
JOURNAL OF IEEE AEROSPACE AND ELECTRONIC SYSTEMS, VOL. 48, NO. 1, JANUARY 2012, PP 3–15 1

One-Dimensional Constrained Coulomb Structure
Control with Charge Saturations

Shuquan Wang and Hanspeter Schaub

Abstract—A Coulomb structure is a cluster of free-flying
satellites which maintains its shape through inter-vehicle elec-
trostatic forces. These Coulomb forces are generated using on-
board charge emission devices. This paper investigates the 1-
D restricted motion of a 3-craft cluster. Two charge feedback
strategies are discussed where the charge saturation limitation
is considered. First a continuous formation shape feedback
control strategy is presented. Next, a saturated control strategy
is developed to arrest any relative velocities of the Coulomb
structure. If the structure can be brought to rest, then the
continuous charge control can be engaged to achieve the desired
virtual structure. The saturated feedback control is developed
using Lyapunov’s direct method and can control the separation
rates between the satellites by changing the signs of the three
saturated charge products. Implementable real-charge solutions
are ensured through scaling the Lyapunov function rate. The
control is shown to be Lyapunov stable. Because of the limitations
of the control charge magnitudes, certain initial conditions will
not lead to the desired zero relative motion rates. Conditions
under which the relative motion of the Coulomb structure can
be stabilized are analyzed through investigating the total energy
of the system in the symmetric motion assumption. The general
convergence areas are illustrated numerically in various state
planes. Simulations demonstrate the performance of the control.

I. INTRODUCTION

King et al. [1] originally discussed the novel method of
exploiting Coulomb forces for formation flying in 2002.
Since then many papers have been published in this area.
Coulomb forces are proposed to control a tight formation
with separation distances up to 100 meters. Electrostatic force
fields are generated to control the formation’s shape and size.
Other promising techniques for close proximity flying include
Electric Propulsion (EP) [1] and Electro-Magnetic Formation
Flying (EMFF) [2]. EP systems generate forces by expelling
ionic plumes. The ionic plumes can disturb the motions of
nearby spacecraft. Further, the intensive and caustic charge
plumes can also damage sensitive instruments. The EMFF
method controls relative separation and attitude of the for-
mation by creating electromagnetic dipoles on each spacecraft
in concert with reaction wheels. In contrast to the EP method,
the Coulomb formation flying technique has no exhausting
plume contamination issues. The Coulomb force field in a
vacuum is also simpler to model (point charge model) than
the electromagnetic force field (dipole model), and the strength
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only drops off with the square of the separation distance and
not the qubic as with the electromagnetic force field. The
generation of Coulomb forces has been shown to require only
several watts of electric power; and can be controlled on a
millisecond time scale [3]. In addition, Coulomb force control
is 3-5 orders of magnitude more fuel-efficient than EP [1].
This is an essential advantage in long-term space missions.

Many challenges in Coulomb formation flying have been
investigated. Joe et al. introduced a formation coordinate frame
which tracks the principal axes of the formation in Refer-
ence 4. Parker et al. presented a sequential control strategy for
arranging N charged bodies into an arbitrary geometry using
N + 3 participating bodies in Reference 5. In this paper the
authors overcame two challenging problems of Coulomb force
control: the Coulomb force coupling and unimplementable
control solutions that arise from the quadratic charge non-
linearity. First-order differential orbit-element constraints for
Coulomb formations are studied in Reference 6. Natarajan et
al. developed charge feedback laws to stabilize the relative dis-
tance between two satellites of a Coulomb tether formation in
References 7, 8 and 9. For the nadir-aligned 2 craft case the in-
plane attitude of the Coulomb tether formation was stabilized
by exploiting the gravity gradient torque. Hussein and Schaub
studied shape-preserving Coulomb formations of three craft
flying in deep space in Reference 10. They derived conditions
that guaranteed preservation of the geometric shape of the
formation. Schaub and Hussein in Reference 11 investigated
the open-loop stable 2-craft Coulomb tether problem. They
showed that the nonlinear radial motion was locally stable if
the separation distance was less than the Debye length, and
it was guaranteed to be unstable if the distance is larger than
the Debye length. The same authors studied the stability and
control of relative equilibria for the three-craft Coulomb tether
problem in Reference 12.

This paper considers the control of a virtual Coulomb
structure. A virtual Coulomb structure is composed of several
spacecraft and the structure’s shape and size are controlled
by utilizing the inter-spacecraft electrostatic forces. This vir-
tual structure control can be used in large scale distributed
spacecraft concepts. The general three-dimensional charged
spacecraft motion is very complex, and its control is an open
area of research. This paper focuses on the 1-D restricted
3-craft Coulomb virtual structure to investigate charge im-
plementability issues and charge saturation limitations. This
control is directly applicable to the control of three charged
test vehicles on a non-conducting hover track. Such a test bed
is envisioned to perform basic charged vehicle relative motion
control experiments. The craft are assumed to only experience
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electrostatic forces. No orbital motion is modeled. The relative
kinetic energy is investigated to provide bounds on the initial
conditions to guarantee convergence in the presence of charge
saturations.

Because of the limited amount of charge that a spacecraft
can safely store, the Coulomb structure’s shape may be uncon-
trollable in situations with large initial separation distances or
large relative kinetic energy cases. For example, if the three
spacecraft are departing each other at very high speeds, like
meters’ level comparing to centimeters’ level speed that this
paper is working with, then the limited actuation capability of
the saturated Coulomb forces may not be able to pull them
back to construct a virtual structure.

