
Globally Stable Feedback Laws for
Near-Minimum-Fuel and

Near-Minimum-Time Pointing
Maneuvers for a Landmark-Tracking

Spacecraft
Hanspeter Schaub, Rush D. Robinett and John L. Junkins

Simulated Reprint from

Journal of the Astronautical Sciences
Vol. 44, No. 4, Oct.–Dec. 1996, Pages 443-466

A publication of the
American Astronautical Society

AAS Publications O�ce

P.O. Box 28130

San Diego, CA 92198



1 

 AAS 95-417

GLOBALLY STABLE FEEDBACK LAWS FOR 
NEAR-MINIMUM-FUEL AND NEAR-MINIMUM-TIME POINTING 
MANEUVERS FOR A LANDMARK-TRACKING SPACECRAFT

Hanspeter Schaub * , Rush D. Robinett †  and John L. Junkins ‡ 

Utilizing unique properties of a recently developed set of attitude parame- 
ters, the modified Rodrigues parameters, a feedforward/feedback type 
control laws is developed for a spacecraft undergoing large nonlinear mo- 
tions using three reaction wheels.  The method is suitable for tracking 
given reference trajectories that spline smoothly into a target state; these 
reference trajectories may be exact or approximate solutions of the 
system equations of motion.  An associated asymptotically stable nonlin- 
ear observer is formulated for state estimation.  In particular, we illustrate 
the ideas using both near-minimum-time and near-minimum fuel rotations 
about Euler’s principal rotation axis, with parameterization of the sharp- 
ness of the control switching for each class of reference maneuvers.  Lya- 
punov stability theory is used to prove rigorous global asymptotic stability 
of the closed-loop tracking error dynamics in the absence of external 
torques.  If external torques are present, then the system is Lagrange 
stable.  The methodology is illustrated by designing example control laws 
for a prototype landmark tracking spacecraft; simulations are reported 
that show this approach to be attractive for practical applications.  The in- 
puts to the reference trajectory are designed with user-controlled sharp- 
ness of all control switches, to enhance  the trackability of the reference 
maneuvers in the presence of structural flexibility. 

INTRODUCTION
Motivated by problems arising in the precision pointing of imaging satellites for 

non-proliferation and environmental monitoring applications, there is renewed interest in the prob- 
lem of rapid large angle maneuvers followed by precision pointing/tracking of landmarks from 
near-earth orbits.  Pointing and tracking tolerances for these imaging systems are on the order of 
microradians.  There are many contributors to pointing error, but the vibrational disturbances in- 
duced by the effects of rapid maneuvers on flexible solar array structures are one major problem.  
In previous studies 1,2  it has been shown that, assuming sufficient sensor and actuator bandwidth, 
reaction wheel actuators can effectively control both the rigid body maneuvers and 
fine-pointing/vibration arrest; however, the key issue is to perform the large maneuvers in a 
torque-shaped fashion that minimizes disturbances of the flexural motion.  Judicious torque shap- 
ing must be coupled with stabilizing feedback control to null tracking and fine pointing errors; this 
is the approach pursued herein.  We seek to extend the developments of Ref. 1,2 to establish a glo- 
bally asymptotically stable nonlinear control design approach of broad applicability to general 
three-dimensional pointing and tracking problems.________________________________________________
* Graduate Research Assistant, Aerospace Engineering Department, Texas A&M University, College Station TX 77843.
† Research Engineer at Sandia National Laboratories, Albuquerque, NM 87185.
‡ George Eppright Chair, Professor of Aerospace Engineering, Aerospace Engineering Department, Texas A&M University, 

College Station TX 77843, Fellow AAS.
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In recent papers 3-9 , the utility of a new set of orientation parameters (the modified Rodrigues 
parameters, MRPs) has been studied.  It has been shown that these parameters have some outstand- 
ing properties.  They appear to be the canonical three parameter set, owing to the following remark- 
able truths:

• The nonsingular motion range encompasses ±360 degrees, although the norm of the 
parameters tend to infinity as ±360 degrees rotations about any axis is approached.

• For rotations within ±180 degrees about any axis, the parameters are bounded by a 
norm of +1.

• The kinematic differential equations are quadratic nonlinear functions of the MRPs, 
and have no singular points for rotations less than ±360 degrees.

