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Generating Swing-Suppressed Maneuvers for Crane
Systems with Rate Saturation

Michael J. Agostini, Gordon G. Parker, Hanspeter Schaub, Kenneth Groom, Rush D. Robinett

Abstract— Off-line crane maneuvers, resulting in zero residual
payload swing, have been explored previously using parameter-
ized sets of basis functions. Assumptions usually includedan ideal
servo response and symmetric inputs. Non-symmetric maneuvers,
in general, don’t have closed form basis function solutions. Actu-
ator dynamics further complicate maneuver generation by intro-
ducing non-linearities such as saturation. One way to circumvent
saturation is to constrain crane operation below the saturation
levels of the actuators. This limits the set of available maneuvers
and can lead to slower, more costly crane operation. This work
explores the effects of a common servo non-linearity, velocity
saturation, on the swing-free maneuver generation process. A
method is presented for maneuver generation that exploits speed
saturation while still yielding near swing-free payload motion. An
optimization code is used to generate basis function parameters
where the cost function includes the speed saturation effects via
a simulation of the payload dynamics. Experimental resultsusing
a 1/16th scale crane are presented to illustrate the method.

Index Terms— vibration control, nonlinearities, velocity satu-
ration, basis function, crane

I. I NTRODUCTION

CRANES are used throughout the transportation and con-
struction industry ranging in application from light-duty,

small motion lift-assistance to multiple ton, large motion
payload placement seen in construction operations. Regardless
of size, payload control is a key to personnel and equipment
safety.

Several methods have been developed which are devoted to
controlling pendulation in crane systems. Such methods can
be grouped into the two general classes of operator-in-the-
loop methods and off-line maneuver generation. Operator-in-
the-loop methods include command shaping strategies such as
those in Parker, et al. [1] and the input shaping work of Singer
and Seering [2]. Off-line methods, more relevant to the current
study, have been investigated by several authors.

Earlier authors considered several methods for controlling
payload swing at the end of the maneuver. Sakawa and
Nakazumi [3] proposed a method for swing control for rotary
cranes which combined an open and closed loop controller.
During the course of the maneuver, the system input was
driven by a proposed set of basis functions. Near the end
of the maneuver, a closed loop controller damped out swing.
Vaha, et al. [4] considered command generation for a boom
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crane, with the goal of having zero residual swing. Bang-coast-
bang acceleration profiles were explored in simulation with-
out compensating for centripetal acceleration induced swing
excitation. Although offering an improvement over arbitrary
point-to-point operations, residual swing was present. Auernig
and Troger [5] considered the time optimal and swing-free
maneuver generation for an overhead gantry crane. Analytical
and simulation results were presented for variable lift-line
operations. Maneuvers were generated by solving the time
optimal formulation using the Pontryagin maximum principle.

Later authors considered more complicated systems, but
tended to avoid rate saturation. Hämäläinen, et al. [6] proposed
swing-free and energy optimal maneuvers for an overhead
gantry crane with fixed final time constraints. Simple actuator
dynamics were considered, and the optimizer was constrained
to avoid rate saturation. Noakes and Jansen [7] also investi-
gated residual swing-free maneuvers for an overhead gantry
crane. Bang-coast-bang basis functions were employed, as-
suming ideal actuator dynamics. Moustafa and Ebeid [8] inves-
tigated controlling swing on a two degree of freedom overhead
gantry crane using controller feedback. Part of their goal was
to control payload vibration during the entire maneuver, not
just the residual swing at the end. This was accomplished by
using state feedback to move the eigenvalues of the system
such that swing could decay to zero. Blazicevic and Novakovic
[9] considered a variety of velocity basis functions applied
to a boom crane. Swing-free maneuvers were the goal, again
with ideal actuator dynamics assumed. Souissi and Koivo [10]
had a model of a rotary crane which included boom inertia,
an approximate winch, and both radial and tangential sway.
Their proposed control strategy consisted of a PID control
loop on the servo system with a feedback system to control
payload swing. Petterson and Robinett [11] used bang-coast-
bang trajectories to control the vibration of a flexible rod.
Gravity caused a dynamic coupling between the horizontal
and vertical bending modes. The solution to the problem was
to set the length of each pulse equal to the system’s period of
vibration.

