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Shuquan Wang∗and Hanspeter Schaub†

A 2-spacecraft collision avoidance problem is discussed in this paper. The spacecraft are assumed
to be floating freely in deep space. A control strategy using cluster internal Coulomb forces is developed
to prevent a collision of the two spacecraft. The control law is designed to keep the separation distance
greater than a specified constraint value, and is also designed to keep the departure relative kinetic energy
at the same level with the approach kinetic energy. Further, this strategy requires only the measurements
of the separation distances and the distance rates. If the achievable spacecraft charge levels are limited,
then it is not guaranteed that the collision can always be prevented. Formulating the relative motion of
the charged spacecraft using the concepts of orbital mechanics allows us to analyse the conditions under
which a collision can be avoided. Given an initial separation distance and distance rate, the minimum
spacecraft charge limit required to guarantee collision avoidance is determined. Or, inversely, when
the limitations of charges are given, the maximum approach speed at which a potential collision can be
avoided is estimated. Numerical simulations illustrate the analytical results.

I. Introduction
Collision avoidance is a general concern in a tightly flying clus-

ter of spacecraft with separation distances ranging from dozens to
hundreds of meters. Such mission concepts include small satellite
swarms flying scenarios where a smaller spacecraft is circumnav-
igating and inspecting a secondary craft. The concept of a space-
craft formation involves multiple satellites that work together in
a group to accomplish the objective of a larger, usually more ex-
pensive, satellite. The spacecraft swarm concept envisions a large
number of satellites flying in space with loose position-keeping re-
quirements, while the swarm members provide a highly distributed
and redundant sensor platform. Collisions can occur when space-
craft within the cluster have control or sensor failures, or lack a
guidance strategy to guarantee collision avoidance among a large
number of cluster members. Preventing collisions has many chal-
lenges. First, the collision onset must be sensed with sufficient
accuracy to warrant a corrective maneuver. Second, a control strat-
egy must be developed to provide the required small corrective
forces without causing plume impingement issues on neighboring
satellites. This paper focuses on a mission scenario where loosely
clustered satellites are flying in deep space in a bounded configu-
ration. The satellites are assumed to have a low approach speed
with respect to each other. This strategy is not designed to repel
high-velocity bodies.

Many studies have been published on spacecraft collision avoid-
ance. G. L. Slater in Reference 1 discusses the collision probability
of a formation under the influence of orbital disturbances, and
presents requirements for velocity corrections to avoid collision. G.
Singh in Reference 2 considers a minimum effort collision avoid-
ance strategy for a two-spacecraft formation. Mark E. Campbell
in Reference 3 provides a methodology to monitor the collision
probability for satellite clusters. The above publications mainly
concern the collision probability of a formation or a satellite cluster
in a long-term orbit mission. Daniel P. Scharf in Reference 4 devel-
ops a reactive collision avoidance algorithm for multiple spacecraft
collaborating in 2D space. An acceleration-limited, fuel-optimal
collision avoidance trajectory is calculated using a model predic-
tive control while addressing the uncertainties in the motion of
colliding spacecraft. This algorithm is a short-term instant trajec-
tory control with the time scale of the algorithm on the order of
minutes.

So far most studies on spacecraft collision avoidance have been
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based on the control strategies’ capability to control all three com-
ponents of the thrust vector in 3-D space. In addition, these control
strategies use propellant, which will increase the fuel budget. Fuel
efficient relative motion control is a critical factor for long term
spacecraft cluster or swarm missions because relative orbit cor-
rection burns will have to be performed far more often than with
conventional formation flying concepts. Further, employing con-
ventional thrusters when spacecraft are flying less than 100 meters
apart is very challenging because the associated hot and corrosive
plume may demage the devices on the neighboring spacecraft.

To perform efficient collision avoidance maneuvers in a dense
spacecraft cluster, this paper presents a new approach that uses only
electrostatic (Coulomb) forces. For tight clusters with spacecraft
less than 100 meters apart, this approach stands out because the
Coulomb force generation is essentially propellantless. Further, it
will not generate any propellant plume-impingement issues which
could threaten neighboring spacecraft. The use of Coulomb thrust-
ing in spacecraft cluster flying has been studied frequently since
Lyon B. King et al. originally discussed Coulomb Formation Fly-
ing (CFF) in Reference 5.

The concept of CFF uses Coulomb forces to achieve the desired
relative motion. Spacecraft will naturally charge to non-zero po-
tentials in a space plasma environment. With CFF the spacecraft
charge level is actively controlled through the continuous emis-
sion of electrons or ions. Coulomb force control is 3-5 orders of
magnitude more fuel-efficient than Electric Propulsion (EP) meth-
ods, and typically requires only a few watts of electrical power
to operate.5 Whereas conventional thrusters can produce a thrust
vector pointing in any direction, Coulomb forces always lie along
the line-of-sight directions between the craft. Further, in space the
spacecraft are not flying in a vacuum, but rather a sparse plasma
environment which can shield electrostatic charges. The plasma
Debye length characterizes the amount of shielding.6, 7 The cold
and high-density plasma environment at Low Earth Orbits (LEO)
results in centimeter-length Debye lengths. This makes the use of
Coulomb thrusting not feasible at LEO altitudes. However, at Geo-
stationary Earth Orbits (GEO) the Debye lengths range between
100-1000 meters,8, 5 while at 1 AU in deep space they are around
20-40 meters.5 This makes the Coulomb thrusting concept feasible
for high Earth orbit altitudes and deep space missions where the
maximum separation distances are less than 100 meters.

