
unique individual spacecraft charges. This uniqueness issue only appears for formations
with 4 or more craft.

Analytic solutions for a square 4-craft formation are discussed first. A square forma-
tion is a convenient geometry for missions involving interferometry. All spacecraft are
assumed to have equal and constant masses. The second analysis focuses on a 3-D tetra-
hedron formation. This formation shape is of interest because its symmetry yields zero
gravity gradient torque regardless of the formation attitude. The charge implementabil-
ity conditions are investigated numerically across a range of three-dimensional formation
orientations.

Coulomb Thrusting Concept
The electrostatic Coulomb force between two charged bodies in a vaccum is propor-

tional to the product of the charges and inversely proportional to the square of the dis-
tances between them. However, the magnitude of the Coulomb force in a space environ-
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ment is expressed as

F = kc
qiqj
d2
ij

e
−
dij
λd (1)

were qi are the spacecraft charges, kc = 8.988×109 Nm2C−2 is the electrostatic constant
and dij the separation distance between the ith and jth spacecraft. Figure 2 illustrates
the interaction between charged bodies in a space evironment. The exponential term in
Eq (1) represents the shielding effect of the space plasma environment on the Coulomb
force experienced by a second charge body through the term Debye length term λd.
The plasma field in the space environment reduces the effect of Coulomb interaction
by shielding the spacecraft. The Debye length in low Earth orbit is on the order of
centimeters, thus requiring spacecraft to be charged to a very large potential to overcome
the plasma environment.10, 11 For the purposes of the analysis in this paper, it is assumed
that the spacecraft clusters are in Geostationary Earth Orbits (GEO), where the Debye
length ranges from 150m to 1000m, making it more feasible to use Coulomb forces to
control the formation. The concept of Coulomb thrusting employs active charge emission
devices to expel electrons or ions to modify the natural electrostatic equilibrium of the
spacecraft.

Coulomb propulsion has potential uses in spacecraft cluster applications other than
static Coulomb formations. Natarajan and Schaub present the 2-craft Coulomb tether
structure concept in Reference 13. Here an electrostatic field replaces the physical tether.
The paper also presents the use of the gravity-gradient torque to stabilize the virtual
Coulomb structure about the orbit nadir direction. Reference 13 also presents the first
feedback law for a stabilized virtual Coulomb structure, with the separation distance and
time rate of separation distance as the feedback terms.

References 17 and 18 develop control laws to maintain a charged spacecraft cluster.
Reference 17 develops a non-linear control law based on orbit element differences to
control a 2-craft Coulomb formation. The paper also proves the stability of such a con-
trol law. Reference 18 discusses the potential use of electrostatic Coulomb forces for
spacecraft collision avoidance using separation distance as feedback.

Another exciting application of Coulomb propulsion is given by Pettazzi et.al in Refer-
ence 19. Here the hybrid use of electrostatic forces and conventional thrusting for swarm
navigation and reconfiguration is discussed. The paper also discusses the different strate-
gies for integrating the Coulomb actuation into swarm navigation and reconfiguration
scheme. Application of Coulomb forces in aiding the self-assembly of the large space
structures is discussed in Reference 20.

Charged Spacecraft Equations of Motion
Let us define the rotating Hill coordinate system H with respect to which the relative

motion dynamics of the spacecraft formation is expressed. The Hill frame is defined as
H = {O, ôr, ôθ, ôh} as illustrated in figure 3. Here the origin of the Hill frame lies at
the center of mass of the formation. The vector ôr points radially outward, ôh points
in the out of plane direction, and the along-track direction ôθ completes the coordinate
system such that ôθ = ôh × ôr. The relative position vector between the deputy and the
chief in interial frame is expressed as ρi = rdi − rc, where rdi is the inertial position
of the deputy spacecraft and rc is the inertial position of the chief satellite. The relative
position vector in Hill frame component is expressed as

ρi =

H(
xi
yi
zi

)
(2)
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Figure 3. Illustration of Hill Frame Coordinate system

The conditions for a static Coulomb formation are achieved by allowing the electrostatic
forces to cancel out the relative acceleration experienced in the Hill frame. Using the
definition of electrostatic force given in equation (1), the charged relative equations of
motion with linearized orbital motion are written as12

ẍi − 2nẏi − 3n2xi =
N∑
j=1

kc
mi

xi − xj
d3
ij

qiqje
−
dij
λd (3a)

ÿi + 2nẋi =
N∑
j=1

kc
mi

yi − yj
d3
ij

qiqje
−
dij
λd (3b)

z̈i + n2zi =
N∑
j=1

kc
mi

zi − zj
d3
ij

qiqje
−
dij
λd (3c)

Here subscript i indicates the ith position in the spacecraft formation, dij is the distance
between the ith and jthspacecraft, and n is the mean orbit rate. The linearized relative
equations of motion are a good assumption as the separation distance (dozens of meters)
are very small compared to the GEO orbit radius of about 42000 kilometers. However,
the full electrostatic actuation of a point charge is employed here.

