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FEEDBACK CONTROL LAW USING THE EIGENFACTOR
QUASI-COORDINATE VELOCITY VECTOR

Hanspeter Schaub® and John L. Junkins'

The use of the recently developed eigenfactor quasi-coordinate velocities (EQV)
vectors in feedback control laws is examined. The equations of motion in these
new coordinates do not require a mass matrix inverse to be taken and are ide-
ally suited for massively parallel computation. It is shown that the Coriolis
term of the EQV formulation does no mechanical work. This allows for simple
velocity feedback laws which are globally asymptotically stable. The perfor-
mance and convergence rate of the EQV feedback control law are compared
to a traditional velocity feedback control law by using them to bring a three-
link manipulator to rest. For a given maximum available control, the EQV
feedback control law shows better performance than the traditional velocity
feedback control law. The kinetic energy decays exponentially at an easily
controllable rate. Further, numerical studies show that damping derived from
an EQV feedback control law approximately decouples the nonlinear dynamics
of a rigid multi-link system and brings each link to rest individually.

INTRODUCTION

Multi-body dynamical systems typically have configuration dependent mass matrices.
Such dynamical systems include large nonlinear deformation models of arbitrary bodies,
simple multi-body systems or multi-link robot arms. To obtain the instantaneous accel-
erations, these time varying mass matrices need to be inverted in some manner at each
integration step. This process is computationally difficult, expensive and usually illsuited
for use on massively parallel computer systems.

Mass matrix diagonalizing velocity coordinate transformations are introduced in Refer-
ences 1 and 2. Ref. 1 uses the innovations factorization approach to parameterize the mass
matrix. One advantage of this method is that the mass matrix components can be found
through a recursive algorithm. Ref. 2 parameterizes the mass matrix through a spectral
decomposition. The mass matrix for a real mechanical system is guaranteed to be sym-
metric, positive definite. Therefore its eigenvector matrix is orthogonal and the eigenvalues
are greater than zero. This fact is used to obtain simple first order differential equations
whose solutions provide the eigenfactors. In essence, the problem of inverting a configura-
tion variable dependent mass matrix is replaced with the problem of solving two auxiliary
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first order differential equations.?

Both methods in References 1 and 2 introduce a new quasi-coordinate velocity. The
advantage of these new coordinates is a diagonalized dynamical system with no need of in-
verting any mass matrices. Further, describing the dynamics in terms of these new velocities
provides for a natural and elegant splitting of momentum-level dynamics and kinematics.
The classical Lagrange equations of motion are usually rather complicated second order
differential equations. By introducing the new quasi-velocities the system is given by one
first order differential equation describing the system momentum-level dynamics and by
another first order differential equation describing the system kinematics. This structure
is analogous to what is typically done in rigid body attitude dynamics. Let 8 be an atti-
tude vector measured in some choice of Euler angles or similar coordinates. Then Euler’s
equations of motion are usually not written in terms of the 6 and 0 but rather in terms
of the body angular velocity and acceleration vectors w and w. This gleatly simplifies the
formulation and provides a convenient splitting of dynamics and kinematics.

Further, attitude control laws typically feed back the quasi-velocities w rather than 0.
This paper investigates the use of the analogous eigenfactor quasi-coordinate velocity (EQV)
vectors presented in Ref. 2 as a feedback variable in multi-body control laws. In particular,
the effect of the nonlinear generalized coriolis term is studied and a simple EQV feedback
control law is presented.

PROBLEM FORMULATION

Let @ be a configuration state vector. The classical Lagrange equations of motion are
derived assuming expressions for the system kinetic energy T'(z, ) = %mTM(m)m and the
potential energy V() are available. Then the standard Lagrange equations of motion for

an unconstrained natural system are
M(z)& + M(z, )& — §:cTMx(:v):B+V$ =Q (1)

where the notation M, and V, symbolizes the partial derivative with respect to the con-
figuration vector x and the expression @7 My (2, t)& is the column vector col (:bT [g—zﬂ :e)
The vector Q is the generalized, nonconservative external force acting on the system. These
second order differential equations are nontrivial to solve. In particular, the time and state
dependence of the mass matrix poses a challenging difficulty, especially for systems of high
dimensionality.

