Ameriﬁgnﬂstronautical Society

An Instantaneous Eigenstructure
Quasivelocity Formulation for
Nonlinear Multibody Dynamics

John L. Junkins and Hanspeter Schaub

Simulated Reprint from

Journal of the Astronautical Sciences

Vol. 45, No. 3, July—Sept. 1997, Pages 279-295

A publication of the

American Astronautical Society
AAS Publications Office

P.O. Box 28130

San Diego, CA 92198



AAS 97-119

AN INSTANTANEOUS EIGENSTRUCTURE
QUASI-COORDINATE FORMULATION FOR NONLINEAR
MULTIBODY DYNAMICS

John L. Junkins® and Hanspeter Schaub!

A novel method is presented to solve the equations of motion for a large
class of constrained and unconstrained dynamical systems. Given an analytic
expression for the system mass matrix, quasi-coordinate equations of motion
are derived in a manner that generates equations analogous to the dynam-
ics/kinematics partitioning in Eulerian rigid body dynamics. This separation
is accomplished by introducing a new quasi velocity coordinate 7 which yields
a dynamical system with an identity mass matrix. The problem of inverting
a complex mass matrix is replaced by the problem of solving two first order
differential equations for the mass matrix eigenfactors. Dynamic constraint
equations are incorporated directly into the new 7 differential equation, forgo-
ing any need to solve the algebraic constraint equations simultaneously with
the differential equations of motion.

INTRODUCTION

The equations of motion of complex dynamical systems are usually second order nonlin-
ear differential equations which require taking the inverse of a time-varying, configuration
variable dependent mass matrix in some manner. Such dynamical systems could be a large
nonlinear deformation model for an arbitrary body, a multi-body system or a multi-link
robot arm. One reason why the resulting dynamics are complicated is that they are usually
written in a way that combines coordinates natural to the momentum or energy description
with those natural to the displacement description. The result is a split between momen-
tum differential equations and kinematic differential equations. This natural splitting is
typically destroyed when the generalized methods of mechanics are employed and result
in a more complicated mass matrix. This occurs when the classical Lagrange equations of
motion are written in terms of a generalized coordinate and their time derivatives. By using
Newton-Eulerian mechanics or the Boltzmann-Hamel version of Lagrange’s equations, it is
possible to introduce quasi-coordinates which separate the decision of choosing displace-
ment coordinates and velocity (momentum) coordinates. As is well-known, (e.g. Eulerian
rigid body dynamics), this process often leads to much more attractive equations than those
that result from “brute force” application of Lagrange’s equations. It is possible to bring
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the equations of motion to their most convenient form with a constant mass matrix."?

For general configuration-variable mass matrices there has not been a generally applicable
method to accomplish an analogous transformation.

Several methods have been proposed to carry out the mass matrix inverse>? ranging

from taking an algebraic inverse, to using traditional numerical inverse methods (such as
a Cholesky decomposition) to the elegant method of using the innovations factorization.?
Naturally each method has its advantages and disadvantages. The algebraic inverse in only
feasible for relatively small systems, even with symbol manipulation programs such as Math-
ematica and Maple. Taking a numerical inverse at each integration step is computationally
costly and difficult. The method proposed by Ref. 2 uses the innovations factorizations
technique to parameterize the mass matrix and recursively approximate its inverse. The
mass matrix factors involved are obtained from a recursive filter. However, this recursive fil-
ter is conveniently applicable only to a linked body chain and other kinematically recursive
topologies.

This paper presents a method to solve a very general class of constrained and uncon-
strained dynamical systems and avoids the necessity of inverting a configuration variable
mass matrix to obtain instantaneous accelerations. The equations of motion will be sepa-
rated into dynamical and kinematic differential equations somewhat analogous to classical
developments in rigid body dynamics. A method outlined in Ref. 4 will be used to re-
place the mass matrix inverse problem with one of solving the corresponding eigenfactor
differential equations. The new formulation will allow any Pfaffian constraints to be easily
incorporated into the equations of motion, thus avoiding having coupled algebraic constraint
equations to be solved simultaneously with the original equations of motion and reducing
the overall order of the system.