To find a charged relative equilibrium, the relative acceleration and velocity of the
spacecraft are set to zero, freezing the formation with respect to the Hill frame. The
individual spacecraft charges qi can be scaled through:

q̃i =
√
kc
n
qi (4)

The normalized spacecraft charge q̃i, is not a non-dimensional charge. Using Eq. (4)
and the definition of charged product as Qij = q̃iq̃j , the charged spacecraft equations of
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equilibrium are written as12

−3xi =
N∑
i=1

1
mi

xi − xj
d3
ij

Q̃ij (5a)

0 =
N∑
i=1

1
mi

yi − yj
d3
ij

Q̃ij (5b)

zi =
N∑
i=1

1
mi

zi − zj
d3
ij

Q̃ij (5c)

Note that for a formation in which the spacecraft are aligned with the along-track (ôθ)
direction, there are no spacecraft charges required to achieve the relative equilibrium.
Further, in these equations the Debye length is ignored assuming that the separation
distance is sufficiently smaller than λd. This assumption makes it possible to analyti-
cally solve for charges which result in a charged relative equilibrium of the craft with
respect to the rotating Hill frame. Please note that these charged equilibria only provided
open-loop charge solutions. Without a stabilizing charge feedback control law, none of
these equilibrias are stable in the presence of position errors of perturbations such as
differential solar radiation pressure or differential J2 gravitational accelerations. So far
stabilizing feedback strategies have been developed for particular 2-craft13, 15, 16, 21 and
3-craft clusters.22 In all these studies the equilibrium charge solutions form the basis of
a feedforward component of the control strategy.

Further, besides using constant charges to satisfy the equilibrium conditions in Eq. (5),
it is possible to use charge modulation to satisfy these equations. Here the charges are
modulated on and off again of a small duty cycle such that the net forces produced yield
the equilibrium. With Coulomb thrusting this option is feasible since the craft can be
taken from zero to max charge in as little as a few milli-seconds, essentially instantaneous
for GEO period time scales.10, 23 This option enables more general virtual Coulomb
structures to be considered. However, the impact on the required electrical power to
achieve these specific time varying charges is significant.10 If instead the equilibrium
is achieved with constant charges, then the power to maintain this fixed potential is the
spacecraft potential times the plasma influx current.10 Using a charge feedback control
strategy to stabilize the shape then only required relatively small variations to the nominal
open-loop equilibrium charges.16, 21, 22 It is for this reason why the search for constant
charge relative equilibriums solutions is of great value as a baseline for future stabilized
charged virtual structure concepts.

4-Craft Static Coulomb Planar Formation Solutions

A square planar formation lies in the principal planes defined by ôr-ôh, ôr-ôθ or ôh-
ôθ planes. The formation lies entirely in these planes and there is no out of plane com-
ponent. This requirement results in the formation principal inertia axes being aligned
with the orbit frame, which is a necessary condition for a relative equilibrium of these
static virtual structures.14 A square formation is one of the possible 4-craft planar forma-
tions. The square formation geometry is convenient for interferometric missions where
the craft are ideally distributed on a projected circle orthogonal to the sensing axis. The
center of mass condition is satisfied by placing the center of the square at the origin of
the Hill frame. The square is rotated in the principal plane about the third axis. Note that
the principal axes constraint is satisfied for any square orientation within the principal
orbit plane.
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Figure 4. Planar 4-Satellite formation in ôr − ôθ plane

Charge Products for Relative Equillibrium

A planar square formation can be parameterized in terms of the angle θ and the radius
ρ as illustrated in figure 4. The angle θ represents the orientation of the square formation
in any given plane. The radius ρ is the distance of the spacecraft from the origin of the
Hill frame. Figure 4 shows the square formation in ôr-ôθ plane, where the square is
rotated through an angle of θ = 45◦ from its nominal position of θ = 0◦. The square can
be parametrized in a similar manner for ôh-ôθ and ôr-ôh plane. For the formation in the
ôr-ôθ plane, the position vectors of the 4 spacecraft are given by

ρ1 =

(
ρ cos θ
ρ sin θ

0

)
, ρ2 =

( −ρ sin θ
ρ cos θ

0

)
, ρ3 =

( −ρ cos θ
−ρ sin θ

0

)
, ρ4 =

(
ρ sin θ
−ρ cos θ

0

)

With a square formation there are 8 non-trivial charged equations of motion from
Eq. (5), 4 each in the ôr and ôθ directions. The number of these equations is reduced by
applying the center of mass conditions and principal axes constraints.14 These conditions
require that the center of mass of the static formation lie at the origin of the Hill frame,
and the principal axes of the static formation be aligned with the axes of the rotating Hill
frame. Due to symmetry for a planar formation there are 2 center of mass constraints and
1 principal axes constraint. The number of equations is now reduced to 5. Thus applying
the center of mass and principal axes constraint and using Eqs. (5a)−(5c), the formation
dynamics in ôr − ôθ is expressed in matrix form as


−3mx1

−3mx2

−3mx3

0
0

 =



x1−x2
d312

x1−x3
d313

x1−x4
d314

0 0 0
x2−x1
d312

0 0 x2−x3
d323

x2−x4
d324

0

0 x3−x1
d313

0 x3−x2
d323

0 x3−x4
d334

y1−y2
d312

y1−y3
d313

y1−y4
d314

0 0 0
y2−y1
d312

0 0 y2−y3
d323

y2−y4
d324

0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(6)
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where dij =
√