Many promising and challenging applications of Coulomb
thrusting have been studied. The following papers discuss deep-
space (i.e. no orbital motion) Coulomb thrusting applications. In
Reference 9, Gordon G. Parker et al. present a sequential control
strategy for arranging N charged bodies into an arbitrary geom-
etry using N + 3 participating bodies. In Reference 10 Hussein
et al. study a shape-preserving spinning formation of three space-
craft. Inspired by the gravitational three-body problem, they derive
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general conditions for open-loop charges that guarantee preserva-
tion of the geometric shape of the rotating formation. Reference 11
is an example of an orbit-based Coulomb proximity flying mis-
sion. Here a GEO chief satellite deploys deputy craft to specified
end states. A multiple-deputy deployment is designed by modu-
lating the control authority across the formation. In References 12
and 13, Arun Natarajan et al. discuss the feedback charge con-
trol strategies for the 2-craft GEO-based Coulomb tether concept.
While these previous studies investigate charge-controlled relative
motion between spacecraft, the collision avoidance problem is not
directly addressed. Reference 14 discusses the concept of Coulomb
thrusting and presents a semi-major-axis-based feedback strategy
to use electrostatic forces to bounded the motion between 2 craft.
Further, this paper discusses the potential of Coulomb thrusting to
provide effective collision avoidance strategies, but does not actu-
ally develop a control strategy. It discusses the challenges and the
potential of this Coulomb thrusting application. However, Refer-
ence 14 does illustrate numerically that using a simple repulsive
force field while at GEO will not guarantee a collision avoidance.

This paper considers the first feedback control strategy using
Coulomb thrusting to perform collision avoidance maneuvers. A
potential collision of two spacecraft flying in deep space is consid-
ered where no external forces and torques are acting on the cluster.
A charge feedback control strategy is investigated that maintains
a desired minimum separation distance between two spacecraft.
To minimize the sensor requirements, the control requires only
the separation distances and the rates measurements between the
craft during the collision avoidance phase. The separation distance
is much simpler to measure than the full six Degree-Of-Freedom
(DOF) relative state vector.

A very simple way to avoid a collision has both spacecraft
charged up to large Coulomb values with equal sign. The resulting
repulsive force drives the craft apart, thus avoiding the collision.
But this strategy also results in the two spacecraft flying apart at a
considerable velocity, thus noticeably changing their inertial mo-
tion. This can cause sensing issues for the spacecraft themselves,
but is also of concern if the 2 craft are operating within a larger
cluster of spacecraft. This additional velocity makes future colli-
sion avoidance maneuvers more challenging. Instead, the charge
feedback control is developed with the additional goal to minimize
changes to the relative kinetic energy level of the 2 spacecraft.

Finally, the paper also considers the effect of charge saturation
on the collision avoidance strategy. Even with sophisticated space-
craft designs, there will always be a physical limit to which a craft
can safely be charged. Of interest is determining how much initial
approach speed the craft can have and still avoid a collision if the
charge levels are limited. Analytical conditions are investigated to
guarantee that a collision can be avoided if a given charge limit is
considered.

Numerical simulations illustrate the performance of the devel-
oped collision avoidance control strategy. These simulations typ-
ically consider the craft to be operating in deep space. While the
orbiting collision avoidance is not analytically considered in this
paper, the numerical simulations do illustrate how the control per-
forms if the spacecraft are not in deep space, but rather in an Earth
geostationary orbit.

II. Charged Spacecraft Equations of Motion
Consider two spacecraft flying in the free 3-Dimensional space

where there are no external forces acting on the system as shown in
Figure 1. In CFF concepts the electrostatic forces directly control
separation distances ri but not the the inertial positions Ri. This
paper intends to use the separation distance r and the distance rate
ṙ as the control feedback, thus the separation distance equations of
motion are required to develop the control strategy. The Coulomb
force vector between the two spacecraft, acting on m1, is

F = −kc
q1q2
r3

e
− r
λd r = −kc

q1q2
r2

e
− r
λd êr, (1)

where kc = 8.99 × 109C−2 ·N ·m2 is the Coulomb constant, r
is the distance between the two spacecraft, r is the relative posi-
tion vector pointing of spacecraft 1 (SC1) to spacecraft 2 (SC2),

m1

m2

Inertial frame

R1

R2

center of mass

rr1

r2

v1

v2

Figure 1: Illustration of the 2-spacecraft system.

êr is the unit vector of r, and λd is the Debye length. The ef-
fective range of a given electrical change is smaller if the plasma
Debye length is shorter. For high Earth orbits (HEO), the Debye
length ranges between 100–1000 meters.5, 14, 8 CFF concepts typi-
cally have spacecraft separation distances ranging up to 100 meters.

The inertial equations of motion of the two spacecraft are

m1R̈1 = −kc
q1q2
r2

e
− r
λd êr, (2a)

m2R̈2 = kc
q1q2
r2

e
− r
λd êr, (2b)

where Ri is the inertial position vector of the ith spacecraft. The
inertial relative acceleration vector r̈ is

r̈ = R̈2 − R̈1 =
kcq1q2
m1m2r2

(m1 +m2)e
− r
λd êr. (3)

In the kinematics of polar coordinates, the acceleration is given by

r̈ = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ. (4)

Substituting Eq. (4) into (3) yields the scalar separation distance
equation of motion:

r̈ = rθ̇2 +
kcQ

m1m2r2
(m1 +m2)e

− r
λd . (5)

Note that 2ṙθ̇ + rθ̈ = 0 is a consequence of the inertial angu-
lar momentum being conserved with Coulomb forces. The term
Q = q1q2 is the charge product between the two spacecraft charges
qi. Because only the separation distance and distance rate will be
fed back to the controller, θ̇ should be expressed in terms of r, ṙ,
and the initial conditions. This is accomplished by considering the
angular momentum about the cluster center of mass.