• The transformation from orthogonal components of angular velocity to the time de- 
rivatives of the MRPs involves a coefficient matrix with orthogonal rows and col- 
umns, thus the inverse is analytic.

• The MRPs are non unique, there are two trajectories corresponding exactly to a 
given physical motion.  One of the trajectories at any instant of time lies within and 
the other lies outside a unit sphere.  Both trajectories satisfy the same differential 
equations, only differing in initial conditions.

Regarding the last property, it is easy to establish the transformation between the correspond- 
ing points on the two trajectories, and this fact can be utilized to establish, for the first time, a glo- 
bally nonsingular three parameter description of a generally tumbling  rigid body.

These properties, together with recent results from Lyapunov control law design methods 1,2 , 
enable the formulation of a most attractive and effective family of control laws for spacecraft atti- 
tude maneuvers and fine pointing.  The control law design methodology is important in its own 
right, as distinct from the use of the MRPs as orientation coordinates. In particular, however, this 
control law design approach is especially attractive for this coordinate choice. The feedback law is 
dominated by linear terms for this approach with a judicious choice of a logarithmic Lyapunov 
function 5 .  The analytical results presented herein are illustrated through a simulation study which 
supports the efficacy and practicality of the concepts introduced.

FORMULATION

The Equations Of Motion For A Rigid Spacecraft
The spacecraft is assumed to have three reaction wheels with distinct inertia aligned with the 

three body axes to control its attitude.  Each reaction wheel inertia about the respective spin axis is 
given by J i .  Let the inertia matrix ℑ contain the spacecraft and the transverse reaction wheel iner- 
tia and let the matrix J be defined as

















J
J

J
J =

3
2

1

00
00
00

 (1)

Let ω NB  be the spacecraft body angular velocity vector relative to an inertial frame N and let 
the Ω vector contain the angular velocities of each reaction wheel.  The rotational equations of 
motion can be written as 1 

[ ] [ ] ( ) +−ω+Ωω−ωℑω−=
ω

ℑ fuJ
td

d
NBNBNBNB

NB ˜˜  (2)

where the control vector u  also satisfies the reaction axial wheel equation of motion:

( )td
d

td
dJu ω

+
Ω

= NB  (3)

The tilde matrix [ ]ω̃  is defined as
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[ ] [ ]ωω−
ω−ω
ωω−

=ω
0

0
0

˜
12

13
23

 (4)

and the vector f  is the sum of all external torques acting on the spacecraft.  These torques are 
in part due to aerodynamic and solar radiation drag and are usually considered to be very small 
compared to the internal torques being applied. 

Attitude Coordinates
All spacecraft orientations are described using sets of modified Rodrigues parameters 4-9 .  

They are a minimal coordinate representation of a rigid body attitude with several useful attrib- 
utes.  They can be defined in terms of the Euler parameters (quaternions) as

=
β+

β
=σ i

i 3,2,1
1 0

i  (5)

or in terms of the principal rotation axis ê  and the principal rotation angle φ  as
φ⋅=σ e 4tanˆ  (6)

Obviously they go singular at a principal rotation of ±360° where −→β0 1 .  What makes 
this set very attractive is that this singularity can be completely avoided by making use of the fact 
that the modified Rodrigues parameters are not unique.  Notice that reversing the sign of the β’s in 
Eq. (5) generates a second set of σ’s.  The alternate set is called the “shadow set” 4 , and goes singu- 
lar at zero rotations and is very well behaved around the ±360° rotations.  Hence, if a singularity is 
approached with the original set, one can switch the attitude description to the “shadow set” and 
avoid the singularity at the cost of having a discontinuity at the switching point.  The transforma- 
tion between “original” and “shadow” set is 4,6 

=σσσ−=σ T
ii

S i 3,2,1  (7)

Keep in mind that the choice in distinguishing “original” and “shadow” sets is purely arbitrary.  
Both sets describe the same physical orientation.  In this study the switching condition was chosen 
to be =σσT 1 .  This causes the magnitude of the orientation vector to be bounded between 

| | 10 ≤σ≤  .  In terms of a principal orientation angle this means that the angle is restricted to be 
within °+≤φ≤°− 081081  .  Note that this combined set of “original” and “shadow” parame- 
ters implicitly “knows” the shortest way back to the origin 4 .  Lengthy principal rotations of more 
than 180° are avoided.  This will be useful when designing a robust attitude feedback control law.  
Also note from Eq. (6) that for the range °+≤φ≤°− 081081   the modified Rodrigues parame- 
ters behave very linearly.  The differential kinematic equation of motion in terms of the modified 
Rodrigues parameters is given below 4,5 .  Note that the equation only contains second order polyno- 
mial nonlinearities in σ .