PROBLEM FORMULATION

The equations of motion for a dynamical system can be derived by first formulating the
kinetic energy T and the potential energy V. Let the system Lagrangian £ be defined as

L=T-V (1)

Let z be the generalized configuration coordinate vector for the system, then the potential
energy is given by

V=V(z) (2)

The kinetic energy can be written in terms of the state vector derivative z or in terms of a
quasi-velocity vector y defined as

y = P(x) (3)

A field where quasi-velocities are often preferred over configuration coordinate derivatives
is in rigid body attitude dynamics. For example, it is much simpler to write the system
kinetic energy in terms of the body angular velocity w then in terms of the Euler attitude
angle derivatives 6. Let M (z,t) be the mass matrix for a system described with y, then the
total kinetic energy for the system is given by

1 _ _
T=Ty+T +Ty = §yTM(x,t)y+GT(m7t)y+To(x7t) (4)



where the T7 and Ty terms only appear in unnatural systems. However, to find the tra-
ditional version of Lagrange’s equations of motion the kinetic energy needs to be written
in terms of generalized coordinate derivative &, not quasi-velocities y. Using Eq. (3), the
kinetic energy can thus be rewritten in terms of z.

T = %:’nTP(:z:)TM(:c,t)P(as):b — %:ETM(JEJ):& (5)
Ty =Gl (2, t)P(x)i = G (z,t)& (6)

where M (z,t) = P(z)T M(z,t)P(z) is the system mass matrix for the state vector (z.4) and
G(z,t) = PT(z)G(z,t). For mechanical systems M (z,t) will always by symmetric positive
definite. Let Q be a non-conservative forcing term and let A7\ be the constraint force, then
the Lagrange equations of motion are defined as

d (oL oL T ‘
%(%)_O_w_Q_A)\ (7)

with the Pfaffian non-holonomic constraint being
A(z)z+b(t) =0 (8)

The partial derivatives of the system Lagrangian £ are

g—g = M(z,t)i + G(a, 1) (9)

and

oL 1 pOM(xpt) . N oGT (z,1) . N Tp(z,t) OV
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where the term :vTaMT(;’t)x is a column vector. The resulting standard Lagrange equations

(10)

of motion are

. T | . |
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or more compactly
M (xt)i + H(z,@,t) + ‘2—V =Q— AT\ (12)
xZ

The above equations of motion are a second order nonlinear differential equation, obvi-
ously generally not a simple task to solve. In particular, the time and state dependence of
the mass matrix poses a particular difficulty. These standard equations of motion, when
coupled to the constraint equations in Eq. (8), pose a significant challenge for high dimen-
sioned systems. The necessity of solving systems of order n+m to obtain (%, A) for each
(z,2,t) lies at the heart of the difficulty.

THE BOLTZMANN-HAMEL EQUATIONS OF MOTION

We motivate this development using rigid body dynamics wherein it is common practice
to separate the momentum dynamics and kinematics. Euler’s equation of motion are usually



written in terms of the body angular velocity w, not in terms of the time derivative of the
attitude coordinate vector 6.
Sw = —[w]Sw +u (13a)

6= fO)w (13b)

Eq. (13a) describes the system momentum time rate of change and Eq. (13b) describes
the kinematic relationship between the body angular velocity and the attitude coordinate
derivative. Using only 8 and its inertial derivatives would yield a much more complex second
order differential equation.

This separation of dynamics and kinematics in the equations of motion cannot be ac-
complished in more general dynamical systems. However, we show a way to accomplish
an analogous structure in the system equations, at the expense of increasing the number
of differential equations to be solved. This involves projecting the configuration coordinate
derivative into a moving reference frame!? by introducing a quasi-velocity vector which
diagonalizes the mass matrix. Since the mass matrix M is always symmetric and positive
definite, it can be spectrally decomposed using the orthogonal real eigenvector matrix £ and
the diagonal positive real eigenvalue matrix D. Instead of using E directly, using C = ET
instead will simplify the following development.

M=ctpc cct =1  D=diag(\) (14)

Let the diagonal S matrix be defined as the positive square root of the eigenvalue matrix
D.
S = VD = diag (+\/)\_) D=58"s (15)

Substituting Eqgs. (14) and (15) into Eq. (5) yields the following kinetic energy expression.
1
T = §¢TCTSTSC:& (16)
By introducing the quasi-velocity coordinate vector n

n=58Cs n=n\z)ci(z)z) (17)

we obtain a new simplified expression for the kinetic energy. The mass matrix associated
with 7 is the identity matrix.