The position vectors ri of the two spacecraft with respect to the
center of mass are

r1 =− m2r

m1 +m2
êr, (6a)

r2 =
m1r

m1 +m2
êr. (6b)

The angular momentum Hc of the system about the center of mass
is

Hc = r1 × ṙ1m1 + r2 × ṙ2m2 =
m1m2

m1 +m2
r2θ̇ê3. (7)

Because there are no external torques acting on the system, the
momentum vector Hc is conserved. From Hc = Hc(t0), the
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angular rate θ̇ is derived

θ̇ =
r2o
r2
θ̇(t0) =

ro
r2
‖ṙ(t0)‖ sinα0 =

„
1

m1
+

1

m2

«
‖Hc(t0)‖

r2
,

(8)

where α0 = cos−1
“

ṙ(t0)·ro
‖ṙ(t0)‖ro

”
is the angle between ṙ(t0) and

ro. Thus the separation distance equations of motion in Eq. (5) is
rewritten as

r̈ =

„
1

m1
+

1

m2

«2 ‖Hc(t0)‖2
r3

+
βQ

r2
e
− r
λd , (9)

where β = kc(m1+m2)
m1m2

. The collision avoidance control law chal-
lenge is to design the charge product Q such that certain avoidance
conditions are satisfied.

III. Unsaturated Control Law
In order to develop a collision avoidance control law, an ex-

plicit statement describing the collision avoidance requirements is
needed. Spacecraft 1 (SC1) has a safe region

Brs =
n

R
˛̨̨
‖R−R1‖ ≤ rs

o
that can not be penetrated at any time. Each spacecraft is monitor-
ing relative motions of neighboring spacecraft. If another space-
craft (SC2) enters the region

Bro = {R|‖R−R1‖ ≤ ro}

and is flying towards Brs , this relative motion is deemed as a po-
tential collision. A control law is then triggered to prevent the
potential collision. This paper considers a potential collision of
only two spacecraft. Because the radius of the safe region of SC2
can be represented by adding it to the radius of the safe region of
SC1, in this paper SC2 is treated as a point mass moving towards
Brs of SC1. Without loss of generality, it is assumed that the initial
relative acceleration is zero. This assumption is reasonable because
upon detecting a potential collision, the spacecraft could equalize
their charges in preparation for a collision avoidance maneuver.

The chief goals of the control are preventing the potential col-
lision and driving SC2 out of the potential region Bro . That is
to keep r(t) ≥ rs for all time and make r(t) > ro in a finite
time. Achievement of the chief goals results in a collision avoid-
ance. On the other hand, it would be undesirable if the final relative
kinetic energy level changes too much compared with the original
kinetic energy level. The secondary goal of the control design is to
maintain the kinetic energy level, that is to make ṙfinal ≈ |ṙ(t0)| or
to keep the changes bounded. Since only the separation distance
is measured, not the full relative states, this condition will only
achieve equal radial energy states.

If the trajectory of SC2 does not touch the ball Brs , no rela-
tive orbit correction is needed to avoid a collision. In this case the
control strategy does not take effect. This situation is illustrated in
Figure 2(a). Otherwise the electrostatic force fields are activated to
repel the two spacecraft as shown in Figure 2(b).

Once SC2 enters Bro and is moving towards Brs , the collision
avoidance control is triggered. The state x1 =r(t) − ro< 0 rep-
resents how far SC2 has penetrated into the region Bro , and the
state x2 =ṙ(t) + ṙ(t0) represents the difference between the ex-
pected radial departure rate and the actual distance rate (note that
ṙ(t0) < 0). As stated above, the control law should reduce the
absolute values of x1 and x2 when r(t) ≤ ro. When r(t) > ro a
collision avoidance has been achieved. From here on the control is
only trying to make ṙ(t)→ −ṙ(t0) to achieve the secondary goal,
that is to maintain the radial relative kinetic energy level.

A. Lyapunov Based Control Design
Let us define the state vector x = (x1, x2)

T as

x1 =


r(t)− ro, r(t) < ro
0, r(t) ≥ ro , (10a)

x2 = ṙ(t) + ṙ(t0). (10b)

Spacecraft-2

Spacecraft-1

rc

rs

ro

a) Not a potential collision.

Spacecraft-1

Spacecraft-2

rs

ro

rc

b) A potential collision.

Figure 2: Collision Avoidance Scenarios as Seen by the First
Spacecraft.

Any final radial separation distance rfinal > ro is acceptable, and
is reflected with a zero x1 state. If the 2nd spacecraft is outside
of the region Bro and the radial departure rate is the opposite of
the radial approach rate, then both collision avoidance states xi are
zero. Thus the desired final states are x1(tf ) = 0 and x2(tf ) = 0.
To avoid a collision, the safety region penetration variable x1(t)
can never be less than rs − ro. To achieve this behavior the Lya-
punov function penalizing x1 is designed to go to infinity when
x1(t) = rs − ro. Let us define a Lyapunov candidate function as

V =
1

2
k1

„
1

x1 − rs + ro
− 1

ro − rs

«2

+
1

2
x2

2, (11)

where k1 is a constant positive coefficient. This function goes to
infinity at the safety boundary x1 → rs − ro and if the radial sep-
aration rate grows unbounded. Note that even though x1 is defined
piecewise, it does not introduce a discontinuity in the Lyapunov
function V at r(t) = ro. The first time derivative of the Lyapunov
function is

V̇ = −k1

„
1

x1 − rs + ro
− 1

ro − rs

«
ẋ1

(x1 − rs + ro)2
+ x2ẋ2.