The system mass matrix M () has the spectral decomposition
M=c"DC C"=lei...c,] D =diag(\;) (2)

where ¢; is the i-th eigenvector. Since M (x) is symmetric, positive definite for real mechan-
ical systems, the eigenvector matrix C' is orthogonal and all eigenvalues are positive. The
diagonal matrix S is defined to be the positive square root of the eigenvalue matrix D.

D=5"s (3)
As proposed in Ref. 2, introducing the eigenfactor quasi-coordinate velocity vector n

n = SCi (4)



allows the kinetic energy expression to be simplified to

1 T
== 5
57 N (5)

The equivalent mass matrix of the EQV formulation is the simple identity matrix. Anal-
ogous to the usual structure for the attitude dynamics kinematic differential equation
0 = f(@)w, for the general dynamics problem, the corresponding kinematic equation be-
comes

#=CT8"1n (6)
Note that since the eigenvector matrix C' is orthogonal and all eigenvalues are positive, the
kinematic relationship between @& and n in Eq. (6) is defined singularity free. However, this
formulation does require the instantaneous eigenfactors C' and S of the mass matrix M (x).
As outlined in References 2 and 3, these are found by solving their corresponding first order
differential equations. Since C' is an orthogonal matrix, its differential equation is of the

Poisson form?%

¢ =-[Q)C (7)

where [(2] is a skew-symmetric matrix. Each €;; entry provides an eigenaxis angular velocity,
analogous to the w; body angular velocity components in attitude dynamics.? Let the matrix

1 be defined as

p=CMCT (8)
The €2;; entries are then defined as™8
Sf%ﬁ for |s?—s?| > €
Qij(tO) + Qij(to)(tl —tp) for |Sj — Sl‘| <e€

If the eigenvalues A; and A; are within €, then €);; is approximated linearly. Reference 3 dis-
cusses this method for accommodating the rare case of crossing eigenvalues with minimal
loss in accuracy. As it turns out, calculating these (2;; terms is the most costly opera-
tion performed in this formulation. However, the calculation of the p;; = C;-TMCJ’ term is
ideally suited for massively parallel computer systems since each term can be calculated

independent of other p;; terms. The time derivative of the eigenvalue square roots is given
by 79

o1
S = 5rs—1 (10)

where the matrix I' = diag(pi;). After solving the unconstrained Boltzmann-Hamel equa-

tions with the EQV vector 9 defined in Eq. (4), the system dynamics are given by? 1011

. 1,.,0M
. -1 _ o1 25T 5 ) — gl -
n+5 (S +5)n-5 c<2m = m)_s c@Q-vy) (11)
At first glance Eq. (11) may appear more complicated than the classical Lagrange equations
of motion. Note the most important feature that 79 appears with an identity matrix coeffi-
cient. Also, note that S is a diagonal matrix with a trivial inverse which greatly simplifies
the algebra. Let the vector H (x,n) be the nonlinear generalized coriolis term of the new

formulation defined as

H(z,n)=5"([Q)S+8$)n-5"C (%:&T%—f:&) (12)
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and let € be the new generalized force vector

e=S5"'C(Q-V.) (13)
then the dynamical system can be written in the compact form

n=—-H(z,n)+e (14)

Thus the new formulation replaces the original Lagrange equations of motion, which is a
second order differential equation, with two first order differential equations given in Egs. (6)

and (14).