( ) [ ][ ]I
td

d
ωσσ+σ+

σσ−
=

σ ˜
2

1
2
1 T

T
 (8)

Eq. (8) holds for both the “original” and the “shadow” set.  This means that the derivative is 
well defined even at the switching point.  The direction cosine matrix in term of the modified Ro- 
drigues parameters is 4,5 
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( )

( )
( )
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




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

C
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Σ+σ+σ−σ−Σσ+σσΣσ+σσ

Σσ+σσΣ+σ−σ+σ−Σσ−σσ

Σσ−σσΣσ+σσΣ+σ−σ−σ
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2
2

1
2

132231

132
2

3
2

2
2
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3
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2
2

1
2

2  (9)
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OPEN-LOOP DYNAMICS

Rest-to-Rest Principal Rotation Reference Maneuver
Instead of doing a computationally expensive optimal control, all maneuvers performed will 

be about the principal axis of rotation.  This will allow real-time pre-computation of the reference 
maneuvers.  This solution is close to the optimal solution and much faster to compute. Euler’s prin- 
cipal rotation theorem states that any reference frame can be related to another reference frame 
through a single-axis rotation.  This theorem allows any three-dimensional rotation to be viewed as 
a single-axis rotation about the principal axis, as illustrated by the simple one-dimensional equa- 
tion shown below.

=θℑ¨ u (10)

While certain gyroscopic coupling nonlinearities must be accounted for, since the actual mo- 
tion will be fully three-dimensional, Eq. (10) provides a simple approach to design a reference tra- 
jectory.  Let N denote the inertial and R denote the open-loop reference frames.  The initial and 
final reference attitude can be established by the initial and final direction cosine matrices 

( )[ ]tNR 0   and ( )[ ]tNR f   in the sense
( ) ( )[ ] ( ) ( ) ( )[ ] ( )tntNRtrtntNRtr == fff , 000  (11a,b)

The rotation from the initial to the final position of the body axes is established by a direction 
cosine matrix ( )[ ]ttRR f , 0  , where

( ) ( )[ ] ( ) ( )[ ] ( )[ ] ( )[ ]tNRtNRttRRtrttRRtr == T
ffff ,,, 0000  (12a,b)

Euler’s Principal axis of rotation is determined by finding the eigenvector of ( )[ ]ttRR f , 0   
which corresponds to the eigenvalue +1; that is, we find the components { }lll 32,1 ,   of the unit 
vector satisfying

( )[ ]




 















 











== l
l
l
l

l
l
l

ttRR f ,
3
2
1

3
2
1

0  (13)

The principal rotation angle θf  can be found by extracting the diagonal elements from the 
( )[ ]ttRR f , 0   matrix 3 .  We limit our principal rotation angles to be within 0810 °≤θ≤°  , 

which is done automatically when using the inverse cosine function below.
( )[ ]( )( )−

=θ f
f 2

1,
acos

ttRRecart 0  (14)

The principal axis of rotation can also be found 1 , except near the zero and ±180° case, from 
the matrix elements of ( )[ ]ttRR f , 0  .





 











RRRR
RRRR
RRRR

l
−
−
−

θ
=

sin2
1

f 1221
3113
2332

 (15)

Taking the inverse kinematics viewpoint, we can prescribe a reference trajectory ( )θr t   as a 
rotation about the principal vector of ( )[ ]ttRR f , 0  .  For the reference trajectory to conform with 
the desired initial and final attitude, it is necessary that ( )θr t   satisfy the boundary conditions 

( ) =θr 00   and ( ) θ=θ ffr t  .
Using the reference principal angle ( )θr t   and the principal axis of rotation l  , we can define 

the reference orientation, angular velocity and angular acceleration as 

( )
( )

( ) ( ) ( ) ( )tlt
td

dtlttltp θ=
ω

θ=ω
θ

⋅= ¨,˙,
4

tan r
r

rr
r  (16a,b,c)

where ( )tp  is a modified Rodrigues parameter vector which parameterizes the direction co-
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sine matrix ( )[ ]ttRR f , 0  .  Given the above reference body angular velocity and acceleration and 
assuming no external torques, the reference control torque can be found using Eq. (2) with.