(12)

Note that here ẋ2 = r̈ as seen from Eq. (10b). The separation
distance equation of motion in Eq. (9) relates the charge product
Q with r̈. To derive a control law from the Lyapunov function,
ẋ1 needs to be expressed in terms of the states, system constants
and/or initial conditions. From the definition of x1 in Eq. (10a), it is
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obvious that ẋ1 = x2− ṙ(t0) when r(t) < ro, but ẋ1 6= x2− ṙ(t0)
when r(t) ≥ ro.

Note that the term
“

1
x1−rs+ro

− 1
ro−rs

”
is zero when r(t) ≥

ro, so the first term in Eq. (12) is zero when r(t) ≥ ro, no matter
what ẋ1 is. Thus ẋ1 can be globally replaced with x2 − ṙ(t0) in
the first term of Eq. (12) and simplify V̇ to:

V̇ = −k1

„
1

x1 − rs + ro
− 1

ro − rs

«
x2 − ṙ(t0)

(x1 − rs + ro)2
+ x2r̈(t).

(13)

Note that V̇ is continuous and well defined for all ranges of the sep-
aration distance r. Now the separation distance equation of motion
in Eq. (9) can be directly substituted into V̇ to design a charge
feedback control law Q using Lyapunov’s direct method.

Assume a charge control law with feedback of separation dis-
tance and separation distance rate as

Q =
k1

β

„
1

x1 − rs + ro
− 1

ro − rs

«
r(t)2

(x1 − rs + ro)2
e
r
λd

− k2

β
r(t)2x2e

r
λd . (14)

Using the Lyapunov function V in Eq. (11), and substituting the
charge control in Eq. (14) into the equations of motion in Eq. (9),
differentiating V yields the Lyapunov function rate expression:

V̇ = k1

„
1

x1 − rs + ro
− 1

ro − rs

«
ṙ(t0)

(x1 − rs + ro)2
− k2x

2
2

+ x2

„
1

m1
+

1

m2

«2 ‖Hc‖2

r3
. (15)

Note that
“

1
x1−rs+ro

− 1
ro−rs

”
≥ 0 and equals zero when x1 =

0. Because ṙ(t0) < 0 the first term in Eq. (15) cannot be positive.
Thus the Lyapunov function rate is bounded by

V̇ ≤ −k2x
2
2 + x2

„
1

m1
+

1

m2

«2 ‖Hc‖2

r3
. (16)

Let the function b(r) be defined as

b(r) =
1

k2

„
1

m1
+

1

m2

«2 ‖Hc‖2

r3
> 0. (17)

Note that b(r)→ 0 as r →∞. Because b(r) > 0, Eq. (16) shows
that V̇ < 0 if

x2 > b(r) or x2 < 0. (18)

The V̇ expression in Eq. (16) does not yet yield any stability guar-
antees. Initial conditions for V̇ < 0 must be determined.

B. State Convergence And Collision Avoidance Achievement
Next the stability and convergence of the charge control law in

Eq. (14) is discussed. A collision avoidance should result in r(t) >
rs, while a secondary goal attempts to drive x2 → 0.

Theorem 1 For a two body system with equations of motion as
shown in Eq. (2), the charge control law in Eq. (14) makes the state
x2 converge to the interval [0, b(r)]. Further, assuming x1 → 0 in
a finite time, x2 converges either to 0 or to b(r) as t→∞.

Proof Equation (18) shows that V̇ < 0 if x2 is outside of the
interval [0, b(r)]. According to the Lyapunov stability theory, the
charge control law in Eq (14) will drive V̇ to zero. Thus x2 →
[0, b(r)] asymptotically as t→∞.

By the asumption that x1 → 0 in a finite time t†, the inequality
in Eq. (16) becomes an equality for t ≥ t†. Then V̇ > 0 when
x2 ∈ (0, b(r)), and V̇ = 0 when x2 = 0 or x2 = b(r) for t ≥ t†.
According to the Lyapunov stability theory, x2 will be driven to 0
or b(r). So x2 converges either to 0 or to b(r) as t→∞. �

Theorem 2 Assuming a two body system with the dynamics de-
scribed by Eq. (2) is subjected to the charge control law in Eq. (14),
then the states (x1, x2)→ (0, 0) as t→∞, where x1, x2 are de-
fined by Eq. (10).

Proof Theorem 1 guarantees that x2 → [0, b(r)] as t → ∞.
The relationship between x2 and ṙ in Eq. (10b) indicates that
ṙ → [−ṙ(t0), b(r) − ṙ(t0)]. Because ṙ(t0) < 0, ṙ will become a
strictly positive value at a finite time t+. As a result at time t∗ > t+

the separation distance reaches the outer collision avoidance dis-
tance ro, and for t > t∗, r(t) > ro. Refering to the definition of
x1 in Eq. (10), it can be concluded that x1 → 0 in a finite time.
Due to ṙ being strictly positive, the separation distance r → ∞ as
t→∞.

Having shown that the 2 spacecraft will depart the collision
avoidance region, next the convergence of x2 is investigated as
t → ∞. If Hc = 0, the interval [0, b(r)] becomes the zero point.
Thus x2 → 0 due to the theorem 1 property x2 → [0, b(r)]. For the
case where Hc 6= 0 the properties of x2 need to be further inves-
tigated. The definition in Eq. (10b) yields x2(t0) = 2ṙ(t0) < 0.
Here x2 will either converge to 0 or to b(r) because x1 → 0 in a
finite time has been proven. If x2 never reaches zero, then x2 → 0.
If x2 crosses zero and converges to b(r), then x2 → 0 due to
b(r)→ 0. �

Theorem 3 For a two body system with dynamics described by
Eq. (2), the charge product control law in Eq. (14) prevents any
potential collision by keeping r(t) > rs for all time, and making
r(t) > ro in a finite time.