This work explores some of the limitations of using off-
line optimization methods for real systems. Cranes often suffer
from low maximum velocity as well as large dead zone and
response lags. Typically, crane operators will intentionally
speed saturate during a maneuver so as to position a load
as quickly as possible. Constraining operation below speed
saturation when designing an off-line maneuver could result
in maneuvers that are slower than what is possible. This
limitation makes it impractical to directly employ the bang-
coast-bang acceleration commands such as those used by Pet-
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terson and Robinett [11], where sufficient actuation capability
existed.

The main contribution of this work is a procedure for
finding swing-free maneuvers while exploiting joint servo non-
linearities. This solution is based on the bang-coast-bangbasis
function method, but relaxes the constraints that the maneuver
be symmetric. Unlike previous work in off-line command
generation, the proposed approach permits fully coordinated
multi-axis crane maneuvers. The optimization process used
to generate the trajectory requires an accurate servo model
capable of predicting the effects of servo nonlinearities on
payload swing. The results show that the method is a viable
alternative for designing trajectories for systems with non-
linear actuation, with particular emphasis given to systems
with speed saturation.

Section II develops the crane payload dynamic model used
for cost function evaluation. Section III presents the maneuver
generation process, including the basis function parameter-
ization and the simulation-based cost function. Section IV
describes the experimental crane test bed and demonstrates
the applicability of the approach through an example.

II. PAYLOAD SWING DYNAMICS

A crane system will be used as the test bed for the trajectory
generation process. The position, rate, and acceleration of the
crane axes are the inputs to the payload dynamic equations.
Three kinematic relationships map the servo system rates
into joint rates of the crane. The models for the three crane
subsystems, payload dynamics, servo dynamics, and crane
kinematics, are described in this section.

A. Payload Dynamics

The crane is shown in Figure 1 and has two revolute joints
and one prismatic. The first revolute joint allows the tower
and boom assembly to rotate about theẑI axis by an angle
α. This motion is referred to as slew. The second revolute
joint allows the boom to rotate byβ about theŷs axis, and is
called luff. The lift-line extension and retraction, called hoist
and denoted asLh, is the prismatic joint. The lift-line and
payload assembly act as a spherical pendulum at the boom
tip attachment point, resulting in two payload swing degrees-
of-freedom. In the remainder of this section the full nonlinear
payload swing dynamic equations are derived. To this end a
detailed description of the coordinate frames is presentedalong
with discussion about simulated versus measurable swing
degrees-of-freedom.

The origin of the inertial frame, denoted{I}, lies along the
slew axis at the point where the distance from the center of
the boom pin to the slew axis is a minimum, as shown in
Figure 1. ThêzI axis points up. The slew frame, denoted{s},
is attached to the slewing tower and boom assembly with its
origin coincident with{I}. The ẑs axis lies alonĝzI , the x̂s

axis remains directly below the boom such that whenβ is zero
the boom lies on thêxs axis. The origin of the boom frame,
denoted{b} is at the center of the boom pin with itŝxb axis
along the boom. AxeŝyI , ŷb, andŷh are not explicitly shown

Luff Line
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Gravityβ
ad

Lh

x̂sŷs

ẑs

x̂I

ẑI

x̂bẑb

x̂hI

ẑhI x̂hs

ẑhs

α

Fig. 1. Crane System

in Figure 1, but are defined such that the coordinate systems
conform to right right-hand convention.

Two different sets of swing angles are used – one for
simulation and one for comparison with measurements. For
simulation purposes the swing angles are defined relative to
the inertial frame using a rotation sequence ofρ about the
negativeŷI axis, then a rotation ofτ about the new negative
x̂ axis. The resulting hoist frame is denoted{hI} . The rotation
matrix which transforms a vector represented in{hI} frame
to {I} is

I
hI

R =





cos ρ 0 sin ρ
0 1 0

− sinρ 0 cos ρ









1 0 0
0 cos τ − sin τ
0 sin τ cos τ



 (1)

whereρ andτ are the inertial radial and tangential swing angle
degrees-of-freedom.