(xi − xj)2 + (yi − yj)2 is the distance between the ith and jth spacecraft.
Equation (6) is expressed in compact form as

x = [A]Q̃ (7)

The matrix [A] only depends upon the orientation angle θ and the radius ρ of the space-
craft. It is interesting to note that [A] does not depend on the plane in which the formation
is oriented. The null-space of [A] is identical for any given plane. To solve for the indi-
vidual charges on spacecraft, a solution to the charged products Q̃ij is required. The rank
of matrix [A] is 5, and it is a full row rank matrix. There are infinitely many solutions
to Q̃, which can be expressed in terms of least squares solution, Q∗, and the null-space
Qnull. The least squares solution for the system described by (7) is given by

Q∗ = [A]T
(
[A][A]T

)−1
x (8)

All the possible solutions for Q̃ are

Q̃ = Q∗ + tQnull (9)

where t is a scalar used to scale the null space of [A]. For the given ôr-ôθ plane, the least
squares solution and the null space of the system are

Q∗ =



− 3
√

2
10 mρ

3 (4 + 5 sin 2θ)
− 6

5mρ
3 (1 + 5 cos 2θ)

3
√

2
10 mρ

3 (−4 + 5 sin 2θ)
3
√

2
10 mρ

3 (−4 + 5 sin 2θ)
− 6

5mρ
3 (1− 5 cos 2θ)

− 3
√

2
10 mρ

3 (4 + 5 sin 2θ)


(10)

Qnull =
[

1 −2
√

2 1 1 −2
√

2 1
]T

(11)

The least squares solution, for the ôr-ôθ plane depends on the size of the square forma-
tion and the orientation of the square in the plane. The null-space of the system does not
depend on the orientation of the formation, and as discussed earlier is the same for any
given plane.

Unique Spacecraft Charges

To implement a static Coulomb formation, knowledge of the individual charges on a
spacecraft is required. For a 4-craft formation there are 6 charge products, which results
in 4 individual spacecraft charges. This is always true for a 4-craft formation, regardless
of whether the formation is co-linear, planar or three-dimensional. There are infinitely
many ways to solve for the individual charges from the charge products. To solve for q̃1,
we can break up the square into 3 different triangular loops about the spacecraft position
1 as shown in figure 5. From the loops defined in figure 5, q̃1 can be calculated either of
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Figure 5. Breakdown of a square formation into triangular loops

Eqs. (12a)–(12c):

q̃1a =

√
Q̃12Q̃13

Q̃23

(12a)

q̃1b =

√
Q̃12Q̃14

Q̃24

(12b)

q̃1c =

√
Q̃14Q̃13

Q̃34

(12c)

For the individual charges on a spacecraft to be unique Eqs. (12a)-(12c) must yield the
exact same value of q̃1, which mathematically is written as the equality constraints

q̃1 =

√
Q̃12Q̃13

Q̃23

=

√
Q̃12Q̃14

Q̃24

=

√
Q̃14Q̃13

Q̃34

(13)

The charged products in the above equation depend on the scaling parameter t in Eq. (9).
Given a unique q̃1, the remaining individual charges are trivially calculated as

q̃2 =
Q̃12

q̃1
(14a)

q̃3 =
Q̃13

q̃1
(14b)

q̃4 =
Q̃14

q̃1
(14c)

In a 3 spacecraft formation there is only one triangular loop and it results in a unique
individual charge. However, in a 4-craft formation there are two additional triangular
loops. These make the task of determining the individual spacecraft charges non-trivial.
First, assume that q̃1a and q̃1b from Eqs. (12a) and (12b) are equal.√

Q̃12Q̃13

Q̃23

=

√
Q̃14Q̃13

Q̃34

(15)
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Assuming Q̃13 6= 0 which would yield a trivial non-charged solution, Eq. (15) is simpli-
fied to

Q̃12Q̃34 − Q̃14Q̃23 = 0 (16)

Using Eqs. (9)-(11), Eq. (16) is written as(
−3
√

2
10

mρ3 (4 + 5 sin 2θ) + t

)2

−

(
−3
√

2
10

mρ3 (4− 5 sin 2θ) + t

)2

= 0 (17)

Simplifying further yields

6
5
mρ3

(
−5
√

2t+ 12mρ3
)

sin (2θ) = 0 (18)

Thus the quadratic equation in (17) simplifies to a linear equation with one root, which
can be solved for t where the individual charges are unique. Equation (18) is also true
when sin 2θ = 0. Thus unique charges can be found for specific orientation angles of
θ = 0◦ and θ = 90◦. Such an orientation corresponds to two spacecraft aligned along
the ôθ axes and the remaining 2 spacecraft aligned along the ôr axes. Solving Eq. (18),
the value of t for which Eq. (15) holds true is

t =
6
√

2
5
mρ3 (19)