Proof While proving x1 → 0 in theorem 2, it has been shown that
r(t) > ro is true for t > t∗. Thus the condition r(t) ≥ rs for all
time is left to be proven. Note that r(t) starts with ro > rs. The
definitions of V in Eq. (13) and x1 in Eq. (10a) show that V →∞
if and only if r(t) decreases to be rs or x2 → ∞. Theorem 1
shows that x2 9 ∞. Thus to prove r(t) > rs for all time, it’s
equivalent to prove that V 9∞ for all time.

The inequality in Eq. (16) shows that the only chance for V̇ to
be positive is x2 ∈ (0, b(r)). Thus a necessary but not sufficient
condition for V → ∞ is that x2 stays in (0, b(r)) for an infinite
time. But as mentioned while proving theorem 2, r(t) is increasing
as x2 ∈ (0, b(r)). Since x1 increases as r(t) increases, x1 doesn’t
decrease to ro − rs when x2 ∈ (0, b(r)). The definition of V
in Eq. (11) shows that V is bounded when x2 ∈ (0, b(r)) and
x1 > ro − rs. Thus even when x2 ∈ (0, b(r)) for an infinite time,
V is still bounded. So V 9 ∞ is guaranteed for all time, hence
r(t) > rs is true for all time. �

Practically speaking the range of the electrostatic control is lim-
ited due to the drop off of the Coulomb field strength with increas-
ing separation distances. As a result, the controller will be turned
off after the state goes inside a certain deadzone region. Let us de-
fine a radius rc > ro where the collision avoidance charge control
is turned off. The effect of this limitation is a termination of the
control when x1 = 0 and r(t) > rc. Note that when the trunca-
tion happens, the potential collision has been avoided. After the
control charges are turned off, there are no forces acting on the
spacecraft. The two spacecraft are now flying freely in space (with
the assumption that the spacecraft are flying in free space) with
constant velocities. The separation distance rate is still bounded,
even though it’s not converging to the magnitude of the approach
rate.

Given the charge product in Eq. (14) to produce the required
electrostatic force field, the individual spacecraft charges qi are
evaluated through

q1 =
p
|Q|, (19)

q2 =sign(Q)q1. (20)

There is an infinity number of choices for how Q can be mapped
into q1 and q2. This strategy evenly distributes the charge amount
across both craft. If one spacecraft can handle a higher charge level
than the other spacecraft, adding a coefficient can adjust the charge
distribution.
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IV. Saturated Collision Avoidance Analysis
Without the saturations of the spacecraft charges, the controller

presented in the previous section can always prevent a potential col-
lision. But in reality the spacecraft charge magnitudes are always
limited. The ability of the two-body system to prevent a potential
collision is reduced compared with the non-saturated control law.
If the spacecraft are moving fast enough, then a collision cannot
be avoided with a limited force. Hence for a given pair of lim-
ited charges, collision avoidance cannot be guaranteed for all initial
conditions.

This section discusses limited charge control requirements for a
collision to be preventable. Assume the two spacecraft are fully
charged such that the charge product reaches its maximum positive
value. If the separation distance r still decreases to be less than the
safety restraint distance rs, the potential collision is deemed as not
avoidable. Otherwise, the potential collision is avoidable.

A. Constant Charge Spacecraft Equations of Motion
Our discussion of the conditions for a potential collision to be

avoidable is based on the assumption that the charge product re-
mains at its maximum value Q = Qmax > 0 to generate the largest
repulsive force. The Coulomb force expression in Eq. (1) simplifies
to

F = −kc
Qmax

r3
e
− r
λd r, (21)

and the differential relative equation of motion is

r̈ = β
Qmax

r3
e
− r
λd r. (22)

Note that the form of the Coulomb force is very similar to the
gravity force; this makes it possible to describe the motion us-
ing the formulas of the gravitational 2-body problem (2BP). Ref-
erence 10 provides an approach to analyze this Coulomb-forced
spacecraft motion using 2BP method. To apply a 2BP method in
analyzing the Coulomb-forced motion, it is necessary to find the
radius and the energy equation in a similar form as in the 2BP. Let
us introduce the effective gravitational parameter

µ(r) = −kc
Qmax(m1 +m2)

m1m2
e
− r
λd . (23)

Next, assume that r � λd, which means the plasma shielding
effect is weak. Then e−

r
λd = 1 and the parameter µ(r) becomes a

constant

µ = −kc
Qmax(m1 +m2)

m1m2
. (24)

The relative equations of motion reduce to the familiar 2BP form

r̈ = − µ

r3
r. (25)

Eq. (25) has the same form as the equation of motion of the
gravitational 2BP, except that here µ is a negative number because
Qmax > 0. By assuming r � λd, µ becomes a constant, so the or-
bit radial trajectory is a conic section curve. Because µ < 0 for the
repulsive force case, all relative trajectories are hyperbolas where
craft 2 orbits the farther focus.10 The signs of some parameters of
the conic section are different from that of the gravitational 2BP. In
our case µ < 0, the semi-latus radium p < 0 and the semi-major
axis a > 0.