Swing measurements are made using a 2-axis potentiometer
mounted at the boom tip. New swing degrees-of-freedom,
denotedθr andθt, are defined relative to the{s} frame, using
the same Y-X rotation sequence. The resulting hoist frame
is denoted{hs}, where the rotation matrix that transforms a
vector represented in the{hs} frame to the{s} frame is

s
hs

R =





cos θr 0 sin θr

0 1 0
− sin θr 0 cos θr









1 0 0
0 cos θt − sin θt

0 sin θt cos θt



 .

(2)
Note ẑhs

and ẑhI
have the same orientation. The measured

swing angles,θtm
andθrm

are simply

θtm
= θt (3)

θrm
= θr − β (4)

Since the simulation swing angles (ρ and τ ) are different
from the {s} frame relative angles (θr and θt), a set of
transformation equations is required so thatθr andθt can be
computed from simulation results and compared to measure-
ments. The slew axis relative angles can be written in terms
of the simulation swing angles by noting that
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(s
hs

R − s
IR · I

hI
R) · sẑs = 0 (5)

where s
IR is the rotation matrix that transforms a vector

represented in{I} to a representation in{s} and is

s
IR =





cosα sin α 0
− sinα cosα 0

0 0 1



 (6)

Substituting Equations 1, 2, and 6 into 5 yields the following
transformation equations

tan θr =
sin α sin τ + cosα sin ρ cos τ

cos ρ cos τ

tan θt =
cosα sin τ − sin α sin ρ cos τ

cos ρ cos τ
cos θr (7)

where the transformation equations must be evaluated in the
order presented to accommodate the dependency ofθt on θr.

The main reason for using theρ and τ swing angles for
simulation is that the swing dynamic equations can be written
in a compact and computationally efficient form without any
linearizing assumptions imposed. An outline of this procedure,
with the resulting swing dynamic equations follows.

The vector from the origin of the inertial frame to the
payload, represented in the inertial frame, is

I~pp = I~pb + I
hI

RhI ~P1 (8)

whereI~pb, the vector from the origin of{I} out to the boom
tip, represented in{I}, and is

I~pb =







x
y
z







=







−ad cos (α) + Lb cos (α) cos (β)
−ad sin (α) + Lb sin (α) cos (β)

Lb sin (β)







(9)
and the vectorhI ~P1 is from the origin of{hI} to the payload
and is

hI ~P1 =







0
0

−Lh







(10)

Forming the kinetic and potential energy, and then applying
Lagrange’s equations gives the full nonlinear swing dynamic
equations

Lhτ̈ = −2L̇hτ̇ − Lhρ̇2 cos τ sin τ − g cos ρ sin τ +

ẍ sin ρ sin τ + ÿ cos τ − z̈ cos ρ sin τ (11)

Lh cos τ2ρ̈ = 2Lhρ̇τ̇ sin τ cos τ − 2L̇hρ̇ cos τ2 −

g sin ρ cos τ− ẍ cos ρ − z̈ sin ρ cos τ (12)

where the boom tip accelerations, in terms of the slew and
luff angles, are

ẍ = ad

(

α̇2 cosα − α̈ sinα
)

+ Lb

[

2α̇β̇ sin α sin β

−
(

α̇2 + β̇2
)

cosα cos beta − α̈ sin α cosβ − β̈ cosα sin β
]

(13)

ÿ = ad

(

α̇2 sin α − α̈ cosα
)

+ Lb

[

− 2α̇β̇ cosα sin β

−
(

α̇2 + β̇2
)

sin α cos beta + α̈ cosα cosβ − β̈ sin α sin β
]

(14)

z̈ = Lb

(

−β̇2 sin β + β̈ cosβ
)

(15)

The values of the test bed crane parameters used in the
dynamic equations are provided in Table I.

TABLE I

CRANE PARAMETERS

Parameter Units Value
ad [m] 0.017
Lb [m] 2.37
Lh [m] 1.00

B. Servo Dynamics

The high-level commands to the crane are slew, luff, and
hoist speeds. A set of kinematic relationships maps these
commands into servo motor speed commands and a servo-
loop converts them into motor currents that drive the hoist and
luff winches, and the slew gear. In previous work on off-line
maneuver generation these servo dynamics were assumed to
be negligible. For small motions this may be appropriate; how-
ever, there will always be rate saturation when the commands
are too large. The ability to exploit these high rates, and the
general effect of servo dynamics on the maneuver generation
process, is the focus of Section IV. This section describes
two servo models used and introduces the terminology used
to distinguish them.