1 , ,
T =Ts+Tf +T5 = gnTn + GT(z,t)CT 8™y + T (, t) (18)

Note that 75 depends explicitly on 7. However, if we choose (z, %) as the independent set
for taking partial derivatives, we must recall that n depends on (z,#). The z dependence
is implicit in Eq. (14), (15), (17) because S(z), C(z) parameterize M (z) = CTSTSC. Also
note that T~ is equal to T (both represent the same physical kinetic energy quantity), they
differ only in their algebraic formulations.

The new quasi-velocity coordinate 7; can also be expressed as
ni = sic] & (19)

Or in other words, 7; is the projection of the velocity vector & onto the ¢-th eigenvector
¢; and scaled by the -t eigenvalue square root s;. The new velocity coordinate not only



contains information about the standard velocity coordinate, but it also linked to the system
mass matrix itself. The inverse mapping of Eq. (17) describes the kinematic relationship
between z and 7 similarly to the relationship of § and w in Eq. (13b). Since C'is orthogonal
and the diagonal entries of S are positive the inverse mapping is trivial and singularity free.

i=CTs 1y (20)

The partial derivatives of the system Lagrangian £ are now rewritten in terms of the new

generalized velocity vector 5 using the chain rule as’

* T * *
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where J is the sensitivity matrix of 1 with respect to the state vector z. This matrix is
non-zero since the C and S both indirectly depend on .

_On _ [ I ]
/= or [6:1@1’ " Oy, (23)
Using the chain rule dn/0xy is expressed as
on oS oC T) .
—=|—+5—C" S 24
&ka <8£Ck + amk g ( )

However, finding 0S/0zj and 0C/0x} is difficult to do without resolving the eigenvector,
eigenvalue problem. One method to find these partial derivatives is to use the same square
root algorithm used in this paper to find S and C. This method is covered in the compan-
ion technical report in Ref. 5. However, this method only allowed the partial eigenfactor
derivatives to be evaluated at the discrete integration time steps, not in between them.
Because of this, methods such as the Runge-Kutta methods which require intermediate
steps could not be used to forward integrate the equations of motions. Thus Ref. 5 uses a
predictor-corrector type integration method instead.

To avoid solving for the computationally expensive 9S/0z) and OC /0y terms, OL/Ox
can be solved using T'(z,#) instead of T™(x,n) as was done in Eq. (10). The & velocities
in Eq. (10) could be replaced by the new velocity vector n through Eq. (20), but it is
computationally more efficient to keep the = terms.

The partial derivative of T with respect to 7 is

oT*
on

=9+ S7'CG(x,1) (25)

Using Egs. (10), (21) and (25), the Lagrange equations of motion in Eq. (7) become

d
dt

1.,.0M OGT oTy, oV
T __-T_- _ . __0 vV _ _ T
(C’ 577+G) 295 g T g T r + e =Q - A"\ (26)




After carrying out the time derivative and using the orthogonality of the C matrix, the
following first order differential equation is obtained.

. . 1.,0M . 0GT
n+ 87t (cCTs+8)n-s"'C (—:bTa—% - T> =stcr-BTx (27

2" Oz Oz
where
B=AcTs! (28)
and v . OT
F=Q-—5-—G+—> (29)

The two first order equations (20) and (27) replace the classical second order equations of
motion in Eq. (12). Eq. (27) is an interesting new form of the well-known the Boltzmann-
Hamel equation’® for our choice of quasi-coordinates 7. This diagonalized equation of
motion is very similar to the one introduced in Ref. 2, except that our new velocity vector 5
is not equal to their v since our parameterization of the mass matrix is different. Note that
Eq. (27) requires no matrix inverse to be taken thanks to the orthogonality of the C' matrix.
Inverting the S matrix is trivial since it is a positive diagonal matrix. At this stage the
complex problem of finding the instantaneous matrix inverse has been traded for another
problem of solving the eigenfactor differential equations.