Because the repulsive hyperbolic motion has the craft orbit about
an un-occupied focal point, the radial equation is different from that
of the gravitational 2BP:10

r =
p

1− e cos f
. (26)

Here the semi-latus rectum p = h2µ < 0, and h is the magnitude
of the specific angular momentum h = r× ṙ. The energy equation

is derived in the same procedure as the 2BP, and yields an identical
equation:

v2

2
− µ

r
= − µ

2a
, (27)

where v is the magnitude of velocity vector ṙ

v2 = ṙ · ṙ = ṙ2 + (rḟ)2 = ṙ2 +
h2

r2
, (28)

and ḟ is the in-plane rotation rate.
Because the total energy is positive, the relative trajectory of the

two spacecraft is a hyperbola. As seen by SC1, SC2 is traveling
along the hyperbola, and SC1 is standing at the farther focus point10

as illustrated in Figure 3.

Spacecraft 1

Spacecraft 2

d

rs

rp

r

f

v0

Figure 3: Illustration of the 2-Body hyperbolic trajectory.

From Eq. (26), the closest separation distance corresponds to
r(f = 0) that is the radius of periapsis

rp =
p

1− e = a(1 + e). (29)

Thus, given an initial spacecraft approaching speed, finding the cri-
terion for a collision avoidance is to determine a required saturated
charge level that guarantees

rp ≥ rs. (30)

B. Avoidance Analysis
When the specific angular momentum satisfies h 6= 0, there

exists an offset distance d between the position of SC1 and the
direction of the relative velocity of SC2, as shown in Figure 3. Note
that here it is assumed that the current flight path will result in a
potential collision where r will become less than rs. The specific
angular momentum is represented in terms of d and v0:

h = ‖ro × ṙ(t0)‖ = dv0. (31)

The parameter h is expressed in terms of v0 and d instead of the
ṙ(t0) and ḟ0 set, because it will be easier to find out the criterion
of v0. Assume that r(t), ṙ(t) and f can be measured, v0 and d are
calculated through:

v0 =

q
ṙ(t0)2 + (roḟ0)2, (32)

d =
r2o ḟ0
v0

. (33)

Because the angular momentum is conserved during the electro-
static collision avoidance maneuver as with the 2BP, the relation-
ship between the angular momentum and the orbit elements is:

h2 = µa(1− e2). (34)
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Solving for the eccentricity e yields

e =

s
1− h2

µa
. (35)

This e formulation can be used to calculate the periapses radius rp:

rp = a(1 + e) = a+

s
a2 − ah2

µ
. (36)

The collision avoidance criterion rp ≥ rs yields the condition

a+

s
a2 − ah2

µ
≥ rs. (37)

Subtracting a from both sides and squaring the result yields

−ah
2

µ
≥ r2s − 2ars. (38)

Now the semi-major axis a is needed to obtain the relationship
between µ and the initial states of the system. From the energy
equation in Eq. (27), a is solved as:

a =
roµ

2µ− rov2
0

. (39)

Substituting Eq. (39) into Eq. (38), and using h = v0d, yields

− rov
2
0d

2

2µ− rov2
0

≥ r2s −
2rorsµ

2µ− rov2
0

. (40)

Note that 2µ−rov2
0 < 0. Multiplying both sides by−(2µ−rov2

0)
results in

rov
2
0d

2 ≥ r2srov2
0 + 2rs(ro − rs)µ. (41)

Eq. (41) shows the relationship of d, v0 and µ for an avoidable
collision. Solving Eq. (41) for µ, and utilizing the definition of µ
in Eq. (24), yield the maximum required charge criterion to avoid a
collision with a given initial approach speed v0 and miss-distance
d.

Qmax ≥
m1m2

m1 +m2

rov
2
0(r2s − d2)

2kcrs(ro − rs)
. (42)

For example, a large value of ṙ(t0)2 means SC2 is approaching
SC1 at a high speed. Here v0 is large, and according to Eq. (42),
a large Qmax is required to avoid the collision. If the upper limit
of the initial separation distance rate ṙ(t0) is known, then Eq. (42)
tells us the minimum value of the saturated charge product needed
to avoid the collision. For a given formation flying mission where
the maximum magnitude of the possible separation distance rate
has been determined, Eq. (42) helps us design the electric charge
devices of the Coulomb-forced spacecraft to provide the maximum
required repulsive forces.

Alternatively, solving Eq. (41) for v0 yields the criterion for the
magnitude of the relative velocity:

v0 ≤

s
2µrs(ro − rs)
ro(d2 − r2s)

. (43)

If the parameter µ of the spacecraft is given (specifically maximum
spacecraft charge), then Eq. (43) tells us the maximum allowable
relative velocity that guarantees the collision to be avoidable. As
expected, the smaller the allowable charge levels, the smaller the
allowable approach speeds v0 are.

To provide insight into the relationship between the maximum
charge and initial velocity, Figure 4 shows the critical surface of
parameters d, v0 and Qmax under the following conditions:

m1 = 50kg
m2 = 50kg ,


rs = 4m
ro = 18m . (44)
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Figure 4: Critical surface of parameters for an avoidable colli-
sion.

Parameters d, v0 and Qmax in the region above the critical surface
represent avoidable collisions. Beneath the surface are parameters
of unavoidable collisions.

This critical surface is one quarter of a saddle surface. When
the magnitude of the relative velocity v0 is set, a larger the off-
set distance d is, a smaller Qmax is required. And when d = rs,
Qmax = 0, the trajectory of SC2 will touch the safe region of SC1
Brs but won’t penetrate it without any control. If the offset dis-
tance d is set, a larger v0 results in the bigger ṙ0 component, thus a
larger Qmax is required for a collision avoidance maneuver. When
v0 = 0, which means the two spacecraft are stationary to each
other, nothing needs to be done to avoid a collision, so Qmax in this
case remains zero.