The first servo model captures the bandwidth limitations and
nonlinearities of the experimental crane test bed. The second
model is simply a unity transfer function between commanded
and realized joint rates. Most importantly for this study, it
does not capture the speed saturation present in the real servo
system. In the remainder of this document these two models
are called thenonlinear and ideal servo models, respectively.

1) Nonlinear Servo Model: A generic block diagram of the
nonlinear servo model for either slew, luff or hoist is shown
in Figure 2. The parameteṙθc is the commanded speed,Vb

is a constant to account for motor amplifier bias and gravity
effects in luff and hoist,θ̇m is the output motor speed,Fs

is a nonlinear saturation function,Fdz is a nonlinear dead-
zone function,Vm is the motor voltage,Kp, KI and Kf

are the servo controller gains, whileKm and τm are the
motor/amplifier gain and time constant respectively.

The time-domain equations for the servo model, are

(Kp + Kf ) θ̇c − Kp θ̇m + KI (θc − θm) = Vi (16)

Vo = Fs (Vi) (17)
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Fig. 2. Drive System Servo Model

Vc = Vo + Vb (18)

Vm = Fdz (Vc) (19)

τmθ̈m + θ̇m = KmVm (20)

where the saturation function,Fs, is described by

Vo =







Vo,max : Vo,max ≤ Vi

Vi : Vo,min < Vi < Vo,max

Vo,min : Vi ≤ Vo,min

(21)

andFdz is a nonlinear dead-zone function described by

Vm =







Vc − Vdz : Vdz ≤ Vc

0 : −Vdz < Vc < Vdz

Vc + Vdz : Vc ≤ −Vdz

(22)

The values for the parametersKp, KI , Vb, Km, and αm,
unique for each axis of the crane test bed, are listed in TableII.

TABLE II

NONLINEAR SERVO MODEL PARAMETERS FOR ALL3 CRANE AXES.

Name Units Axis
Luff Slew Hoist

Kf [volt/deg/sec] 0.0056 0.0053 0.0050
Kp [volt/deg/sec] 0.02 0.05 0.02
KI [volt/deg] 0.025 0.005 0.025
Vo,min [volt] -11.3 -10 -10
Vo,max [volt] 11.3 10 11
Vdz [volt] 0 0.35 0
Vb [volt] -1.85 -0.33 0.50
Km [deg/sec/volt] 143 145 177
αm [1/sec] 100 100 100

The model was experimentally verified and accurately pre-
dicts unsaturated and saturated servo speed behavior with less
than 3% error, where the error was defined as,

%Error =

∣

∣

∣

∣

∣

θ̇sim − θ̇exp

θ̇exp

∣

∣

∣

∣

∣

100. (23)

where θ̇sim and θ̇exp were simulated and experimental joint
time histories.

2) Idealized Servo System: The ideal servo system is sim-
ply a unity transfer function between the commanded rates
and the servo response.

θ̇m

θ̇c

= 1 (24)

This system is used in the trajectory generation process to
illustrate the effects of neglecting actuator dynamics in systems
dominated by them.

C. Crane Kinematics

The crane’s slew, luff, and hoist joints are driven by DC
motors, however, the crane axes are not connected directly to
the motors. The slew axis to motor gear ratio is 1:120, resulting
in proportional slew and slew motor rates

α̇ = −
θ̇ms

120
(25)

whereθ̇ms
is the slew motor shaft rate.

Luff and hoist use a more complicated winch and cable
system. A side-view of the crane cabling system is shown in
Figure 3 to help illustrate the kinematic relationships described
in the remainder of the section.

Boom
Pin

Boom
Tip

Payload

β

φl

−φh

ηl

ηh

Lc,l

Lc,h

al ah

Lb

Lh

x̂s

ẑs

Fig. 3. Side-view of crane cabling to illustrate the parameters for relating
hoist and luff rates to motor rates.