MASS MATRIX EIGENFACTOR DERIVATIVES

To solve the above Boltzmann-Hamel equation auxiliary differential equations are required
to yield the eigenfactor derivatives with respect to time. A square root algorithm developed
by Oshman and Bar-Itzhack to solve the matrix Riccati differential equation’ was enhanced
and extended in Ref. 4 to robustly handle the mass matrix eigenfactor derivatives. The
method allows the calculation of the instantaneous C and S matrices and can handle both
repeated eigenvalues and eigenvalue derivatives. Since C'is an orthogonal matrix it satisfies

a differential equation of the form* 810

C=-QC (30)

where (2 is a skew-symmetric matrix. Analogously to the attitude dynamics problem where
the Q matrix represents body angular velocities, for the eigenvector dynamics each €);;
terms represents an eigenvector axis angular velocity. All eigenfactor derivatives of M are

expressed by a projection onto C' in terms of pu;; agh T 11,12

Hij = c;‘-FM(at7t)ci (31)

The method in Ref. 4 defines Q;; matrix elements ash 11

i for |s? — s?| > €
2] = { = s

7

| el (32)
Q{j(to) + Qij(to)(tl —ty) for |S]- — Sl-| <e€

where € is the smallest allowable numerical difference in eigenvalues before numerical prob-
lems occur in calculating €;;. When A; differs from A; by less than € then the unknown €;;
term at t; is linearly interpolated from known terms at fy. This approximation is shown



to have minimal impact on the numerical accuracy of the solution. To enhance longterm
stability of the eigenfactor integration and handle cases where the eigenvectors are discon-

tinuous Ref. 4 performs a Jacobi sweep® 13:14

whenever the €);; term is being approximated.
Discontinuous eigenvectors of a symmetric positive definite matrix are mathematically only
possible for the rare case where both the corresponding eigenvalues and their derivatives
are repeated. As a side note, no mechanical systems studied so far have exhibited crossing
eigenvalues with a corresponding non-zero p;; term. Thus evaluating €2;; has never posed
any numerical problems. Should a system be found where numerical problems occur, the
method in Ref.* was designed to handle even the worst of cases.

The time derivative of the eigenvalues \; are also defined in terms of p matrix en-
tries. 4 Th11,12

Ai = [hii (33)

However, the time derivative of the eigenvalues is not used directly, but the derivative of
the eigenvalue square root. Let s; be the i-th entry of the S matrix. Using the chain rule,
the derivative of s; is

1 . ‘
S.o— by 4
S 282' ¢ (3 )

This is written in a more compact form using the diagonal matrix I' = diag(pu;;) as’
S
Substituting Eq. (30) into Eq. (27), the Boltzmann-Hamel equations are now reduced to

T
n+ 87! (QS + S) n—S-tc <3¢T‘9—M¢ - 8ifc) =S~ 'CcF - BT\ (36)
2 Oz oz
At first glance, Eq. (36) may seem more complicated than than the original equations of mo-
tion. Keep in mind, however, that S and I" are diagonal matrices which greatly reduces the
computational burden. The most costly terms to compute when evaluating the eigenfactor
derivatives are the p;; terms in Eq. (31). Finding the instantaneous eigenfactors would be
a very attractive task for massively parallel computer system since the p;; calculation is
trivially parallelizable.

PFAFFIAN NON-HOLONOMIC CONSTRAINTS

If the dynamical system is unconstrained, then the Pfaffian constraint matrix B will be
zero and Eq. (36) is fully defined. However, if the dynamics are constrained through the
Pfaffian constraint surface given in Eq. (8), then Eq. (36) will need to be solved simulta-
neously with the constraint equation. Using Eq. (20) we rewrite the Pfaffian constraint in
terms of the new velocity vector 7.

ACTS lp+b=0 (37)
which can be simplified using Eq. (28) to

Bn+b=0 (38)



The dynamic constraint equations is obtained by taking the first time derivative of Eq. (38).
B+ Bn+b=0 (39)

Using Eqs. (35), (30) and (28) B can be expressed as
B = (AC" + AC" — BS)S! (40)

To determine the vector (7, A) Eq. (36) will need to be solved simultaneously with Eq. (39).
This leads to the differential-algebraic equations (DAE)

[I BT] (ﬁ):<—S—1(Qs+3)n+s—1_c(%j:T%—_fgf:b—ag—fj:+F)) )

B 0 A —Bn—b

which can be written in more compact form as

7 a1
M = 42
(1) = () )
Since B is a mxn matrix, My is a symmetric (n+m)x(n+m) matrix. A partitioned
matrix inversion formula!! is used to find the inverse of Ms. Because of the use of the
quasi-coordinates 7, the upper left partition of M5 is a nxn identity matrix which simplifies
the partitioned inverse immensely. For this case the mxm Schur complement A reduces

toll
A =BBT (43)

making the partitioned inverse of My

I-BTA-'B BTA-!