When h = 0, then the offset distance d = 0 and the spacecraft
are lined up for a head-on collision. For this worst case situation,
the criteria in Eq. (42) and Eq. (43) reduce to

Qmax ≥
ṙ(t0)

2

2kc

m1m2

m1 +m2

rors
ro − rs

, (45)

ṙ(t0)
2 ≤ 2µ

„
1

ro
− 1

rs

«
. (46)

Note that even though the derivation of the criteria is based on
the assumption that Q = Qmax > 0 and d < rs, the same proce-
dure can also be performed in the case Q = Qmin < 0 and d > rs.
In this case the two spacecraft are attracting each other. The prob-
lem is then changed to analyzing the requirements to prevent the
two attracting spacecraft from colliding. Following the same pro-
cedure in deriving the criterion in Eq. (42), yields

Qmin ≥
m1m2

m1 +m2

rov
2
0(r2s − d2)

2kcrs(ro − rs)
≡ g. (47)

Eq. (47) has exactly the same form as Eq. (42). Because d > rs,
here g < 0. It’s assumed that the two spacecraft are attracting each
other, so the charge product Q is always negative. The smaller
Q is, the larger the attracting force becomes, and thus the more
likely the two spacecraft will get closer. If in a mission the two
spacecraft are fully charged such thatQ = Qmin, then Eq. (47) tells
us the minimum allowable value of the limit of the negative charge
product Q, guaranteeing that the spacecraft won’t collide.

V. Numerical Simulations
While the charge control is derived for the general 3-dimensional

spacecraft motion, the conservation of angular momentum forces
all resulting motion to be planar. Thus, without loss of generality,
the following numerical simulations all consider planar motion to
simplify the visualizations.

The masses of the two spacecraft are m1 = m2 = 50kg. At
first let us assume that the spacecraft are flying in deep space with
the Debye length being λd = 50m. The radii of the safe region rs
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and the potential region ro are determined by the requirements of a
specific formation mission. For these simulations rs and ro are set
as

rs = 3m, ro = 16m.

The region of the effective control range rc will be given in specific
simulation examples. The initial inertial coordinates and inertial
velocities are

R1 = [−8,−3]Tm
R2 = [8, 3]Tm

,


Ṙ1 = [0.0060.002]Tm/s
Ṙ2 = [−0.006− 0.002]Tm/s

.

(48)

These initial conditions are set up such that the spacecraft cluster’s
center of mass is stationary.

A. Simulation without control truncation or charge
saturations

The unsaturated charge control law in Eq. (14) is guaranteed to
prevent any collision. As to the coefficients of the controller, the
larger k1 is, the more the spacecraft proximity near rs is penalized.
A larger k2 results in more control effort in driving ṙ → −ṙ(t0).
For the first simulation the controller coefficients are chosen as

k1 = 0.000001kgm4s/C2, k2 = 0.0002s/C. (49)

These coefficients result in a case where the state x2 crosses zero
and then converge to b(r). Figure 5 shows the numerical simula-
tion results with the initial conditions listed above. Note that here
the effective control range rc is set to be infinity and no control
truncation is occurring. The SC1 and SC2 start from a separation
distance slightly larger than ro. Before r(t) = ro, the control is
not triggered and the charges remain zeros. When r(t) = ro, the
control is triggered and the spacecraft start to repel each other. Af-
ter about 1.3 hours, it is found that r(t) > ro, and the control law
is now only trying to equalize the radial separation rate magnitude
to the initial value. The collision has already been avoided at this
time. The following discussion illustrates the analytical predictions
of the behaviors of x2.

From Theorem 1 x2 converges to the interval [0, b(r)]. Further,
it eventually converges to b(r) if it crosses zero. Figure 5(d) and
5(e) show the histories of the separation distance rate for different
time spans. After x2 crosses zero it keeps rising up as predicted.
Figure 5(e) shows that x2 crosses b(r) at the point A. At this critical
point V̇ = 0 and x2 = b(r) > 0. Using Eq. (14) the charge
product can be solved as:

Q = −‖Hc‖2

kcr
e
r
λd . (50)

From the separation distance equation of motion in Eq. (9), we find
that the acceleration of the separation distance is r̈ = 0. Note
that ẋ2 = r̈, thus x2 stops increasing at point A, and starts to
decrease. At point A, ẋ2 = 0, and x2 is bounded by b function
value at point A. So x2 crosses the history of b(r) because b(r) is
decreasing. After x2 hits b(r), it converges to the trajectory of b(r)
asymptotically because V̇ < 0.

Figure 5(f) shows that after 15 hours the spacecraft start to attract
each other to make x2 to converge to b(r). As shown in Figure 5(e),
this is when the state x2 becomes positive. Physically x2 > 0
means that the separation rate is now larger than the original ra-
dial approach rate magnitude. To slow down the radial motion,
the signs of the charges become opposite to yield attractive forces.
The reason the magnitudes of the charges are increasing here is that
the separation distance has already grown very large. Even though
the required control force is very small, the 1/r2 dependency of
the Coulomb force expression requires a large spacecraft charge
to generate it. This issue has little to no practical consequence
because the collision avoidance maneuver was effectively finished
after about 1.3 hours. This long term behavior is illustrated to pro-
vide a numerical example of the analytically predicted behaviors of
x2.

When the controller’s coefficients are set to

k1 = 0.0002kgm4s/C2, k2 = 0.0001s/C. (51)

With these parameters the state x2 doesn’t reach zero, as seen in
the simulation results in Figure 6. But x2 still converges asymp-
totically to zero from a negative value. As shown in Figure 6(d),
because k1 is large, the control charges that penalizes the space-
craft proximity near rs dominate in the initial one hour. The first
peak of the charge product happens when the two spacecraft get
closest. Physically, when the craft get close, the repulsive force
suddenly increases to a peak to repel the craft. This results in a
sharp trajectory of the spacecraft as shown in Figure 6(a).