EIGENFACTOR QUASI-VELOCITY COORDINATE FEEDBACK LAW

Because of the close relationship between this EQV formulation and the classical rigid
body attitude dynamics formulation, the question arises if an EQV vector could have an
important role in feedback laws as the w vector enjoys in attitude control. The Euler
equation of motion of a rigid body is given as

Iw=—-[0)lw+u (15)
where I is the inertia matrix, u is the external torque vector and the tilde matrix [@] is
defined as

0 —w3 w9
[@]=| w3 0 —w (16)
—wy Wi 0
The kinetic energy of a rotating rigid body is given as
1
T= §wTI w (17)

It is a known that the term [©]Iw is a non-working term and that the kinetic energy rate

can be written as the power equation® 2

T=wlu (18)
Using the kinetic energy as a Lyapunov function, the simple feedback control law
u=—Pw (19)

is found where P“ is a positive definite angular velocity feedback gain matrix. This con-
troller is globally asymptotically stable.

Analogous statements can be made for the EQV formulation. Similar as in Ref 1, the
nonlinear coriolis term H (2, n) for the EQV formulation is also nonworking. To show this
important truth, let us study the term n” H. Using Eq. (4) it can be written as

o . 1
n'H =i"C"s°Cé + 4" C"$5Ch — Ja" (&7 My) (20)
which is the simplified to

n"H =& (07520 + C’TS’SC) @ — % [zn: i (;,,TMI;D)] (21)

!
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Note the following identity.
i & (2" M) = 3" M (22)
After adding and subtracting some terms ' H becomes
n'H = &7 (C‘TSQC +CTs2C + 20T $SC — TS — CTSSC) @ — %mTM:c (23)
From Eq. (2) it is clear that
M=CTS*C+cTs?C +207SSC (24)
This identity is used to reduce 7 H to
n'H =T (M - (SC)T(S'C)) @ — %:cTM:c (25)

which can be further manipulated to give the important result:

1. 1 )
nTH=a'cT<M—§M):ic—§:i3TM:ic=0 (26)
Since the H (x,n) term is nonworking, the kinetic energy rate can be expressed simply
as
T=n"n=n"(—H(@,n) +e =n'e (27)

Using the kinetic energy as a Lyapunov function, the following feedback control law can be
shown to be globally asymptotically stabilizing.

e=—Pn (28)

The velocity feedback gain matrix P" is positive definite. Note that Eq. (28) provides a
linear velocity feedback control law in the n formulation. This renders T in Eq. (27) into
the negative definite expression

T = —nTPT’n (29)

Therefore € = —P'np is a globally asymptotically stabilizing feedback control law for
Eq. (14). Eq. (13) is used to rewrite this control law in terms of the generalized exter-
nal force vector Q.

Q=V,(x)-CcTspy (30)

If the feedback gain P" is assumed to be a scalar, then the control laws simplifies to
Q=V,(x)— P"M(x)x (31)

Note the physical significance of Eq. (31). Instead of just feeding back the & vector, as
would be done traditionally in velocity feedback (proportional damping), a momentum
type quantity is fed back instead. Even though P7 is a constant scalar in this expression,
the M(x) term acts as a state dependent feedback gain matrix. As a comparison, the
traditional method of constructing output velocity feedback laws would result in a control
law of the type

Q =V.(z)— P'i (32)



where P? is the velocity feedback gain matrix.

To study stability, let us write the kinetic energy in the classical form and use it as a
system Lyapunov function.

1
T = §¢T M (33)
The first time derivative of T is
. 1 :
T =a"Mi + §d:TM:i: (34)
Using Eq. (1) this is reduced to
LT 1. l.p .
T=2za Q—Vz—§M$+§$ My (35)
which is then expanded to
: 1 : 1
.7 ST oay e . T .
T=a& (Q—Vr)—§m M:c—i—g;mz(:c M, &) (36)

Using the identity in Eq. (22) this is simplified to the usual work/energy power expression
T=2"(Q-V.) (37)

The traditional velocity feedback control law in Eq. (32) then yields the following negative
definite expression . ‘
T=—-&"P'i (38)

where P? is a positive definite matrix. This control law is also globally asymptotically
stabilizing.