The value of scalar t in Eq. (19) ensures that a unique q̃1 is found from the equality
constraint in Eq (16). To prove that the second equality constraint is satisfied, let us
explore the third uniqueness condition in Eq. (12c). Eq. (12c) can also be written as

q̃1c =

√
Q̃14Q̃12

Q̃24

· Q̃13Q̃24

Q̃34Q̃12

=

√
q̃21b ·

Q̃13Q̃24

Q̃34Q̃12

(20)

Thus it is seen that Eq. (12c) is same as (12b) if

Q̃13Q̃24

Q̃34Q̃12

= 1 (21)

Using the value of scaling parameter t from (19) and Eqs. (10) and (11), Eq. (9) is
rewritten as

Q̃ = mρ3



−3
√

2 cos θ sin θ
−3
√

2 cos2 θ
3
√

2 cos θ sin θ
3
√

2 cos θ sin θ
−3
√

2 sin2 θ

−3
√

2 cos θ sin θ

 (22)

Using the values of Q̃ij in Eq. (22), Eq. (21) is rewritten as

Q̃13Q̃24

Q̃34Q̃12

=

(
−3
√

2 sin2 θ
) (
−3
√

2 cos2 θ
)(

−3
√

2 sin θ cos θ
) (
−3
√

2 sin θ cos θ
) = 1 (23)

Thus the condition in Eq. (12c) is satisfied and that Eq. (12c) will yield the same q̃1
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as Eq. (12b). It is shown that to obtain a unique spacecraft charge only one equality
constraints from Eqs. (12a) - (12c) needs to be satisfied, as the second one is guaranteed
to be true. This argument is only true for a square planar formation with equal spacecraft
masses.

Carefully choosing the value of the null-space scaling parameter t, the number of
equality constraints for unique spacecraft charges are reduced to 1. This method does
not take into consideration that unique spacecraft charges exist for specific orientation
angles of θ = 0◦ and θ = 90◦. For θ = 0◦, the charged products solutions is

Q̃ =



t− 6
5

√
2mρ3

−2
√

2t− 36
5 mρ

3

t− 6
5

√
2mρ3

t− 6
5

√
2mρ3

−2
√

2t+ 24
5 mρ

3

t− 6
5

√
2mρ3


(24)

It is seen from equation (24,) that only 1 equality constraint needs to be satisfied for
unique spacecraft charges as Q̃12Q̃34 = Q̃14Q̃23. The null-space scaling parameter
t can be chosen in a manner such that equation (21) is satisfied. Using the values of
charged production in Eq. (24), Eq. (21) is rewritten as

7t2 − 36
5

√
2mρ3t+

936
5
m2ρ6 = 0 (25)

Equation (25) is a quadratic equation. There are two possible values of null-space scaling
parameter t where unique charges can be found for orientation angle θ = 0◦. Solving
Eq. (25) the values of t for which unique spacecraft charges exist are

t1 =
6
5

√
2mρ3 (26a)

t2 = −78
35

√
2mρ3 (26b)

Please note that the value of null-space scaling parameter t in Eq. (26a) is the same as in
Eq. (19). This implies that it is possible for find real spacecraft charges for orientations
other than θ = 0◦ or θ = 90◦. However if the null-space scaling parameter t2 is used
from Eq. (26b), then real charges can only be found for θ = 0◦ or θ = 90◦. The steps
in Eqs. (24) to (26) are for θ = 90◦. For θ = 90◦, the null-space scaling parameter for
unique charges is the same as in Eq. (26).

Without loss of generality, the steps from Eqs. (12) to (26) can be repeated for the
other two planes ôh-ôθ and ôr-ôh. The formation dynamics in ôh-ôθ is written as

m


−3z1
−3z2
−3z3

0
0

 =



cos θ+sin θ
2
√

2ρ2
cos θ
4ρ2

cos θ−sin θ
2
√

2ρ2
0 0 0

− cos θ+sin θ
2
√

2ρ2
0 0 cos θ−sin θ

2
√

2ρ2
− sin θ

4ρ2 0

0 − cos θ
4ρ2 0 − cos θ+sin θ

2
√

2ρ2
0 cos θ+sin θ

2
√

2ρ2

− cos θ+sin θ
2
√

2ρ2
sin θ
4ρ2

cos θ+sin θ
2
√

2ρ2
0 0 0

cos θ−sin θ
2
√

2ρ2
0 0 cos θ+sin θ

2
√

2ρ2
cos θ
4ρ2 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(27)
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Equation (16) for ôh-ôθ plane is written as

−2
5
mρ3

(
5
√

2t+ 4mρ3
)

sin 2θ = 0 (28)

The value of t for which the unique spacecraft charges is:

t =
−4
5
√

2
mρ3 (29)

Unique spacecraft charges can also be computed for θ = 0◦ or θ = 90◦. The null-space
scaling factor t required for unique spacecraft charges is

t1 = − 4
5
√

2
mρ3 (30a)

t2 =
52

35
√

2
mρ3 (30b)

It is noted that the value of null-space scaling factor in Eq. (30a) is the same as in Eq.
(29). Thus real charges can be computed for any orientation of square in the ôh-ôθ plane.
However if the value of scaling parameter from Eq. (30a) is used, real charges can only
be computed for θ = 0◦ or θ = 90◦.