The luff rate,β̇ is related to the luff motor rate,̇θml
, by

β̇ =

[

5alLb cos (β − φl)

rlLc,l

θ̇ml

]

(26)

where rl is the radius of the luff winch,al is the distance
from the center of the boom pin to the center of the upper
luff pulley, andφl is the angle between the slew axis and the
line segment with lengthal. The varying quantityLc,l is the
length of cable between the upper luff pulley and the boom
tip, and is

Lc,l =
√

a2
l + L2

b − 2alLb sin (β − φl). (27)

The lift-line rate,L̇h is a function of both the hoist motor rate
θ̇mh

and the luff rateβ̇

L̇h = −
rh

2
θ̇mh

+ 3
ahLb

Lc,h

cos (β − φh)β̇ (28)
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where rh is the radius of the hoist winch,̇θmh
is the hoist

motor shaft rate,ah is the distance from the center of the
boom pin to the center of the upper hoist pulley, andφh is the
angle between the slew axis and the line segment with length
ah. The length of the cable between the upper hoist pulley
and the boom tip,Lc,h, is

Lc,h =
√

a2
h + L2

b − 2ahLb sin (β − φh). (29)

The values of the parameters used in Equation 26 through
Equation 29 are provided in Table III for the crane test bed.

TABLE III

CRANE PARAMETERS

Parameter Units Value
rmL

[m] 0.0257
rmh

[m] 0.0257
a1L

[m] 0.703
a1h

[m] 0.660
φL [rad] 0.0785
φh [rad] -0.0524
ad [m] 0.017
Lb [m] 2.37
Lh [m] 1.00

In the experiments in Section IV, the lift-line length,Lh,
is held constant. From Equation 28 it should be noted that
the hoist motor rate is not in general zero whenL̇h is zero.
Therefore, even when the lift-line is held at a constant length
the hoist servo dynamics can play a roll in the resulting
payload motion.

III. A UTOMATED MANEUVER GENERATION

The maneuver time history for each crane axis is defined
by a prescribed bang-coast-bang acceleration basis function.
An optimization code chooses the parameters that define the
maneuver such that the residual payload swing is minimized.
The rest of this section describes the basis function designand
optimization process.

A. Basis Function Design

The bang-coast-bang acceleration profile shown in Figure 4
is used as the basis function for the two crane axes (β̈ and
α̈). Of the parameters found in Table IV,tp1

, tp2
and tf , are

selected during the maneuver generation process. The final
positionpδ is a constant throughout the maneuver generation
process, having been chosen by an operator. The rest of the
parameters are constrained by the three equations shown in
Table V. Unlike previous work in off-line crane maneuver gen-
eration, no symmetry constraint is imposed on the acceleration
profile.

The maneuvers are designed in the slew, luff, hoist crane
joint space. For implementation, these joint velocities are
converted into motor rates using the kinematic relationships
of Equation 25 through Equation 29. Motor rates are then sent
as inputs to the joint servos modeled by Equation 16 through
Equation 22 for the nonlinear version and Equation 24 for the
ideal version.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

Time (s)

Acceleration (deg/s2)
Velocity (deg/s)
Position (deg)

ap1

ap2

tp1

tp2

tc

pδ

tf

Fig. 4. Bang-Coast-Bang basis function

TABLE IV

BANG-COAST-BANG PARAMETERS

tp1
Duration of first acceleration pulse

tp2
Duration of second acceleration pulse

tc Duration of coast between acceleration pulses
tf Total duration of the command
ap1

Amplitude of first acceleration pulse
ap2

Amplitude of second acceleration pulse
pδ Resulting change in orientation

B. Optimization-Based Maneuver Generation

An optimization process is employed to select basis function
parameters which minimize residual payload swing. It should
be noted that the numerical optimization method is used to
generate a feasible maneuver. It is not implied that the result
is globally optimal, and it does not need to be in practice.

A dynamic simulation called CraneSim was written in
C where payload swing was computed using the nonlinear
dynamic equations described in Section II-A. The crane speed
servos (on luff, slew, and hoist) are modeled as described in
Section II-B. A software switch enables either the nonlinear
servo system or the idealized servo system.