Noting this fact, this paper develops a two-stage control
strategy. First a saturated control is engaged to arrest the
relative motion of the spacecraft and stop its expansion. The
magnitudes of the control charges are always kept at their
maximum values, the only free variables are the signs of these
control charges. In this control stage the controller explores the
spacecraft’s entire capability to arrest the relative motion in
the formation. The failure of the saturated control implies that
the spacecraft are flying too fast relative to the neighboring
spacecraft in the formation to be controlled under current
charge limits. Thus the domain where the saturated control
can stabilize the relative motion is also the domain where
the Coulomb formation can be controlled to certain desired
shapes. The saturated control is designed using Lyapunov’s
direct method and the stability of this saturated control and
the regions of convergence are investigated.

After the relative motion is stabilized, a continuous feedback
law for formation shape control is employed to shape the
structure to a certain desired configuration. This step completes
the two-stage control strategy to control the shape of the 1-D
constrained Coulomb structure with charge saturation limits.
This 1-D constrained Coulomb structure control is a precursor
for the more general study of the 3-D Coulomb structure
control. It will also be implemented as the 1-D non-conducting
hover track control test bed which is under construction in
the Automatic Vehicle Control (AVS) Lab in the Aerospace
Engineering Sciences department at the University of Colorado
at Boulder.

II. CHARGED SPACECRAFT EQUATIONS OF MOTION

Let the Coulomb structure consist of 3 bodies with masses
mi which are restricted to move in only one dimension as
illustrated in Figure 1. This setup simulates the motion of the
test vehicles floating on a non-conducting hover track. The
inertial positions of the three bodies are given through their
inertial coordinates xi. Without loss of generality, assume that
x1 < x2 < x3. Assume that the spacecraft are flying freely
in space. In the scenario shown in Figure 1, assuming that
the force acting from left to right to be positive, the inertial

δx12 δx23

x1

x2
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x

CM

Fig. 1. Illustration of 1-D constrained coordinates of the 3-body system.

equations of motion of the charged bodies are given by

m1ẍ1 = kc

[
− Q12

(x2 − x1)2
− Q13

(x3 − x1)2

]
(1)

m2ẍ2 = kc

[
Q12

(x2 − x1)2
− Q23

(x3 − x2)2

]
(2)

m3ẍ3 = kc

[
Q13

(x3 − x1)2
+

Q23

(x3 − x2)2

]
(3)

where kc = 8.99× 109C−2 ·N ·m2 is the Coulomb constant,
Qij = qiqj is the charge product between the ith and jth craft.
This product is introduced here because the charges qi always
appear in pairs qiqj both in the dynamic equation and in the
control formulation. This approach leads to the problem of
physical feasibility in extracting individual charges qi from a
given set of charge products Qij . This issue is addressed in the
later sections. A charge feedback law is expected to control
the relative motion of the three-body Coulomb structure and
make the formation assume a specific shape defined through
the separation distances.

Not all of the inertial xi states can be controlled inde-
pendently. Because the spacecraft charges produce formation
internal forces, the momentum of the Coulomb cluster must
be conserved if there are no other external forces acting on it.
As a result it is not possible to independently control all three
inertial coordinates xi using only Coulomb forces. For the
1-D motion considered in this paper, the conservation of the
linear momentum imposes one constraint on the generalized
coordinates x1, x2 and x3. Thus, the motion of the three-body
system only has two controlled degrees of freedom (DOF).
The formation shape is defined through the two separation
distances δx12 and δx23 as:

δx12 = x2 − x1, δx23 = x3 − x2. (4)

The third distance δx13 is determined by δx13 = δx12 +δx23.
To control the shape of the Coulomb structure is to drive
[δx12, δx23]T to the desired constant values [δx∗12, δx

∗
23]T

that yield a specific virtual structure shape. For the control
development, let the system state vector X be defined as the
relative distance tracking error:

X =

[
∆x12
∆x23

]
=

[
δx12 − δx∗12
δx23 − δx∗23

]
. (5)

This paper only considers the shape control of the Coulomb
structure, and does not attempt to control the formation
cluster’s center of mass motion. From the inertial equations
of motion in Eqs. (1)–(3), using the definition of δxij , the
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separation distance equations of motion are found as

δẍ12 = ẍ2 − ẍ1 = kc

(
1

m1
+

1

m2

)
Q12

δx212
− kc

m2

Q23

δx223

+
kc

m1

Q13

δx213
, (6)

δẍ23 = ẍ3 − ẍ2 = − kc

m2

Q12

δx212
+ kc

(
1

m2
+

1

m3

)
Q23

δx223

+
kc

m3

Q13

δx213
, (7)

The formation kinetic energy T is a convenient measure for
constructing a Lyapunov function of the system and analyzing
the stability of the equilibrium:

T =
1

2

3∑
i=1

miẋ
2
i . (8)

However, the control goal is to let the virtual structure assume
a certain shape, which implies that the relative kinetic energy
should be zero. Thus the inertial kinetic energy expression in
Eq. (8) needs to be rewritten in terms of the relative coordinate
rates δẋ12 and δẋ23. Taking a time derivative of Eq. (4) yields

ẋ1 = ẋ2 − δẋ12, ẋ3 = ẋ2 + δẋ23 (9)

Substituting Eq. (9) into Eq. (8) leads to

T =
M

2
ẋ22 +

m1

2
δẋ212 +

m3

2
δẋ223 + ẋ2(m3δẋ23 −m1δẋ12)

(10)

where M =
∑3
i=1mi is the total mass of the three spacecraft

cluster. The expression of the total kinetic energy in Eq. (10)
still contains an inertial rate variable ẋ2 which cannot be
controlled independently with Coulomb forces. One more step
to express ẋ2 in terms of δẋij is needed.