EXPONENTIAL CONVERGENCE

Both velocity feedback control laws in Egs. (30) and (32) are shown to be globally asymp-
totically stabilizing. Here their convergence rates will be studied. First, assume that P" is
a scalar quantity. Then the time derivative of T' can be written as

T=-P'n'n (39)
Using Eq. (5) this is rewritten as _
T = —2PT (40)

This simple first order differential equation can be solved explicitly to yield

T(t) = e 2P" T(0) (41)

Therefore, for any choice of positive P, the total system kinetic energy will decay expo-
nentially at a well defined rate.

To show exponential convergence for the case where P" is a fully populated positive

definite matrix, we make use of the Rayleigh-Ritz inequality!3 14

A n <n" Py < Al0.n"n (42)

min m



This inequality allows T' to be written as

T=-n"Plm<-An"n (43)

Using Eq. (5) again, the following inequality for 7' is obtained.

T < —2X\P" T (44)

min

Note that in this more general case the kinetic energy is upwardly bounded by a exponen-
P

tially decaying curve at a rate of —2A; . .

T(t) < T(0)e Pmint (45)

Here the kinetic energy decay rate cannot be easily determined for the entire maneuver.
However, as time t grows sufficiently large it will approach the decay rate of the smallest
eigenvalue A" .

Proving exponential stability for the feedback control law in Eq. (32) is more difficult. Let
A be the smallest eigenvalue of P, then using Eq. (38) and (42) the following inequality

min

must hold. _ _
T< -2\ @la (46)
Let AM be the largest eigenvalue of M. If
Min 2 Ao (47)

is true, then the above inequality can be expanded to

T <A T <A 374 < —a" M (48)

min mazr

Using Eq. (33), the kinetic energy derivative will be upwards limited by
T < —2T (49)

Note that with this control law, exponential stability is only shown for a sufficiently large set
of P% eigenvalues. Also, the convergence rate cannot be determined easily from the above
analysis. Numerical analysis shows that the condition in Eq. (47) is very conservative. The
velocity feedback control law in Eq. (32) is found to be exponentially stabilizing in the
endgame even if the condition in Eq. (47) is violated.

The concept of feeding back a generalized momentum quantity instead of a configuration
velocity coordinate to achieve a controlled exponential stability can easily be applied to
the rigid body attitude control problem discussed earlier. Instead of using the traditional
control torque w defined in Eq. (19), let the feedback gain P“ be a scalar quantity and
define the torque w instead as

u=—P“Jw (50)

The kinetic energy derivative in Eq. (18) can now be written using Eq. (17) as
T = —P°wl[w = —2P“T (51)

With this slight modification, a globally asymptotically stabilizing feedback control law is
made exponentially stabilizing with an straight forward way to control the kinetic energy
decay rate.



NUMERICAL RESULTS

To compare the performance of the feedback control laws in Egs. (30) and (32), they are
applied to a three-link manipulator system and a tumbling rigid body. In each simulation
the goal of the control law is to bring the system to rest by dissipating all initial kinetic
energy. For all cases, we consider only damping (velocity) feedback.

Three-Link Manipulator System

The rigid three-link manipulator system is shown in Figure 1. Each link has some initial
rotational velocity and the goal of this example is to bring all the links to rest at an arbitrary
orientation. The tip masses and rod lengths are set to 1. The numerical integration is
performed with a fourth order Runge-Kutta method with an integration step size of 0.005
seconds and a simulation duration of 15 seconds.

Figure 1 Three-Link Manipulator System Layout.