Myt =" A-ip T LA (44)
Using My Uin Eq. (44) the constrained differential equation of motion for 7 is
i = (I —BT"A™'B)a; + BT A™ay (45)
The Lagrange constraint vector A is
A=A"1Ba; — A lay (46)

Note that if no constraints are imposed on the dynamical system then Eq. (45) collapses
back to Eq. (36). If the number of system constraints m is small, then the mxm matrix
A~! could be inverted for each time step. However, as m grows larger taking a numerical
inverse quickly grows in computational complexity.

Since A, for linearly independent constraints, is a positive definite symmetric matrix by
Eq. (43), it can be decomposed using the eigenfactor parameterization analogous to the
mass matrix parameterization. Let Ca be the transpose of the eigenvector matrix of A,
and let SA be a diagonal matrix whose entries are the positive roots of A eigenvalues. Then
through a spectral decomposition A can be written as

A =CLsiSACA (47)

8



Since Cp is an orthogonal matrix and the diagonal entries of Sa are all positive, the inverse
of A is
A~ = CLS:%Ca (48)

This direct inverse formulation reduces Eq. (45) to the following matrix inverse free formu-
lation.

i = (I — BTCYS>CaB)a; + BT CL S *Cpray (49)
Keep in mind that Sa is a diagonal matrix with positive entries. Therefore finding its
inverse involves only scalar inversions.

To update the Ca and Sa matrices without resolving the eigenvalue, eigenvector problem,
their time derivatives are found using the square root eigenfactor algorithm?* analogously to
finding the time derivatives of ('and .S of the mass matrix M. Let ca; be the ¢-th eigenvector

of Ca, then f3;; is defined as ‘
Bij = ca; Ach, (50)

where the time derivative of A is
A =BBT + BB” (51)

and B was defined in Eq. (40). The diagonal matrix I'a and the skew-symmetric matrix
QA are then defined as

LA = diag(Bii) (52)
B for [s3. —sA.| > ¢
_ A Al =
[QA,‘]'] = SZA,j A . . . 2 ’ 2 (53)
QAij (to) + QA” (to)(t1 — tg) for |SA]- — SAil <e€
The time derivatives of Ca and Sa are written as’
: 1 L
ShA = §FA5A (54)
Ca = —QaCa (55)

MULTI-LINK SIMULATION

To demonstrate the eigenfactor square root algorithm, a constrained multi-link motion is
simulated. The system layout is shown in Fig. 1. The mass m; is attached to the link [y
through the spring K1 = 1 which simulates stretching, but no bending of the link /;. The
mass my is attached to the point (0,4) through the spring K» with stiffness 1. The rod I3 is
attached to I] through the torsional spring K3 with stiffness 0.5 and a neutral state of /2
radians. The links are assumed to be mass-less and have lengths of [ = 0.5, lo = 1/\/5 and
I3 = 0.5. All rod tips have unit masses attached to them. A constraint is imposed on the
system which restricts the hand of lo at the coordinates (z,y) to only move horizontally.
Since only conservative forces or torques are acting on the system, the total system energy
will remain constant.

The hand coordinates (z,y) are given as

x = (I1 + 63) cos 01 + l2 cos b (56)



Figure 1 Constrained Dual-Link Manipulator Layout

y = (l1 +63)sinf; + l2sin (57)

The system potential energy is the total spring energy given by
V(0) = K103+ 5Ky (22 + (4 —9)%) + S K30, — 01 — 7) (58)
2 2 2 2
The system kinetic energy is given as

T =4y (1 +05)203 + 62) + bmyi363

+lm, ((11 +03)202 + 1262 4 62 4 2(11 + 03)15 cos (6, — B3)f165 + 2y sin (8; — 02)é2é3> (59)
From the kinetic energy T the system mass matrix can be extracted.
(my +my)(l +65)? ma(ly + 63)l2 c2os (61 — 62) ‘ 0 0
M(9) = ma(ly + 93)l%cos (01 — 62) - Sirlrlzz(?l o m2l2rrsllln_|(_9;12_ 62) g (60)
0 0 0 msl?