Note that the Coulomb forces are internal forces in the
Coulomb structure, by the assumption mentioned at the be-
ginning that the spacecraft are flying freely in deep space, the
following center of mass condition must be true:

m1ẋ1 +m2ẋ2 +m3ẋ3 = Mẋc (11)

where xc is the inertial cluster center of mass coordinate.
Utilizing Eq. (11), yields the following equation:

Mẋ2 = Mẋ2 −m1ẋ1 −m2ẋ2 −m3ẋ3 +Mẋc

= m1ẋ2 −m1ẋ1 +m2ẋ2 −m2ẋ2 +m3ẋ2

−m3ẋ3 +Mẋc

= m1δẋ12 −m3δẋ23 +Mẋc (12)

Thus ẋ2 is expressed in terms of δxij as:

ẋ2 =
1

M
(m1δẋ12 −m3δẋ23) + ẋc (13)

Substituting Eq. (13) into Eq. (10), yields

T =
1

2
ẊT [M ]Ẋ +

M

2
ẋ2c (14)

where [M ] is the system mass matrix:

[M ] =
1

M

[
m1m2 +m1m3 m1m3

m1m3 m1m3 +m2m3

]
(15)

Obviously, [M ] is a positive definite matrix. Finally, the kinetic
energy Trel of the 3-craft cluster relative to the center of mass
is given by

Trel =
1

2
ẊT [M ]Ẋ (16)

This energy expression directly reflects whether the virtual
structure shape is changing its geometry with time.

III. CONTROL STRATEGY

A. Shape Coordinate Equations of Motion

This section develops a continuous feedback control strategy
that controls the 1-D 3-body formation to a certain desired
shape. The desired shape is given by a vector of separation
distances [δx∗12, δx

∗
23]T , and it is assumed to be stationary

(i.e. constant desired shape).
For notational convenience the 3× 1 vector ξ is introduced

as:

ξ =

[
kcQ12

δx212
,

kcQ23

δx223
,

kcQ13

δx213

]T
= kc[D]Q (17)

where [D] = diag
(

1
δx2

12
, 1
δx2

23
, 1
δx2

13

)
is a diagonal matrix,Q =

[Q12, Q23, Q13]T is a vector of the charge products. The vector
Q is also the control input of the Coulomb structure control
system. Because the desired relative position coordinates are
constants, the tracking error dynamics is expressed using X
as

Ẍ =

[ 1
m1

+ 1
m2

− 1
m2

1
m1

− 1
m2

1
m2

+ 1
m3

1
m3

]
︸ ︷︷ ︸

[A]

ξ = kc[A][D]Q (18)

B. Formation Shape Control

The controller in this subsection is intended to make the
formation attain a certain shape, which means both Ẋ and X
are driven to zero. For the time being the control development
does not consider spacecraft charge saturation issues.

1) Minimum Norm Shape Stabilizing Control: Because the
state vector X and the time derivative of the state vector Ẋ
are all expected to be zero, the Lyapunov function candidate
here is defined as a quadratic function of X and Ẋ as

V1 =
1

2
ẊT [M ]Ẋ +

1

2
XT [K]X (19)

where [K] is a 2×2 positive definite matrix. Because both [M ]
and [K] are positive definite, V1 is a positive definite function
of Ẋ and X . Note that the first term in V1 is the relative
kinetic energy Trel of the system.

Differentiating Eq. (19) with respect to time, and utilizing
the shape error equations of motion in Eq. (18), yields

V̇1 = ẊT [K]X + ẊT [M ]Ẍ = ẊT
(

[K]X + [M ][A]ξ
)
(20)

Denote [C] = [M ][A]; it turns out to be a constant matrix with
the following simple form:

[C] =

[
1 0 1
0 1 1

]
(21)
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Next the Lyapunov function rate V1 is set to the negative
semi-definite form

V̇1 = −ẊT [P ]Ẋ (22)

where [P ] is a 2 × 2 positive definite matrix. V̇1 is negative
semi-definite because V1 is a function of both Ẋ and X , but
only Ẋ appears in Eq. (22).

Equating the actual V̇1 in Eq. (20) and the desired V̇1 in
Eq. (22) leads to the following feedback control condition:

[C]ξ = −[K]X − [P ]Ẋ (23)

Solving Eq. (23) for ξ yields the charge product vector that
stabilizes the system. Because [C] only has rank 2, there is
an infinite number of solutions for ξ in Eq. (23). Let ξ̂ be the
minimum norm solution to Eq. (23):

ξ̂ = −[C]†
(

[K]X + [P ]Ẋ
)

(24)

where [C]† = [C]T ([C][C]T )−1 is the minimum norm pseudo-
inverse of matrix [C]. The hat symbol above the vector ξ
means that ξ̂ given by Eq. (24) is the minimum norm solution
among the general solutions to Eq. (23); and ξ̂ is not the final
solution of ξ that will be used in the control. Note that ξ̂
in Eq. (24) minimizes the norm of the charge product vector
while satisfying Eq. (23), but not the charge inputs qi of the
control.