The formation dynamics in the ôr-ôh plane is written as

m


−3x1

−3x2

−3x3

z1
z2

 =



cos θ+sin θ
2
√

2ρ2
cos θ
4ρ2

cos θ−sin θ
2
√

2ρ2
0 0 0

− cos θ+sin θ
2
√

2ρ2
0 0 cos θ−sin θ

2
√

2ρ2
− sin θ

4ρ2 0

0 − cos θ
4ρ2 0 − cos θ+sin θ

2
√

2ρ2
0 cos θ+sin θ

2
√

2ρ2

− cos θ+sin θ
2
√

2ρ2
sin θ
4ρ2

cos θ+sin θ
2
√

2ρ2
0 0 0

cos θ−sin θ
2
√

2ρ2
0 0 cos θ+sin θ

2
√

2ρ2
cos θ
4ρ2 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(31)

Equation (16) for ôh-ôθ plane is written as

−2
5
mρ3

(
5
√

2t+ 4mρ3
)

sin 2θ = 0 (32)

The value of t for which the unique spacecraft charges can be found is.

t =
4
5

√
2mρ3 (33)

Unique spacecraft charges can also be computed for θ = 0◦ or θ = 90◦. The null-space
scaling factor t required for unique spacecraft charges is

t1 = − 4
35
mρ3

(
3
√

2− 5
√

29
)

(34a)

t2 = − 4
35
mρ3

(
3
√

2 + 5
√

29
)

(34b)

It is noted that unlike ôr-ôθ and ôh-ôθ planes the value of null-space scaling factor in Eq.
(34) is not common to the scaling parameter for arbitrary orientations. Real charges can
be computed for any orientation of square in the ôr-ôh plane using the scaling parameter
in equation (33). If the value of scaling parameter from Eq. (34b) or (34a) is used, real
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charges can only be computed for θ = 0◦ or θ = 90◦.
From Eqs. (19),(29) and (33), it is evident that for an arbitrary orientation of a forma-

tion in the given plane, only one set of unique individual charges on the spacecraft exists.
Further the value of the scalar t where these unique charges exist is a constant in a given
plane and does not depend on the orientation θ of the formation within the given plane.
However it is also possible to find unique spacecraft charges for specific orientations of
θ = 0◦ or θ = 90◦.

Real Charges

Finding unique spacecraft charges is not a sufficient condition for the formation to
exist; the charges on the spacecraft in a formation also need to be real. In a 3-craft for-
mation, there is only one inequality constraint for real charges. For a 4-craft formation,
there are two additional constraints. Mathematically the conditions for real charges are
expressed as the inequality constraints

Q̃12 · Q̃13 · Q̃23 > 0 (35a)

Q̃12 · Q̃14 · Q̃24 > 0 (35b)

Q̃13 · Q̃14 · Q̃34 > 0 (35c)

For real spacecraft charges in a 3-craft formation the inequality constraint in Eq. (35a)
needs to be true. The additional constraints for real spacecraft in Eqs. (35b) and (35c)
need to be satisfied for a 4-craft formation. Using Eq. (12a) Eq. (35a) can be written as

q̃21 ·
(
Q̃23

)2
> 0 (36)

Assuming the real charge condition in Eq. (35a) is satisfied. We find q̃21 > 0 as Q̃2
23 > 0

for all values of Q̃23. Similarly equations (35b) and (35c) are expressed as

q̃21 ·
(
Q̃24

)2
> 0 (37)

q̃21 ·
(
Q̃34

)2
> 0 (38)

Because it was already proven that q21 > 0 as Eq. (35a) is true; the other two inequality
constraints (35b) and (35c) are guaranteed to be satisfied. While the individual charge
q̃1 is the unique spacecraft charge required on a formation. The arguments in equations
(35a)-(35c) are valid for any 4-craft formation, not just the special case of the square
formation being considered here.

Using the null-space of Q̃ in (9) Eq. (35a) is expanded as a cubic polynomial in terms
of the scalar t. The roots of this polynomial expressed in terms of θ and ρ are

t1 = − 3
5
√

2
mρ3 (1 + 5 cos 2θ)

t2 = 3
5
√

2
mρ3 (2− 5 sin 2θ)

t3 = 3
5
√

2
mρ3 (2 + 5 sin 2θ)

(39)

The range of t for which the inequality constraint (35a) is satisfied, can be determined
in terms of the roots in Eq. (39). Wang in Reference 24 exploits the 1-D null-space to
parametrize the inequality constraint for real charges. For the 1-D constrained 3-craft he
presents an elegant method for determining the regions of real charges in terms of the
roots in Eq. (35a). Let â, b̂ and ĉ represent Q∗12, Q∗13 and Q∗23 respectively from (10),
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using this parametrization and (11), Eq.(35a) can be written down as

f (t) = (â+ t)
(
b̂− 2

√
2t
)

(ĉ+ t) > 0 (40)

Let a, b and c be the roots of the polynomial in Eq. (40), arranged in the following order
a > b > c. An interesting property of the polynomial in Eq. (40) is as lim

t→∞
f (t) < 0

and lim
t→−∞

f (t) > 0. Thus the inequality constraint in (35a) is satisfied in the region

b < t < a and t < c.