The eigenfactor square root algorithm requires an algebraic expression for M and OM /00y;.
They are found directly from the system mass matrix M in Eq. (60). The system constraint
requires that y = 0. Using Eq. (57) this can be expressed as A(6)0 = 0 where

A(@) =[(ly +63)cosb) lycosby sinf; 0] (61)

Note that the Lagrange equations of motion did not have to get solved specifically for
this conservative multi-link system. After finding the kinetic energy of the system and the
corresponding mass matrix formulation, the necessary time and spatial derivatives of the
mass matrix are found. The simulation is started with all links at rest and let run for 10
seconds. The initial configuration is #; = 30°, 65 = 60°, 3 = 0, 4 = 135°. The resulting

10



motion up to ¢t = 3.5 seconds is shown in Figure 2. All integrations were performed with a
3rd/4th order variable step size Runge Kutta method. Note that the hand of link ls moves
only in the horizontal direction as required by the system constraint. The link I is first
compressed until 6y is greater than 90°, than /; is stretched upwards. Since |04 — 61| > 90°
initially, the mass ms is first pulled toward mq, but is then repelled as m; begins to move
upward.

t=0s
A

Figure 2 Unconstrained Dual-Link Manipulator Motion

The system state time histories found by using the new quasi-velocities 7 and the auxiliary
differential equations C and S are shown in Fig. 3. Note that the stretching 63 of link /;
has been scaled in this figure by a factor of 100 to make it visible on the same scale as
the system angles. These trajectories were verified by integrating the classical Lagrange
equations of motion with the same variable step size integration technique. An exact,
algebraic expression was used to perform the time varying mass matrix inverse.

200 T 3 —r

£ ' bl

1 : -7 : =TSN :

150 T AT L /.0 """ P "‘.’ \ """"" el

% Thrree Q‘.‘ 7. 1 RN R e
® w00t e R R T
2 16 7" ‘ ‘ ~="
B
@

0 2 4 6 8 10

time [9]

Figure 3 System State Time Histories.

The time histories of the new quasi-velocities n are shown in Fig. 4. They are well behaved
and smooth throughout the maneuver. Keep in mind that these new velocity coordinates
are influenced by the system mass matrix through Eq. (19). However, since n only depends
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on the square root of the mass matrix, namely the C' and S matrices, any rapid changes in
the mass matrix would exhibit itself in the 7 time history in a smoother manner.

0.8
0.6
0.4+
024
0.0+
024
04l
06
-0.8 il + } + + + +

0 2 4 6 8 10

time[g

quasi velocitiesn

Figure 4 Quasi-Velocity Time Histories.

The mass matrix eigenvalues for this maneuver are shown in Fig. 5. While some eigenval-
ues do periodically become close, no eigenvalues actually cross during this maneuver. The
proximity of two eigenvalues is never closer than 0.03, thus not enough to cause numerical
problems evaluating €2;; in Eq. (32). To only mechanical systems found to have crossing
eigenvalues also always had the corresponding p;; equal to zero. Having p;; = 0 throughout
the maneuver means geometrically that the ¢; and c; eigenvectors always have zero relative
angular velocity. In this case numerical problems typically only occur when A; was exactly
equal to A;. How to handle this case was shown in Ref.4

Eigenvalues A
-
S
-

-------
-------------------

time [9]
Figure 5 Eigenvalue Time Histories.

In simulations we found that whenever two eigenvalues approach eachother, the corre-
sponding eigenaxis angular velocity {2;; becomes more active. This is easily seen in Fig. 6
as it occurs around ¢ = 2 sec, 4.25 sec and 6.5 sec. At time t = 2 sec the second and fourth
eigenvalue become close and Fig. 6 clearly shows a local rise in 294. What is happening
here geometrically is that the corresponding eigenvectors are being rotated in the plane
spanned by them such that they roughly trade positions. The closer the eigenvalues ap-
proach eachother, the sharper this rotation would be. These isolated sharp changes in the
square root of the eigenvalues and in the eigenvectors is the reason why it is very benefi-
cial to use a variable step size integration technique with this instantaneous eigenstructure
quasi-coordinate formulation. Note however that eigenvalues approaching A3 have no effect.