2) Spacecraft Charge Computation Issues: After obtaining
a solution ξ to Eq. (23), the charge product vector is given by

Q =
1

kc
[D]−1ξ (25)

The individual charges qi are finally calculated through the
algorithm [13]

q1 =

√
Q12Q13

Q23
(26a)

q2 = sign(Q12)
Q12

q1
(26b)

q3 = sign(Q13)
Q13

q1
(26c)

Note that a singularity occurs if ξ1 · ξ2 · ξ3 = 0. When
one or two elements of ξ equal zero, this singularity can be
avoided by performing a search routine in the null space of the
[C] matrix which will be discussed in the following several
paragraphs. The remaining case is that ξ = 0 which indicates
that q1 = q2 = q3 = 0. This state occurs only either when
X = 0 and Ẋ = 0, which means the system has reached the
desired state, or due to (−[K]X − [P ]Ẋ) being zero.

Now consider general cases where ξ1 · ξ2 · ξ3 6= 0. Note
that ξ1 · ξ2 · ξ3 < 0 yields imaginary values of qi [13]. Since
charges must always be real numbers, ξ1 · ξ2 · ξ3 < 0 is not
an implementable solution. This is a fundamental issue with
developing any charge feedback law.

Eq. (24) provides the minimum norm solution ξ̂ of ξ to
Eq. (23). There is an infinite number of solutions that satisfy
Eq. (23) since the matrix [C] is a 2×3 matrix. Using the null

space of [C], all possible ξ values that satisfy Eq. (23) are
parameterized as

ξ =

ξ1ξ2
ξ3

 = ξ̂ + γ

−1
−1
1

 (27)

where the parameter γ can be any real number. The control
problem is reformulated to determine a parameter γ that
satisfies the implementability constraint:

f(γ) = ξ1 · ξ2 · ξ3 = (ξ̂1 − γ)(ξ̂2 − γ)(ξ̂3 + γ) > 0 (28)

This inequality constraint guarantees that the charges qi are
real, and also ensures that the singularity case ξ1 · ξ2 · ξ3 = 0
does not occur. Because f(γ) is a third order function, there
always exists real numbers of parameter γ that satisfy the
inequality in Eq. (28).

3) Charge Minimization Routine: Any real value of pa-
rameter γ that satisfies the inequality in Eq. (28) makes
the solution physically implementable with real charge qi
solutions. In fact, the null space of the input matrix [C] can
be used to charge up the vehicles without causing any relative
motion to occur. The ξ̂ vector is found such that the norm of
the vector ξ is minimized. However, this doesn’t correspond
to the solution that the spacecraft charges qi are minimized.
Define a charge cost function J(γ) as

J(γ) =

3∑
i=1

q2i (29)

The solution ξ that minimizes spacecraft charges qi corre-
sponds to a particular γm that satisfies the inequality constraint
in Eq. (28), and at the same time minimizes the charge cost
function J(γ).

Consider the constraint inequality in Eq. (28), where
(ξ̂1, ξ̂2, ξ̂3) are given by Eq. (24). There are three real roots for
the equation f(γ) = 0 which are (ξ̂1, ξ̂2,−ξ̂3). We rearrange
the roots in a descending order and denote them as (γ1, γ2, γ3),
where γ1 ≥ γ2 ≥ γ3. The solution to the constraint in Eq. (28)
turns out to be γ > γ1 or γ3 < γ < γ2. If γ2 = γ3, then the
solution is simply γ > γ1. Figure 2(a) shows a numerical
example of f(γ) and (γ1, γ2, γ3).

Thus a charge minimizing routine is introduced to search for
the parameter γm within the two open intervals (γ1,∞) and
(γ3, γ2). The numerical search algorithm used in this paper is
the secant method shown in Figure 3.

Once γm is obtained, the solution that minimizes the norm
of the charge vector (q1, q2, q3) is achieved, and of course
it’s also implementable. Figure 2 shows an example of the
search result at one instant, where γm1 and γm2 are two local
minimization points.

Notice that generally there are two eligible intervals in the
search routine. Sometimes this may introduce chatter because
γm switches between γm1 and γm2 when J(γm1) and J(γm2)
are very close. To reduce the chatter of the charge history, one
approach is to change the criteria for γm to switch between the
two intervals. If γm(i) = γm1(i), then γm(i+ 1) = γm2(i+ 1)
if and only if J(γm2) < αJ(γm1), where 0 < α ≤ 1. Or in
words, the charge solutions are only switched to the alternate
set if the change in the cost function is sufficiently large.
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Fig. 2. Illustration of γm search routine.

C. Formation Shape Rate Regulation

This subsection develops a regulator that arrests the relative
motion of the formation by driving Ẋ to zero. After presenting
a saturated stabilizing control strategy, a method to obtain
implementable spacecraft charges qi is introduced.