REAL
CHARGES

f(t)

abc t

(a) Valid regions for charges to be real for θ =
30◦
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Figure 6. Plot of regions where unique spacecraft charges are real

Figure 6(a) shows the shape of the general polynomial described by equation (40) and
the valid regions of t where f (t) > 0. Figure 6(b) plots t̃i for 0◦ ≤ θ ≤ 90◦, where
t̃i = 5

√
2

3mρ3 ti. The shaded regions show the range of θ where the individual charges are
real. Figure 6(b) also plots the value of null-space scaling factor for unique charges in
equation (26). For a solution to exist, the value of t in (26) and should lie in the shaded
region of the plot in figure 6(b). From the figure we can see for the individual charges to
be real and implementable, the square can be rotated between 0 ≤ θ ≤ 90 degrees from
ôr axis for the formation to be possible. Table 1 shows the order of roots arranged in
terms of the orientation of the square in the ôr-ôθ plane.

θ Order of Roots

0 < θ < 45 t2 > t3 > t1
45 < θ < 90 t2 > t1 > t3

Table 1. Order of Roots depending on angle of orientation for ôr − ôθ plane

The individual charges now can be calculated by substituting in the value of t from
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Figure 7. Plot of θ for real and unique charges.

(19) in equation (12a) to get q1 in terms of ρ and θ.

q̃1 =
√

3
√

2mρ3 cos θ (41a)

q̃2 =
√

3
√

2mρ3 sin θ (41b)

q̃3 = −
√

3
√

2mρ3 cos θ (41c)

q̃4 = −
√

3
√

2mρ3 sin θ (41d)

The individual charges found in Eq. (41) are only valid for t = 6
5

√
2mρ3. From figure

6(b) it can be seen that for θ = 0◦ or θ = 90◦ and t = 6
5

√
2mρ3 unique and real

spacecraft charges exist. While θ = 0◦ spacecraft 2 and 4 are aligned along ôθ axis and
have no charges acting on them. It is also noted when t = 6

5

√
2mρ3 unique and real

charges exist for formation orientations other than θ = 0◦ or θ = 90◦. It is also observed
that when t = − 78

35

√
2mρ3 real spacecraft charges only exist for θ = 0◦ or θ = 90◦.

This is true because θ = 0◦ or θ = 90◦ are the only possible orientations for the unique
charges. However in this case the charges on spacecraft aligned along the ôθ axis is not
0. The individual charges for such a formation are given by

q̃1 = 2

√
3
7

√
mρ3 (42a)

q̃2 = −4

√
6
7

√
mρ3 (42b)

q̃3 = −2

√
3
7

√
mρ3 (42c)

q̃4 = 4

√
6
7

√
mρ3 (42d)

Figures 7(a) and 7(b) show the plots of t̃i vs. θ for ôr-ôh and ôh-ôθ plane respectively.
Here the shaded area indicates the region for real spacecraft charges. The individual
charges for ôr-ôh plane can be calculated by plugging in the value of t from (33) in Eq.
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(12a) to get q̃1 in terms of ρ and θ, where 0 ≤ θ ≤ 60

q̃1 = 2
√
mρ3 (1 + 2 cos 2θ) (43a)

q̃2 =
√

2mρ3 (1 + 2 cos 2θ) (43b)

q̃3 = −2
√
mρ3 (1 + 2 cos 2θ) (43c)

q̃4 = −
√

2mρ3 (1 + 2 cos 2θ) (43d)

It is noted that for ôh-ôθ plane that the value of null-space scaling factor in Eq. (34a)
does not yield real spacecraft charges for specific orientations of θ = 0◦ and θ = 90◦.
The scaling factor from Eq. (34b) however allows the computation of real and spacecraft
charge. The individual spacecraft charges are computed as

q̃1 =
1267
1122

√
mρ3 (44a)

q̃2 =
1409
678

√
mρ3 (44b)

q̃3 = −1267
1122

√
mρ3 (44c)

q̃4 = −1409
678

√
mρ3 (44d)

From figure 7(b) it is evident that a square formation in ôh-ôθ plane only exists for
θ = 0◦ or θ = 90◦. The individual charges on spacecraft 2 and 4 are zero, as they lie
along the ôθ plane. The square formation thus simplifies to a linear 2-craft formation in
ôh plane, solution to which has been discussed by Berryman and Schaub in reference 12.
It is also noted from figure 7(b) that the value of null-space scaling factor in Eq. (30b)
does not yield real spacecraft charges.

4-Craft Static Coulomb 3-D Formation Solutions

A tetrahedron is the one of the possible three-dimensional formations which satisfies
the center of mass and the principal axes constraint for virtual Coulomb structures. An
elegant property of tetrahedron is that the principal axes of tetrahedron can be aligned
arbitrarily, and can be chosen in such a manner that the principal axes constraint is satis-
fied. Figure 8 shows the top and front view of a tetrahedron aligned along the ôr axes.
Spacecraft 1 is placed along the ôr axes, the vertex of the tetrahedron. The remaining
spacecraft form an equilateral triangle in the ôh-ôθ plane.