12



This is because the us; terms, and therefore the Q3; terms, are always zero for this system.

Angular Velocity Terms

time[g]

Figure 6 Eigenaxis Angular Velocity Time Histories.

The system constraint violations Ay(t) = |y(t) — y(to)| for the instantaneous eigenstruc-
ture quasi-coordinate formulation and for a “brute force” method are shown in Fig. 7. The
brute force method integrates the classical Lagrange equations of motion and uses an ex-
act, algebraic inverse of the system mass matrix. The average integration step size for
these simulations was h = 0.024 seconds. Instead of increasing the order of the system
to n+m by adding m constraints to an n-th order system, the instantaneous eigenfactor
quasi-coordinate formulation is able to maintain the system at the order n. This is due to
the mass matrix corresponding to the 7 velocity variables being the identity matrix. This
allows for a simpler partitioned matrix inverse which incorporates the constraint equations
directly into the equations of motion. This simpler calculation keeps the constraint violation
for the new method slightly lower than for the brute force method.

Consgtraint Error Ay

time[g

Figure 7 System Constraint Violation.

To measure the integration error over the entire maneuver, the following norm was defined
tf ;
ap|= [ 1Pt - Plto)at (62)
where P =T + V is the total energy of the system. Since no non-conservative forces are
present the total energy will remain constant. Summing up any changes in P provides for a

convenient way to measure the error accumulation during the simulation. Fig. 8 compares
the numerical accuracy of the instantaneous eigenstructure quasi-coordinate formulation to

13



the “brute force inverse” technique. Obviously performing an algebraic inverse of a mass
matrix can only be performed for relatively low order systems such as this one. It would
be extremely difficult to beat the accuracy of this brute force formulation. It does provide
us however with a good base line of what type of accuracy would be possible under the
best of situations. As Fig. 8 shows us, the instantaneous eigenstructure quasi-coordinate
formulation is only slightly less accurate than the brute force integration method. This is a
promising result and will lead to further investigation of the accuracy and efficiency of this
new formulation.

|AP]

et

-
10°®
average step sizeh

Figure 8 Integration Accuracy Comparison.

CONCLUSION

The method presented brings a general class of constrained multi-body dynamics to a
form which completely avoids the necessity of inverting configuration-variable matrices to
obtain instantaneous accelerations. The form of the equations is very analogous to classical
”dynamics/kinematics” quasi-coordinate development of rigid body dynamics. The eigen-
value, eigenvector problem is only solved numerically once to find the initial S(¢p), C(to),
Sa(to) and Ca(tg) matrices. From there on the eigenfactors are solved through their dif-
ferential equations. Instead of using the generalized coordinate derivative @ as the velocity
measure, a new quasi-velocity 7 is introduced to which corresponds an identity mass matrix.

To evaluate the eigenfactor derivatives it is assumed that M(z,t) and OM /Oy (x,t) are
available algebraically. This is a feasible assumption, especially in view of the several
modern software packages like Maple and Mathematica which can derive the mass matrix
in an explicit algebraic form and automate the generation of, for example, the C-code to
compute M (z,t) and OM (z,t) /Oy

For a constrained dynamical system, traditional processes lead to the classical Lagrange
equations of motion coupled to second order differential constraint equations where a time
and configuration variable mass matrix needs to be inverted. In the present development,
there are no matrix inverse operations. These equations are mapped into a set of simpler
nonlinear first order differential equations. The second order differential equation for &
is replaced with two first order differential equations 7 and #. The mass matrix inverse
problem is side-stepped by introducing the mass matrix eigenfactor matrices and solving
their usually well-behaved differential equations for S and C instead. This method has no
second coupled constraint equation, since the constraint force was already solved for and
back-substituted into the equation of motion for . However, this involved taking the inverse
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of a symmetric Schur matrix A. This inverse can also be avoided very simply by using the

eigenfactor matrices of the Schur matrix instead of the Schur matrix itself. Therefore, again

a matrix inverse is replaced by solving two first order differential equations for Sa and Ca.

Contrary to Ref. 5 any integration method can be used to solve the # and 7 equations, since
OM Oz, is given algebraically. This makes this method much more flexible and versatile.
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