1) Saturated Regulator: Because the purpose of the con-
trol is different from that of the shape control presented in
section III-B, a new Lyapunov function is introduced catering
to the new demand. The regulator is intended to stop any
relative motion of the formation, so the new Lyapunov function
candidate V2 is defined in terms of the relative velocity vector
in a quadratic, positive definite form:

V2 = Trel =
1

2
ẊT [M ]Ẋ (30)

Taking time derivative of V2, and using the tracking error
dynamics in Eq. (18), yields

V̇2 = ẊT [M ]Ẍ = kcẊ
T [C][D]Q (31)

The saturated control strategy attempts to drive the rates Ẋ
to zero as quickly as possible, leading to a Lyapunov optimal
control development [14]. Here the spacecraft charges are
always held at the maximum magnitude. The control algorithm

sort by size

ξ̂ = [â, b̂, ĉ]T

(γ1, γ2, γ3)

γ2 = γ3

search in
       get

(γ3, γ2)

γm2

search in
       get γm1

(γ1,∞)

γm = γmi| min
i=1,2

J(γmi)

ξ = ξ̂ + γm · [−1,−1, 1]T

Yes

No

Fig. 3. Illustration of γm search routine.

will need to determine the required signs of the spacecraft
charges. The charge product vector Q is expressed as

Q =

 Q12m 0 0
0 Q23m 0
0 0 Q13m

 s1
s2
s3

 = [Qm]s (32)

where Qijm = qimqjm is the product of the charge saturation
limits of the ith and jth spacecraft. The vector s = sign(Q)
is a 3 × 1 sign vector with the components being ±1 or
zero. The matrix [Qm] is a constant matrix determined by
charge limitations of the spacecraft. Because [Qm] is constant
for a given 3-body Coulomb structure, the charge product Q
is determined only by s. Thus the vector s is actually the
essential variable that determines the saturated regulator. The
Lyapunov function rate is rewritten as

V̇2 = kcẊ
T [C][D][Qm]s (33)

To guarantee stability, the Lyapunov rate function V̇ is set to
be a negative semi definite function as

V̇2 = −ẊT [P ]Ẋ (34)

where [P ] is a 2 × 2 positive matrix. Note that Eq. (34) has
the same form as Eq. (22).

Substituting Eq. (34) into Eq. (33) provides an equation to
solve for s. At first, let us treat s as a general vector instead
of a sign vector. A sign vector can be obtained by evaluating
the signs of the elements in s. Note that [C] is a 2×3 matrix,
thus there is an infinite number of solutions for s after equating
Eq. (34) and Eq. (33). Using the pseudo-inverse of matrix [C],
leads to the minimum norm solution s̃ (the tilde symbol means
s̃ is not a sign vector) :

s̃ = − 1

kc
[Qm]−1[D]−1[C]†[P ]Ẋ (35)
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Define a sign vector s as:

s = sign(s̃) = −sign
(

1

kc
[Qm]−1[D]−1[C]†[P ]Ẋ

)
(36)

Here s is a sign vector, but it may be un-implementable.
This problem will be discussed following this subsection.
Substituting s in Eq. (36) into charge vector Q in Eq. (32)
constructs a saturated charge product control law:

Q = [Qm]s = −[Qm]sign
(

1

kc
[Qm]−1[D]−1[C]†[P ]Ẋ

)
.

(37)

The resulting actual Lyapunov function rate should be inves-
tigated, because after taking the sign function of s̃, the actual
Lyapunov function rate is different from the nominal one in
Eq. (34). Substituting the actual charge product in Eq. (32)
into Eq. (31), yields

V̇2 = kcẊ
T [C][D][Qm]s = kcẊ

T [C][D][Qm]sign(s̃) (38)

Note that the sign function can be deemed as a rescaling of
the magnitude of a number, a scale matrix is introduced:

[E] = diag(a1, a2, a3), (39)

where ai is defined as

ai =

{ 1
‖s̃i‖ , if s̃i 6= 0

0, if s̃i = 0
. (40)

Thus s can be rewritten as

s = [E]s̃. (41)

Substituting Eq. (41) into Eq. (38), and using Eq. (35) yields

V̇2 =kcẊ
T [C][D][Qm][E]s̃

=− ẊT [C][D][Qm][E][Qm]−1[D]−1[C]†[P ]︸ ︷︷ ︸
[F ]

Ẋ (42)

Without loss of generality, set the positive definite matrix
[P ] introduced in Eq. (34) to be a diagonal matrix:

[P ] =

[
p1 0
0 p2

]
(43)

Utilizing previous definitions of matrices [C], [D], [Qm], [E],
and [P ], the matrix [F ] is expanded as:

[F ] =
1

3

[
p1(2a1 + a3) p2(−a1 + a3)
p1(−a2 + a3) p2(2a2 + a3)

]
(44)

From the condition pi > 0, it can be verified that the matrix
[F ] is positive definite if ai > 0 and it is positive semi definite
if ai ≥ 0. By the definition of matrix [E], ai ≥ 0. So the matrix
[F ] is positive semi definite. The sign of the actual Lyapunov
function rate is then determined:

V̇2 = −ẊT [F ]Ẋ ≤ 0. (45)

Thus the saturated control law in Eq. (36) is globally stable.
But it’s not asymptotically stable because the matrix [F ] can
be zero if the states X grow infinitely large.

2) Implementable Saturated Control: The saturated charge
product control in Eq. (37) provides a globally stable control
that stops the relative motion of the formation. But this
formula doesn’t ensure physical implementability of the charge
products. Similar to the shape controller’s design, an imple-
mentable sign vector s = [s1, s2, s3] must satisfy:

s1 · s2 · s3 > 0 (46)

Unlike the case in the shape control design, the saturated
regulator should be dealt with care because the sign function
(or the matrix [E]) scales everything inside its argument. Note
that the matrix [E] is also varying with its argument. The
previous approach that explores the null space of a certain
matrix doesn’t easily work out because of the rescaling of the
matrix [E], and the coupling of the matrix [E] with the sign
function’s argument.