Choosing the inertial polar angles as generalized coordinates the state vector is =
(61,62,03)T, then the system mass matrix is

(m1 + mo + m;;)l% (mz + m;;)lllz cos(@z — 91) mslils cos(093 — 91)
M(z) = | (mg +m3)lyly cos(fy — 6y) (ma + m3)l3 m32;l3 cos(f3 — 6,) (52)
m3l1l3 COS(193 — 91) mglzlg COS(93 — 02) m3l§

The feedback gains are held constant for each control law. To perform a reasonable compar-
ison, the feedback gain magnitude for each control law is selected such that the maximum
absolute control effort encountered is equal.

The first study is performed with a very large initial rotational motion of &7 (0) =
(93, —110,—73) degrees/second. The initial state vector is set the same for all simula-
tion to be z7(0) = (=90, 30,0) degrees. The gain P" is set to 0.7 while P? is set to 1. The
magnitude of the control vector Q is shown in Figure 2. With this tuning of the gains, both
control laws encounter a maximum control effort of about 3.5. The 1 control law magnitude
starts to be reduced linearly on the base 10 logarithmic scale after only about 1 second of
maneuver time. A linear logarithmic decay rate indicates an exponentially decaying quan-
tity. The @& control law does not start to decay linearly on this scale until after 6 seconds



into the maneuver. After an initial hump, the & control effort drops off quickly at first
and then decays relatively slowly. The kinetic energy T' is decreased by about one order of
magnitude every five seconds. The 1 control maintains a relatively large control effort for
the initial portion of the maneuver where about 90% of the kinetic energy is being canceled.
After this the m control effort drops off at a much faster than the & control effort. The
kinetic energy T is decreased by one order of magnitude in only one second. The only way

N control law

QI

time[q
Figure 2 Control Vector Magnitude Time History.

for the @ control law to have a similar (five times as fast energy dissipation) performance
as the n control law would be to make P? time dependent, or introduce piecewise constant
gain scheduling. The draw-back of feedback gain scheduling is that it makes the overall
control law much more complicated. The i control law effectively performs some feedback
gain scheduling implicitly as is seen in Eq. (31).

Kinetic Energy T

—t t t t t t t t t t t t
0 5 10 15
time[9

Figure 3 Kinetic Energy Time History.

The kinetic energy provides a scalar measure of the total system “error motion” and
is plotted on a base 10 logarithmic scale in Figure 3. As predicted, the 1 control law
has an exponentially decaying kinetic energy since the corresponding curve in Figure 3 is
completely linear. The kinetic energy for the @& control law starts to decay linearly on the
logarithmic scale after a few seconds, whereas the kinetic energy for the  control is linear
from the outset. These results show very clearly that for a given maximum control effort,



the 1 control law outperforms the constant gain & control law by having a much larger final
decay rate. While these results are for a particular example, the exponential convergence
proof of the previous section is general. We therefore feel this pattern is representative.

The second simulation is performed with only the third link having an initial rotational
motion of 10 degrees/second, the other two are at rest. The feedback gains are set to
P77 = 0.72 and P* = 1. If left uncontrolled, then the coupled system dynamics would
partially transfer the kinetic energy of the third link into the other two links and very
quickly all three links would be rotating. The time history of the & vector components for
both control laws are shown in Figure 4.

Ncontrol law

)
> S
5, — = = Xcontrol law
o 6T\ LT
2
T A\ -
2
b
QO ol AN
@]
]
=
T
]
m +

-2 t t t t } t t t t } t t t t

0 5 10 15

time[9

Figure 4 & Vector Component Time History.

With the @& feedback control law, coupling causes all three links to start to rotate and
then the control law brings them all to rest together. The 1 feedback control law performs
quite differently. The later keeps the motion of the first two links very close two zero while
exponentially reducing the initial 10 degrees/second motion of the third link. This pleasant
surprise is essentially a nonlinear analog of “independent modal space control” popular
for linear structural dynamical systems.® 1% In effect, this feedback control law is able to
decouple the rotation of each link and bring each individually to zero. Note that no explicit
gain scheduling had to be performed with this control law to achieve this effect.