The external optimization was implemented using a se-
quential quadratic programming method. The optimization
variables were the six independent time quantitiestf , tp1

, and
tp2

for both the slew and luff trajectories. The final time was
constrained such thattf + 0.05 > tp1

+ tp2
for the slew and

luff axes. Pulse amplitudes, used to drive the simulation, were
computed from the equations in Table V.

The cost function of Equation 30 was used to penalize swing
after the repositioning maneuver completed att = tf .

Γ =

4T
∫

tf

√

θ2
r + θ2

t dt (30)

TABLE V

CONSTRAINT EQUATIONS

Luff Axis
Time tf = tp1

+ tp2
+ tc

Position pδ = ap1
tp1

(

1
2
tp1

+ 1
2
tp2

+ tc
)

Acceleration tp1
ap1

= tp2
ap2

Slew Axis
Time tf = tp1

+ tp2
+ tc

Position pδ = ap1
tp1

(

1
2
tp1

+ 1
2
tp2

+ tc
)

Acceleration tp1
ap1

= tp2
ap2
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Integration of residual swing begins at the end of the maneuver
and lasts for 4 periods,T ,

T = 2π

√

Lh

g
(31)

thus penalizing residual swing without penalizing swing dur-
ing the course of the maneuver.

The optimization for each data set required approximately
15 minutes on a Sun Ultra-80 with two 450MHz UltraSPARC-
II processors.

IV. EXPERIMENTAL RESULTS

A 1/16th scale version of the TG3637 ship crane, used by
the U.S. Navy, was used for the experimental verification of the
maneuver generation approach. In general, this method allows
the full operating regime of the crane to be exploited, including
joint rate saturation, acceleration saturation, or deadzone.
The experiments presented here focus on the rate saturation
nonlinearity since it is one of the most limiting in real crane
operations.

Two different maneuvers were considered, one sufficiently
slow such that no joints reached rate saturation, the other faster
allowing rate saturation.

The four combinations are summarized as
1) Non-saturating maneuver, ideal servo model during op-

timization
2) Non-saturating maneuver, nonlinear servo model during

optimization
3) Saturating maneuver, ideal servo model during optimiza-

tion
4) Saturating maneuver, nonlinear servo model during op-

timization
Both simulation and experimental results are presented forall
four cases. Swing comparisons are made to assess the impact
of including the nonlinear servo model into the maneuver
generation process.

The encoder data was converted into acceleration by use of
the second order differentiation filter,

θ̈est

θenc

=
ω2

ns2

s2 + 2ζωns + ω2
n

(32)

where ωn = 20, ζ = 0.8, θenc is the encoder data, and
θ̈est is the estimated acceleration. The servo input was a
velocity signal. For comparison with the output it was first
integrated to position before being converted to and then
passing the commanded positions through the same second
order differentiation filter.

This filter mitigates high frequency noise inherent in the
differentiation of encoder signals and tends to round-off the
otherwise sharp transitions on the leading and trailing edges
of the pulses.

A. Point-To-Point Maneuver Description

A coordinated maneuver was selected to test the effect of
saturation. The test case consisted of lowering the boom from
65 to 35 degrees (β) while simultaneously slewing from 0 to

40 degrees (α). The hoist cable length was held to1.0m which
required a non-zero hoist motor rate as described in SectionII-
C. To quantify the amount of residual swing suppression, the
magnitude of the residual swing was tabulated.

Swing was measured using two potentiometer-based swing
sensor located at the boom-tip of the crane. The tangential
swing used a linear potentiometer and the radial swing used a
lower quality radial potentiometer. This resulted in more noise
on the radial swing measurements. Voltages were converted
into swing angles using a Chebyshev polynomial with coeffi-
cients obtained from a manual calibration over a range of 0 to
60 degrees. The calibration was accurate when interpolating,
however, it was in error when extrapolating beyond 60 degrees.
Since the maneuver in the experiments started at 65 degrees,
there was approximately 0.5 degree error until the boom
reached the calibration range, below 60 degrees.

B. Non-Saturating Maneuver Results

Here the nominal repositioning task was permitted to take
up to 5.8 seconds. This resulted in joint rate commands that
were below the saturation levels. Separate command histories
were generated using both the ideal and nonlinear servo
models defined by the basis function parameters shown in
Table VI.