Note that in designing the stabilizing saturated control using
Lyapunov stability theory, the stability property is achieved
by setting the Lyapunov function rate to be negative semi-
definite. This is ensured by the positive-definite property of
the 2 × 2 matrix [P ]. In most cases, this matrix is constant
because usually it’s unnecessary to change the value of the
matrix [P ] and a constant [P ] matrix may result in a better
convergence property of the system. Because the saturated
control in Eq. (37) is globally stable but not asymptotically
stable, changing the matrix [P ] won’t sacrifice convergence
property of the system. Since the matrix [P ] is only required
to be positive-definite to guarantee the stability of the system,
there exists a flexibility in choosing [P ].

Without loss of generality, set the matrix [P ] to be diagonal:
[P ] = diag(p1, p2). For [P ] to be positive-definite, the
parameters p1 and p2 must be positive. Let p1 and p2 be
constants. To set up a varying matrix [P ], a variable parameter
τ is introduced to rewrite the matrix [P ] as

[P ] =

[
p1 0
0 τp2

]
(47)

here τ > 0 should be positive to ensure [P ] to be positive-
definite. Note that because the matrices [Qm] and [D] are all
positive definite and diagonal, the sign vector in Eq. (36) can
be simplified as

s = −sign([C]†[P ]Ẋ) (48)

Substituting the values of the matrices [C]† and [P ] into
Eq. (48), the vector s is expanded as

s = −sign

1

3

 2p1ẋ12 − τp2ẋ23
−p1ẋ12 + 2τp2ẋ23
p1ẋ12 + τp2ẋ23

 (49)

For the sign vector s to result in an implementable control,
the vector inside the sign function must satisfy

(2p1ẋ12 − τp2ẋ23)(−p1ẋ12 + 2τp2ẋ23)(p1ẋ12 + τp2ẋ23) < 0
(50)

transform the inequality in Eq. (50) to be:

g(τ) = (p2ẋ23τ − 2p1ẋ12)(2p2ẋ23τ − p1ẋ12)

·(p2ẋ23τ + p1ẋ12) > 0 (51)



JOURNAL OF IEEE AEROSPACE AND ELECTRONIC SYSTEMS, VOL. 48, NO. 1, JANUARY 2012, PP 3–15 7

Now the logic is clear that to find an implementable control
by varying the matrix [P ] is to find a parameter τ > 0 that
satisfies the inequality g(τ) > 0. Next the existence of a
solution is verified. When ẋ23 > 0, the inequality in Eq. (51)
can be transformed to

h(τ) =
(
τ − 2p1ẋ12

p2ẋ23︸ ︷︷ ︸
b1

)(
τ − p1ẋ12

2p2ẋ23︸ ︷︷ ︸
b2

)(
τ +

p1ẋ12
p2ẋ23︸ ︷︷ ︸
−b3

)
> 0

(52)

Note that h(τ) → ∞ as τ → ∞. There always exists τ > 0
such that h(τ) > 0.

If ẋ23 < 0, the inequality in Eq. (52) changes to be

h(τ) < 0 (53)

Note that (b1, b2, b3) are the three roots to the equation h(τ) =
0, and they share the simple relation sign(b1) = sign(b2) =
−sign(b3). When b1, b2 > 0 and b3 < 0, then any τ ∈ (b2, b1)
satisfies h(τ) < 0. If b1, b2 < 0 and b3 > 0, in this case any
τ ∈ (0, b3) satisfies h(τ) < 0.

Note that ẋ12 = 0 or ẋ23 = 0 are transient states,
unless Ẋ = 0 which means the relative motion has been
arrested. Thus there always exists τ > 0 that results in an
implementable control.

IV. DOMAINS OF CONVERGENCE

So far a two-stage control strategy has been presented to
control the 1-D Coulomb formation. At first a saturated charge
control is used to stop the relative motion of the 3 spacecraft.
After the relative motion converges to zero, the formation
shape control is activated to make the spacecraft to form a
certain shape defined by the provided distances.

As mentioned before, the saturated charge control in
Eq. (37) is globally stable, but not asymptotically stable.
Under some initial conditions, such as the three spacecraft
flying apart too fast, the relative motion cannot be arrested.
This section is going to determine the domains of the initial
conditions that result in stabilizable motions.

A. Convergence Criterion For Symmetric Relative Motion

In setting up experiments on hover track test bed, it’s
needed to know whether a configuration of the 1-D Coulomb
structure can be stabilized. This section tries to find analytical
conditions for stabilizable symmetric motions. Even though
the symmetric motion is a special case for the 1-D Coulomb
formation, it can be implemented in the hover track test bed.

Here the phrase “symmetric relative motion” means the
distances between any two adjacent spacecraft are always
equal to each other, and the adjacent distance rates are also
equal. That is

δx12 = δx23, δẋ12 = δẋ23 (54)

Corresponding to this situation, the masses and charge limits
of each body should all be equal, m1 = m2 = m3 = m,
q1max = q2max = q3max = qmax. In this case the description of
the motion can be greatly simplified. This simplified case will

provide analytical insight into the specific instance when the
saturated charge control is able to arrest any relative expansion.