The magnitudes of the control efforts involved are shown in Figure 5. Both feedback
control laws have the same maximum control effort. As is shown in the previous simulation,
again the m control effort remains larger than the @ control effort until about 90% of
the kinetic energy is canceled. After this the 1 control effort keeps on decreasing in an
exponential manner while the & control effort also decreases exponentially, but at a much
slower rate.

The vector components of the control effort are shown in Figure 6. As expected, all three
control components are active for the & feedback law. The 1 control however keeps the
first control component near zero while only using the second and third control component.
They decay at the same exponential rate and differ in magnitude such that the motion of
the third link is stopped while not starting any motion in the second link.
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Figure 5 Control Effort Magnitude Time History.

Control Vector Q

time[9

Figure 6 Vector Components of the Control Effort.

Tumbling Rigid Body

The second system studied is a tumbling rigid body. For this case, the body has a very
large initial angular velocity and the feedback control law is designed to drive the kinetic
energy to zero. The inertia matrix I is given by

10 5 3
I=|5 7 4 (53)
3 45

The Euler equations of motion for a rigid body are given in Eq. (15). A fourth order Runge-
Kutta integration method is used to perform the numerical simulation with an integration
step size of 0.1 seconds. Total maneuver time is 15 seconds. The initial body angular
velocity vector is w(tg) = (90, —70,50)7 degrees/second.

The two control laws given in Egs. (19) and (50) are compared here. The angular velocity
feedback is chosen to be a scalar in both cases. The classical feedback law is

11



where the n feedback law reduces to
u=—-Plw (55)

which is simply momentum feedback in this case since P» is a scalar. In an effort to make a
fair comparison of the control laws, the feedback gains are chosen such that the maximum
encountered control effort for both control laws is the same. Therefore P; is set to 2 and
P>=0.33. The magnitudes of each control law are shown in Figure 7. Both control laws have
their gains tuned consistently so that they result in the same maximum control effort at
the beginning of the simulation. As is observed in the three-link manipulator simulations,
the n control law retains a larger control effort during the first segment of the maneuver
and decays to a lower value than the & control effort.

N control law
— = = X control law

o
=
= .
—
=
f —
—
— —
——

|ul

0 5 10 15
time[9

Figure 7 Control Torque Magnitudes.

The system kinetic energy is plotted in Figure 8. As anticipated, the 1) control law causes
the system kinetic energy to decay exponentially at the prescribed rate. The @& control
law appears to cause the kinetic energy to decay exponentially only after about 2 seconds
into the maneuver at a slower rate. At the maneuver end the residual kinetic energy of
the m control law simulations is over two orders of magnitude less then the @& control law
simulation.

The corresponding body angular velocity vector magnitudes are plotted in Figure 9. Note
that even though the kinetic energy of the n control law simulation is typically equal or
lower than the & control law kinetic energy, the angular velocity magnitude of the 1 control
law is only smaller than the & angular velocity magnitude after about six seconds into the
simulation.

One reason why the 1 control law performs so much better in these simulations than the &
control law is that the inertia matrix is fully populated. If we repeat these simulations with
the inertia matrix I near-diagonal, then there would be virtually no inertia matrix coupling
to compensate for. In these cases the  and & control laws perform almost identically.

CONCLUSION

The EQV Boltzmann-Hamel formulation provides an interesting new dynamical system
formulation. The EQV feedback control law presented in this paper is shown to be globally
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Figure 9 Body Angular Velocity Magnitudes.

exponentially stabilizing and have superior energy dissipation performance over traditional
@ type feedback control laws. Instead of feeding back a configuration coordinate rate quan-
tity, it feeds back a quantity proportional to a generalized momentum. For gains tuned to
ensure the same maximum allowable control effort, the EQV feedback control law is shown
to exhibit a faster final convergence rate than the traditional velocity feedback control laws.
Numerical studies also show that this feedback control is able to decouple the motion of a
nonlinear multi-link system and bring each link to rest individually.
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