TABLE VI

BASIS FUNCTION PARAMETERS FROM OPTIMIZATION PROCESS FOR

NON-SATURATED MANEUVERS

Optimized using
Ideal Actuator Dynamics

Slew Luff
tp1

[sec] 3.19 2.84
tp2

[sec] 1.93 1.46
tfp [sec] 5.88 5.31

Optimized using
Nonlinear Actuator Dynamics
tp1

[sec] 3.46 2.39
tp2

[sec] 1.99 1.69
tfp [sec] 5.78 5.36

The joint accelerations are shown in Figures 5 and 6, and the
corresponding payload swing in Figures 7 and 8. Note that the
commanded accelerations are different but the actual accelera-
tions and resulting swing are nearly identical. For example, in
Figure 5 the second slew acceleration pulse command begins
at 4.25 seconds as does the actual acceleration. In contrast,
in Figure 6 the second slew acceleration pulse command
begins at 4.15 seconds, but the system doesn’t respond until
approximately 4.25 seconds. Although the commands are
different, the crane responds the same, thus the payload swing
of Figures 7 and 8, and summarized in Table VII, is nearly
identical. The differences between the tangential and radial
error for the two optimizations are at the noise level. This
indicates, as expected, that assuming an ideal joint servo model
is appropriate when the maneuver is sufficiently constrained
to avoid servo speed saturation.

C. Saturating Maneuver Results

As in the previous section, two maneuvers were generated.
One using the ideal joint servo model during the optimization
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Fig. 5. Servo accelerations where the maneuver parameters were found
assuming ideal actuator dynamics, but tested in a simulation where the joint
dynamics were modeled. Joint rates were not allowed to saturate.
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Fig. 6. Servo accelerations where the maneuver parameters were found using
a simulation that included the actuator dynamics. Joint rates were not allowed
to saturate.

TABLE VII

RESIDUAL SWING ERROR MAGNITUDES FOR THE NON-SATURATED

MANEUVERS.

Optimized using
Ideal Actuator Dynamics

Tangential Error [deg] 0.45
Radial Error [deg] 0.70

Optimized using
Nonlinear Actuator Dynamics

Tangential Error [deg] 0.55
Radial Error [deg] 0.60
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Fig. 7. Swing angles where the maneuver parameters were found assuming
ideal actuator dynamics, but tested in a simulation where the joint dynamics
were modeled. Joint rates were not allowed to saturate.
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Fig. 8. Swing angles where the maneuver parameters were found using a
simulation that included the actuator dynamics. Joint rates were not allowed
to saturate.

process, the other using the nonlinear servo model. This time,
joint rate commands were unconstrained, and allowed to satu-
rate resulting in shorter duration maneuvers. The basis function
parameters for both maneuvers are shown in Table VIII. As
in the unsaturated maneuvers of Section IV-B, total maneuver
time for the slew axis is nearly identical regardless of which
servo model is employed. However, the luff axis command
is 14% faster when the servo saturation was utilized by the
maneuver.

The velocity saturation affects the width of the servo accel-
erations as illustrated in Figure 9. Note the width of the first
pulse is truncated on the trailing edge and the width of the
second pulse is truncated on the leading edge. In the following
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TABLE VIII

BASIS FUNCTION PARAMETERS FROM OPTIMIZATION PROCESS FOR

SATURATED MANEUVERS

Optimized using
Ideal Actuator Dynamics

Slew Luff
tp1

[sec] 1.67 1.84
tp2

[sec] 1.92 1.68
tfp [sec] 4.56 4.04

Optimized using
Nonlinear Actuator Dynamics

Slew Luff
tp1

[sec] 1.73 1.59
tp2

[sec] 2.58 1.28
tfp [sec] 4.66 3.47

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

Acceleration (deg/s2)
Velocity (deg/s)
Position (deg)

Fig. 9. Illustration of the effects of a 0.4 deg/s velocity saturation on the
basis function shown in Figure 4.