For the 1-D Coulomb formation, the most likely scenario
which could result in an unarrestable motion is that three
spacecraft are departing from each other. That is δẋ12 > 0
and δẋ23 > 0. The following discussion deals with this
“worst” case to find the criterion for the arrestable motions.
The unarrestable motion happens when the center spacecraft
attracts the two other spacecraft, but the distance rate vector
Ẋ still doesn’t decrease to zero. In this case the charges of
the 3 spacecraft are

q1 = q3 = ±qmax, q2 = ∓qmax (55)

Reference 15 presents an analytical way to find the criteria
for the avoidance of a potential collision between 2 charged
craft. It assumes that the charge product is constant, thus the
trajectory of the 2-body motion is a conic section. Utilizing the
methodology from the gravitational 2-body problem (2BP), the
criteria is found through calculating the periapsis radius which
is the closest distance between the 2 spacecraft in the conic
section trajectory.

Motivated by this analytical approach to solve the 2-body
Coulomb forced motion, another concept from the traditional
gravitational 2BP, total energy level, is introduced to study the
3-body 1-D Coulomb formation. Note that in the gravitational
2BP, the hyperbola is a non-retrievable trajectory type, and it
corresponds to an energy level that is greater than zero. By
assuming that the charges of the spacecraft are constant, the
total energy (kinetic energy and potential energy) of the 3-
body system is constant. The unarrestable motion corresponds
to a positive energy level, and the stabilizable motion has a
total energy that is negative.

The general relative kinetic energy Trel is given by Eq. (16).
Using the symmetric conditions provided above, Trel is sim-
plified to be

Trel =
m2

2M
δẋ212 +

m2

2M
(δẋ12 + δẋ23)2 +

m2

2M
δẋ223 =

M

3
δẋ212

(56)

where M = 3m is the total formation mass. The electrostatic
potential energy of the formation is

Ve = kc
Q12

δx12
+ kc

Q23

δx23
+ kc

Q13

δx12 + δx23
(57)

Utilizing the symmetric motion condition in Eq. (54) and
Eq. (55), Ve is simplified to be

Ve = kc

(
− q

2
max

δx12
− q2max

δx12
+

q2max

2δx12

)
= −3kcq

2
max

2δx12
(58)

Thus the total energy is obtained by adding up the kinetic
energy and potential energy:

Et = Trel + Ve =
M

3
δẋ212 −

3kcq
2
max

2δx12
(59)

which has a very simple form due to the symmetric relative
motion assumption. Because the charges of the spacecraft are
constants in this saturated control discussion, the total energy
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is also constant. For a stabilizable motion, the total energy Et
should be negative, that is

Et =
M

3
δẋ212 −

3kcq
2
max

2δx12
< 0 (60)

If Et < 0, then it is impossible for δx12 → ∞. However, if
Et > 0, then δẋ12 will approach a positive value as δx12 →
∞. Transforming Eq. (60) such that only δx12 and δẋ12 remain
on the left hand side yields the condition

δẋ212δx12 <
9kcq

2
max

2M
=

3kcq
2
max

2m
(61)

Eq. (61) provides an analytical criterion for the initial states
δx12 and δẋ12 to result in a stabilizable symmetric motion.
From this criterion it can be seen that when the charges and
masses of the three spacecraft are set, both the distance and
distance rate should be within a certain range to ensure that
the symmetric relative motion can be stopped. A bigger charge
limit results in a bigger value in the right hand side of the
inequality in Eq. (61). Thus the area in the δx12− δẋ12 plane
that satisfies the criterion is bigger. Note that this criterion
is valid only for the symmetric relative motion of the 1-D
Coulomb formation. The following discussion will investigate
the convergence area of general motions of the 1-D Coulomb
formation.

B. Convergence Area For General Cases

The previous subsection derives the converge criterion for
the symmetric relative motion by investigating the total energy
of the system. Due to the changing polarity of the spacecraft
charges, the energy of the system is not constant even though
the magnitude of the charges remain the same. It’s very
difficult to apply the similar approach as in the symmetric
motion to analyze the general convergence area of the satu-
rated control.

Though an analytical solution is difficult to achieve, numer-
ical results are always obtainable. The convergence area can
be illustrated by marking each set of initial conditions with
which the distance rates converge to zeros in the numerical
simulation. Without the assumption of symmetric motion,
the initial conditions of the motion contain four independant
variables: [δx12, δx23, δẋ12, δẋ23]. Thus the convergence area
should be configured as a four dimensional region. To illustrate
the convergences areas in 2-dimensional plots, the distances
and distance rates are illustrated separately. After a certain
set of initial [δẋ12, δẋ23] is prescribed, the resulting initial
[δx12, δx23] conditions’ area of convergence is illustrated in
a 2-D phase plane. And the convergence area of the vari-
ables [δẋ12, δẋ23] is demonstrated in the similar way in the
δẋ12 − δẋ23 plane.