B. Simulation with charge truncations
In the following simulations the control is truncated when the

separation distance is larger than rc where rc > ro. The range of
the control is denoted by Brc with radius rc. The control charges
are turned off when the separation distance r(t) > rc. Setting
rc = 20m, and the controller’s coeficients

k1 = 0.0001kgm4s/C2, k2 = 0.0003s/C, (52)

and using the previous spacecraft initial position and velocity con-
ditions, yields Figure 7 that shows the simulation results in this
case.

Because of the charge truncations, x2 is not guaranteed to con-
verge to zero during this maneuver. However, as the control anal-
ysis predicts, the radial rate tracking error x2 will remain bounded
while achieving a collision avoidance maneuver where x1 → 0.

To test the robustness of the control, the spacecraft are put in
an geostationary orbit to compare the performance with that of the
spacecraft flying in deep space. The initial conditions in Eq. (48)
are treated as LVLH frame position and velocity vectors, which
are then mapped into inertial vectors with respect to the Earth cen-
tered inertial frame. The full nonlinear equations of motion are
then integrated with the same charge collision avoidance control
applied. After the integration the resulting motion is mapped back
into equivalent LVLH frame position vectors, where the rotating
LVLH frame is assumed to be the spacecraft cluster’s center of
mass. The simulation results are illustrated in Figure 7 simultane-
ously with the simulation performed in deep space.

The parameters of the two spacecraft and the controller are kept
unchanged to the truncated control example. In GEO the Debye
length ranges from 100-1000 meters. But for a fair comparison,
here the Debye length is still set to be λd = 50m. While the tra-
jectories in Figure 7(a) are different for deep space and GEO cases,
they both yield a separation distance r(t) that is always greater
than the safety limit rs. From the charge control law in Eq. (14),
the charge product Q will increase if r(t) gets too close to rs. In
fact, Q → ∞ if r(t) → rs. Thus while the orbital motion is not
analyzed explicitly in this study, if the collision avoidance happens
quickly enough as compared to the orbital dynamics, the algorithm
can still be effective.

C. Simulation with charge saturations
When the spacecraft charge saturations are introduced, a po-

tential collision is unpreventable if the two spacecraft are flying
towards each other at a very high speed. Eq. (42) and (43) pro-
vide the criteria for an avoidable potential collision. Note that even
though the analysis of the criteria is based on the assumption that
the Debye length λd → ∞, the following numerical simulation
still has the Debye length set to λd = 50m to show how close the
simplified charge limit estimation in Eq. (42) is with that of a more
complex motion with a limited Debye length. With the same initial
conditions as in the previous simulation examples in Eq. (48), the
initial offset distance d and the magnitude of initial relative velocity
v0 are

d = 0.6325m, v0 = 0.0126m/s.

Utilizing rs, ro and masses mi, the critical charge product for an
avoidable collision is

QC =
m1m2

m1 +m2

rov
2
0(r2s − d2)

2kcrs(ro − rs)
= 7.8492× 10−13C2. (53)
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Figure 5: Simulation results without truncation and charge saturations, in the case that x2 crosses zero.
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Figure 6: Simulation results without truncation and charge saturations, in the case that x2 won’t cross zero.

The critical saturation limit for each individual charge is qc =√
QC = 0.88596µC.
Figure 8 shows simulation results with the same initial condi-

tions but different charge saturation limits. It is assumed that in the
potential region Bro the two spacecraft are fully charged to repel
each other. This can be achieved by setting the controller’s coeffi-
cients k1 and k2 to be some large numbers. Here the controller’s
parameters are set to be

k1 = 0.1kgm4s/C2, k2 = 0.1s/C. (54)

It can be seen that a larger qmax results in a more aggressive repul-
sion with a larger periapses radius. When qmax = qc, the closest
distance is slightly smaller than rs. SC2 penetrates about 0.25m
inside the safe restraint region Brs with rs = 3m. This happens
because the Debye length effect partially shields the electrostatic
force between the spacecraft. Note that in real space missions,
rs is a safety-restraint distance estimate that guarantees no phys-
ical contact happens and the electrical devices on both spacecraft
won’t interfere with each other. The 0.25m’s penetration is not
large when compared with rs, only about 8%. On the other hand,
if we know how much Debye shielding will occur, the value of rs
can be adjusted to be larger such that the closest distance between
the spacecraft is still big enough to keep the spacecraft and all the
devices safe. At this point, it can be concluded that the estimation
of the charge product criterion in Eq. (42) is sufficiently good to
provide a practical maximum required charge computation.

VI. Conclusion
A Coulomb-force based collision avoidance control problem of

two spacecraft is discussed. After formulating the equation of mo-
tion of the separation distance, a collision avoidance charge control

law with the feedback of the separation distance and the distance
rate is developed based on Lyapunov’s direct method. Without sat-
uration and truncation of the spacecraft charges, the control is able
to prevent collisions while keeping the final kinetic energy the same
as the initial kinetic energy. The charge truncation introduces an
uncertainty in maintaining the relative kinetic energy, but the col-
lision avoidance purpose is still achieved and the change in kinetic
energy is guaranteed to be bounded. The charge saturation may
lead to a failure in achieving a collision avoidance. Analytical con-
ditions for a preventable collision are formulated by ignoring the
plasma shielding effect. Simulations show that the predicted min-
imum separation distance obtained using the analytical criteria is
close to the actual minimum distance when the plasma shielding
effect is taken into account, thus the criteria are practically usable.
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Figure 8: Simulation results with charge saturation.
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