Charged Relative Equilibrium

There are several different attitude descriptions available to represent the orientation
of the body frame with respect to the Hill frame. A sequence of Euler angles is used
in the analysis presented here to describe the orientation of the body frame. A full 3-D
rotation of a tetrahedron is quite complex for arbitrary orientations. Analysis of 2 angle
rotation of tetrahedron for a range of the third angle provides a family of solutions for
which a virtual tetrahedron exists. Let ψ, θ and φ represent the rotation angles about
ôr, ôθ and ôh axis respectively. The Hill frame position coordinates of the tetrahedron
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Figure 8. Parametrization of a Tetrahedron

orientation after a sequential 3-2 Euler angle rotation and ψ = 0◦ is given by25

ρ1 = ρ

( cos θ cosφ
sinφ cos θ

sin θ

)
(45a)

ρ2 =
1
3
ρ

 −cosφ
(
cos θ + 2

√
2 sin θ

)
sinφ

(
−2
√

2 sin θ − cos θ
)

sin θ − 2
√

2 cos θ

 (45b)

ρ3 =
1
3
ρ

 − cosφ
(
cos θ −

√
2 sin θ

)
−
√

6 sinφ√
6 cosφ− sinφ

(
cos θ −

√
2 sin θ

)
√

2 cos θ + sin θ cosφ

 (45c)

ρ4 =
1
3
ρ

 − cos θ cosφ+
√

2 cosφ sin θ +
√

6 sinφ
−
√

6 cosφ− sinφ
(
cos θ −

√
2 sin θ

)
√

2 cos θ + sin θ cosφ

 (45d)

For a three-dimensional formation, there are 12 charged spacecraft equations of mo-
tions, 4 each for the ôr, ôh and ôθ axes. The number of these equations can be reduced
by applying the center of mass conditions and principal axes constraints. For a three-
dimensional formation there are 3 center of mass constraints and 3 principal axes con-
straints, reducing the number of equations to be solved to 6. Applying the center of mass
and principal axes constraint and using Eqs. (5a)−(5c), the formation dynamics can be
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expressed in matrix form as

m


0
0
0
z1
z2
−3x1

 =



y1−y2
d312

y1−y3
d313

y1−y4
d314

0 0 0
y2−y1
d312

0 0 y2−y3
d323

y2−y4
d324

0

0 y3−y1
d313

0 y3−y2
d323

0 y3−y4
d334

z1−z2
d312

z1−z3
d313

z1−z4
d314

0 0 0
z2−z1
d312

0 0 z2−z3
d323

z2−z4
d324

0
x1−x2
d312

x1−x3
d313

x1−x4
d314

0 0 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(46)

Equation (46) can be expressed in compact form using Eq. (7). The rank of matrix [A]
is 6, thus it is a full rank matrix and a unique solution to Q̃ = [A]−1x is found. It
is interesting to note that there is no null-space to exploit for a tetrahedron formation.
There is only a unique set of charged products for the tetrahedron system expressed as

Q∗ =
1
9
mρ3



−4
√

6
(
3c2θ c2φ+

√
2cθ sθ (5 + 3c2φ)− s2θ

)
−
(√

6 + 5
√

6c2θ + 6
√

6c2θ c2φ− 2
√

3s2θ (5 + 3c2φ) + 36cθ s2φ
)

−
(√

6 + 5
√

6c2θ + 6
√

6c2θ c2φ− 2
√

3s2θ (5 + 3c2φ)− 36cθ s2φ
)√

2
3

(
−3− 9c2φ+ 5c2θ (5 + 3c2φ) +

√
2s2θ (5 + 3c2φ) + 6

√
6cθ sφ+ 24

√
3sθ s2φ

)√
2
3

(
5c2θ (5 + 3c2φ) +

√
2s2θ (5 + 3c2φ)− 3s2φ

(
1 + 3c2θ + 2

√
3
(√

2cθ + 4sθ
)))

−
√

2
3

(
33− 45c2φ+ c2θ (5 + 3c2φ) + 2

√
2s2θ (5 + 3c2φ)

)


(47)

Angles θ and φ are used to represent the orientation of the tetrahedron in space. The
third angle ψ is set to 0◦ to simplify these algebraic expressions. The charged product
solution depends on the orientation of tetrahedron vertex.

Unique Individual Charges

From equation (9) it is seen that the charged products for a planar formation depend
on the null-space of the system. The null-space can be exploited to find specific charged
products which result in unique spacecraft charges. For a three-dimensional formation
there is only a unique set of charged products, which depend on the orientation of the
tetrahedron in the space. This differentiates the analysis of a three-dimensional formation
to that of a planar formation. The analysis presented here determines the conditions for
unique spacecraft charges for ranges of three-dimensional tetrahedron attitudes.