Taking the 1-D non-conducting hover track vehicles as an
example, let the masses be m1 = m2 = m3 = 10kg, and the
charge limits be q1max = q2max = q3max = qmax = 5× 10−5C.
Let the control parameters be p1 = p2 = 1kg/(C2·s). Figure 4
shows the convergence areas of the distances δx12, δx23 under
different initial distance rates. Figure 4(a) shows the case
when the initial distance rates [δẋ12, δẋ23] = [0.1, 0.1]m/s.
The shaded area represents the initial conditions which lead to
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Fig. 4. Area of convergence of (δx12, δx23).

converged states. It can be seen that the convergence area is not
quite symmetric in δx12 and δx23 directions. This is because
the charge implementation strategy by varying the matrix
[P ] doesn’t result in symmetric solutions while switching the
values of the individual distances δx12 and δx23. Figure 4(b)
shows the convergence area of the δx12−δx23 plane when the
initial distance rates are set to be [δẋ12, δẋ23] = [0.1, 0.2]m/s.
The convergence area shrinks greatly in δx23 direction. This is
because the departing speed δẋ23 is larger than δẋ12; it makes
δẋ23 converge much more difficult than δẋ12.
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Fig. 5. Area of convergence of (δẋ12, δẋ23).

Figure 5 illustrates two convergence areas of the distance
rates in the δẋ12 − δẋ23 plane. It can be seen that the
convergence area reduces in the direction where the dis-
tance increases. The scales of the axes δẋij range within
[−0.2, 0.8]m/s in the plots. The negative distance rate means
the two spacecraft are approaching each other. If the magnitude
of the negative distance rate is too big, then the spacecraft are
getting close too fast, this may result in collision of spacecraft
which is not contained in the scope of this paper. Reference 15
develops the analytical criteria for two spacecraft which are
approaching each other to be able to avoid a collision.

V. NUMERICAL SIMULATION

A two-stage control strategy has been developed to control
the shape of the 1-D constrained Coulomb structure. At first
the saturated control is used to arrest the relative motion of the
spacecraft. After the relative motion has been stabilized, the
formation shape controller is employed to make the formation
construct a certain shape that is defined by the given desired
distances [δx∗12, δx

∗
23]. This section presents some numerical
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simulation results to show the performance of the control
strategy.

The physical parameters of the model are set to be the
parameters of a proposed 1-D hover track test bed and are
used to test the control algorithm of the 1-D Coulomb structure
stabilization control. The masses of the three spacecraft are
m1 = m2 = m3 = 10kg, while the desired shape is given
as [δx∗12, δx

∗
23] = [4, 4]m. The separation distances between

craft are within 5 meters. Without loss of generality, let the
magnitudes of the charges of the spacecraft share a common
limit qmax = 5 × 10−5C. Let us choose the initial positions
and velocities to be:

[x1, x2, x3] = [−3, 0, 2]m (62)
[ẋ1, ẋ2, ẋ3] = [−0.04, 0, 0.04]m/s (63)

Figure 6 shows the first stage of the control which arrests the
relative motion. The two simulation stage results are illustrated
separately because the saturated control has a stronger control
forces and the relative motion converges much faster than the
time needed in the continuous shape control. The parameters
of the saturated regulator are p1 = p2 = 1kg/(C2·s). The
relative distance rates converge to zero in a very short time,
and the control charges are always saturated until the distance
rates converge. The stability of the control is guaranteed, and if
the initial conditions are within the convergence area presented
in the last section, then the relative rates will converge to zero.

Figure 7 illustrates the simulation results of the second
stage, continuous formation shape control. The parameters of
this control are

[K] =

[
3.6 0
0 1.8

]
kgm/s2, [P ] =

[
14.4 0

0 7.2

]
kgm/s

(64)

The values of matrices [K] and [P ] are chosen to balance
between the overshooting and the response speed. Figure 7(a)
and (b) show the process of the Coulomb structure to converge
to the desired shape. Figure 7(c) and (d) are the charge
histories under different conditions. The chattering issue of
the charges is nontrivial in the control process. As mentioned
before in the formation shape control section, the chattering
effect is partly due to the switching between two possible
values of the variable τ . The parameter α ≤ 1 has been
introduced to buffer the switching. With α = 1, no buffer
is acting on the system. When 0 < α < 1, the buffer is taking
effect. Comparing Figure 7(c) and (d), it can be seen that
when α = 0.7, the chattering effect is reduced to some extent.
Though the buffer can not totally eliminate the chattering, the
benefit is that this approach doesn’t influence the dynamics of
the system. This is because any value of the variable τ results
in a vector that is within the null space of the input matrix of
the control.

VI. CONCLUSION

A two-stage stable charge feedback control strategy is devel-
oped to shape the configuration of the 1-D restricted Coulomb
structure. The first stage intends to arrest the relative motion
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Fig. 6. Numerical Simulation Results of Stage I: Relative Motion Regulation.

of the formation. A globally stable, but not asymptotically
stable saturated control is designed using Lyapunov’s direct
method. Varying the value of a positive definite matrix used
in designing the Lyapunov function rate guarantees real charge
solutions. The analytical criterion for a stabilizable symmetric
motion is obtained by evaluating the total energy level of the
system. For general cases, the convergence areas of the initial
states for stabilizable motions are illustrated numerically. The
second stage is a continuous formation shape control. It is
used to control the shape of the Coulomb structure to a
certain desired configuration. The control is also designed
using Lyapunov’s method. A minimum charge search routine
in the null space of the input matrix is used to solve the control
charge implementability problem. The search routine not only
makes the charge control law physically implementable, but
also results in minimum control charges at every instance.
Numerical simulations verify the effectiveness of the control
strategy.

This paper stands for a good foundation for the future
general 3D Coulomb structure control. 3D Coulomb structure
control would be much more complicated because the angular
momentum of the three spacecraft system might make the
shape control never converge, but with a certain boundary.
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Fig. 7. Numerical Simulation Results of Stage II: Formation Shape Control.
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