results, this effect is most noticeable on the slew axis.
The servo accelerations shown in Figures 10 and 11 have

similar pulse widths and amplitudes during the first pulse,
but have quite different second pulse attributes. In particular,
Figure 11 has a shorter duration but higher amplitude luff
acceleration while Figure 11 has a shorter duration but higher
slew acceleration. The ability of the maneuver to exploit
the luff servo saturation is clearly evident when comparing
the commanded accelerations of Figure 10 and Figure 11.
When the servo model is assumed to be ideal, the command
leads the actual luff acceleration by 0.3 seconds as seen in
Figure 10. However, Figure 11 shows the command leading
the actual acceleration by 0.7 seconds, thus anticipating the
saturation and exploiting it sooner. Also, the simulated luff
accelerations of Figure 11 perform much better in predicting
the actual accelerations, again impacting the performanceof
the maneuver and its ability to reduce residual payload swing.

Figure 12 and Figure 13 show the payload swing for these
two maneuvers, and Table IX summarizes the residual swing
performance. The residual swing of Figure 13 is 4.5 times
smaller than that of Figure 12, again illustrating the ability of
the maneuver generation process to successfully exploit the
servo saturation.

Table X shows the commanded and final luff and slew
angles. There is a consistent 4% error between the commanded
and actual final luff position across all the maneuvers. This
is most likely attributed to servo model errors used during
the maneuver generation. The slew axis final position error
is about 2% for non-saturating maneuvers, and 5% for sat-
urating maneuvers. This is an artifact of the optimization-
based maneuver generation process. In general, there were
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Fig. 10. Servo accelerations where the maneuver parameterswere found
assuming ideal actuator dynamics, but tested in a simulation where the joint
dynamics were modeled. Joint rates were allowed to take on any value.
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Fig. 11. Servo accelerations where the maneuver parameterswere found
using a simulation that included the actuator dynamics. Joint rates were
allowed to take on any value.

TABLE IX

RESIDUAL SWING ERROR MAGNITUDES FOR THE SATURATED

MANEUVERS.

Optimized using
Ideal Actuator Dynamics

Tangential Error [deg] 2.28
Radial Error [deg] 1.10

Optimized using
Nonlinear Actuator Dynamics

Tangential Error [deg] 0.50
Radial Error [deg] 0.65
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Fig. 12. Swing angles where the maneuver parameters were found assuming
ideal actuator dynamics, but tested in a simulation where the joint dynamics
were modeled. Joint rates were allowed to take on any value.
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Fig. 13. Swing angles where the maneuver parameters were found using a
simulation that included the actuator dynamics. Joint rates were allowed to
take on any value.

three competing characteristics of a maneuver – speed, residual
swing, and final position accuracy. The maneuver genera-
tion process attempted to move the payload to minimize
residual swing, subject to a final time inequality constraint.
This resulted in a final position error of the crane, although
relatively small. The amount of final position error increases
with saturation, therefore, a balance must be struck between
increasing maneuver speed and final positioning accuracy.
This effect is illustrated in Figure 9 where the basis function
from Figure 4 is subjected to a maximum velocity of 0.4
deg/s. Future work should consider additional basis function
parameterization such that this trade-off could be eliminated.

TABLE X

FINAL POSITIONS

Slew α Luff β
Commanded Position [deg] 40.0 35.0
Non-saturating maneuver

using ideal servo model [deg] 39.6 33.9
Non-saturating maneuver

using nonlinear servo model [deg] 39.3 33.6
Saturating maneuver

using ideal servo model [deg] 38.0 33.6
Saturating maneuver

using nonlinear servo model [deg] 38.0 33.6

V. CONCLUSION

In previous off-line maneuver generation basis function
parameters were constrained such that servo dynamics re-
mained ideal, and that the crane inputs were symmetric.
Real systems have non-linearities which make closed-form,
symmetric solutions an unreasonable expectation.

Nevertheless, the results illustrated that – at least in thecase
where saturation is the dominant non-linearity – this traditional
maneuver generation process can be used to for sufficiently
slow maneuvers, but, the full capability of the crane is not
realized. To solve this problem, an accurate servo dynamic
model, including non-linearities, was used in the maneuver
generation process. This allowed the maneuver to exploit the
entire operating range of the crane, resulting in better swing
suppression and faster operation.

An interesting future project would be exploring the effect
parameter uncertainty has on the optimization process.
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