A tetrahedron can be broken into triangular loops as shown in figure 5, focused on
spacecraft position 1 to compute the charge on spacecraft 1. The charge on spacecraft
1 can be computed as shown by Eqs. (12). For the planar formation the charged prod-
uct solutions contains a 1-D null-space which yields infinity of potential Q̃ij solutions.
By carefully choosing the value of the scaling parameter t it was shown that only one
equality constraint from Eq. (12) is needed for unique spacecraft charges. With no null-
space to exploit in a three-dimensional formation, the charge on spacecraft 1 q̃1, should
be unique to all the three loops in figure 5. Mathematically this condition is represented
as

Q̃12Q̃34 − Q̃14Q̃23 = 0 (48a)

Q̃13Q̃24 − Q̃14Q̃23 = 0 (48b)
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Figure 9. Range of θ and φ for real and unique spacecraft charges for ψ = 0◦

For a planar square formation if one equality constraint is satisfied, the other constraint
is guaranteed to be satisfied as well. For a three-dimensional formation there are two
equality constraints that need to be satisfied for unique spacecraft charges. The condi-
tions on φ and θ must satisfy the equality constraints in (48a) and (48b) to obtain a unique
spacecraft charge q̃1. Using Eq. 47, the equality constraints in (48) are written as

64
27
m2ρ6

(
3c2φ− 2

√
3cφ sφ

(√
2cθ + sθ

)
+3sθ s2φ

(
2
√

2cθ − sθ
))

= 0 (49a)

256
9
m2ρ6cφ sφ

(√
2cθ + sθ

)
= 0 (49b)

From Eqs. (49a) and (49b), it is seen that regions where unique spacecraft charge ex-
ists are not intuitive. Figure 9(a) presents the contour plots for the equality constraints in
Eqs. (49a) and (49b). Equation (49a) in figure 9(a) corresponds to constraint I and equa-
tion (49b) is represented by constraint II. The regions of unique charges are indicated by
the points of intersection of two equality constraints. It is evident from figure 9(a) that
unique charges on a tetrahedron exist for φ = 90◦ or φ = 270◦. Such an orientation cor-
responds to the vertex of the tetrahedron aligned with the ôθ direction, and the remaining
spacecraft form an equilateral triangle in ôr-ôh plane. The spacecraft 1 is aligned with
ôθ axis for φ = 90◦ or φ = 270◦ only if ψ = 0◦. Unique charges also do exist for other
tetrahedron orientations, where the spacecraft is not aligned along ôθ axis.

Real Spacecraft Charges

As in case of a planar formation, finding the regions where the uniqueness conditions
are satisfied is not sufficient for a virtual Coulomb structure. The individual charges on
a spacecraft should also be real. The mathematical conditions for real charges used for
planar formations in Eq. (35) are used for the tetrahedron formation. The inequality
constraints in (35) imply that for each of the loops in the tetrahedron the individual
spacecraft should be real. It was noted that for a 4-craft formation, if a unique charge q̃1
exists, only one inequality constraint in Eq. (35) needs to be satisfied. Figure 9(b) shows
the contour plot of the inequality constraint for real charges in Eq. (35a)

From figure 9(b) is it seen that individual charge q̃1 on spacecraft 1 is real while the
spacecraft is aligned with the ôθ axis. It is also seen that real charges are possible for
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orientations other than φ = 90◦ or φ = 270◦. Such orientations lie on the contours of
the inequality constraint. This implies that the inequality constraint in equation (35a) is
equal to 0 and one of the spacecraft charges is also 0. Thus the tetrahedron formation
is reduced to a 3-craft equilateral triangle in ôr- ôh plane. The analytic solution for the
3-craft formation is developed rigorously in reference 12 .

The analysis presented here assumes that ψ = 0◦. Figure 10 shows the conditions for
real and unique spacecraft charges on φ and θ, for different values of ψ. From the figure
10 it is seen that orientations for unique charges are only possible when the inequality
constraint in Eq. (35a) is equal to 0. This implies one of the spacecraft charges is 0, and
the formation simplifies to a 3-craft equilateral triangle formation.

The analysis of the three-dimensional tetrahedron formation presented here assumed
that the spacecraft have equal masses. It is however possible to have a tetrahedron for-
mation oriented arbitrarily in space with variable mass. Analysis of the tetrahedron for-
mation with variable mass needs to be addressed by future research work.

Conclusion
Analytical tools for determining the charge solution for static a 4-craft formation are

discussed. Analytic solutions extend the work done on 2 and 3-craft formation and
present an analysis on a 4-craft formation. For a 4-craft formation the issues of unique
spacecraft charges and multiple real-charge inequality constraints arise for the first time.

Analytical charge solutions are investigated for a square Coulomb structure. The
square formation is parameterized in terms of the radius ρ and orientation angle θ for
any principal orbit plane choice. The range of angle θ where unique and real space-
craft charges exist are identified. Criteria are also presented for computing unique and
real spacecraft charges. With a planar formation the charged products are a function
of the null-space. By carefully choosing the null-space scaling parameter, the equal-
ity constraints for unique spacecraft charges is reduced. The solutions to the individual
spacecraft charges is provided.

The paper also presents the analysis of a 3-D tetrahedron formation where all space-
craft have the same mass. The real and unique charge criteria are numerically investi-
gated for arbitrary cluster orientations. The results indicated that only trivial solutions
are possible with constant charges where one of the craft has zero charge and is located
on the along-track axis.
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