[ ] [ ] ( )J
td

du rrrrr
r

r ω+Ωω−ωℑω−
ω

ℑ−= ˜˜  (17)

Near-Minimum-Time Maneuver
The optimal control for a rigid body minimum time maneuver is a “bang-bang” type control.  

For a rest-to-rest maneuver through a principal angle θf  , the “bang-bang” control has the struc- 
ture:

( ) ( ) u
u

t
t

tngisutu
ℑ

=θ
θ

θ
=

θℑ
=−= xam

xam
xam

f

xam

f
f

f
xam ¨,¨

44
,

2
 

where θ̈ xam  and u xam  are one-dimensional quantities measured along the principal axis of ro- 
tation.

If we anticipate that the “bang-bang” control will excite significant vibration of the flexible de- 
grees of freedom, it is easy to smooth out the control switches using cubic splines and introduce 
“controllably sharp” torque switches using the smoothed “bang-bang” control shape 3 :

( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

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−
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α
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α
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2

,2321

2
,1
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f
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f

f

f
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xamr

ttt
t
tt

t
tt

ttttt

tt
t

tt
t
tt

t
tt

tt
t

tt

tt
t
t

t
t

t

3
3

2
3

32

21
1

2
1

1

2

 (18)

where α  controls the sharpness of the switches.  =α 0  generates the “bang-bang” instanta- 
neous torque switches and α = 0.25 generates the smoothest member of the family.  After carry- 
ing out the double integration, the final maneuver time is found in terms of the principal angle ro- 
tated θf  , the maximum principal angular acceleration θ̈ xam   and the smoothing factor α .

u.t xam
xam

xam

f
f ℑ

=θ
α+α−θ

θ
= ¨,

21
1

¨
4

2
5
2  (19a,b)

The resulting principal angles and angular velocities can be seen in Figure 1, where =α 10.  
was chosen.  Obviously the maximum increase of maneuver time ( for α =0.25) is less than 38%, 
compared to the “bang-bang” ( =α 0 ) case.  For a flexible spacecraft, due to the decrease in vi- 
brational energy, the actual maneuver time (including vibration settling time) is typically de- 
creased significantly by using the smoothed “bang-bang” control.  Even though we are not specifi- 
cally considering the flexible spacecraft case at this point, we can implicitly consider flexibility by 
eliminating sharp torque switches which can be anticipated to “ring” the structure.  Qualitatively, a 
sufficiently smooth and low amplitude torque history will make the most flexible structure behave 
more like a rigid structure and make the corresponding reference trajectory “more trackable."  
These statements can be made quite rigorously, see for example 1,2 .  For well-chosen reference ma- 
neuvers and tracking law design, maneuver times for flexible spacecraft can usually be kept within 
10 to 20% of the theoretical rigid body minimum maneuver times.
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Figure 1  A Sample Torque Shaped Family of Near “Bang-Bang” Maneuvers

Near-Minimum-Fuel Maneuver
The torque time history of a optimal rigid body minimum-fuel maneuver consists of a sharp 

initial impulse to get the spacecraft rotating, a long coasting period, followed by a sharp reverse 
impulse to arrest the motion.  Naturally, these sharp impulses would cause havoc for a highly flex- 
ible structure.  Therefore a smoothed “bang-off-bang” control is chosen similar to the 
near-minimum-time maneuver presented previously.
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The instantaneous control switches are replaced by cubic splines with the rise and decay shape 
having controlled sharpness.  Hence two torque smoothing factors α1  and α2  are used.  The fac-
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tor α1  determines the rise or fall time from or to the maximum torque to zero torque as a percent- 
age of the total maneuver time.  The factor α2  determines how long maximum torque is applied, 
also as a fraction of the total maneuver time.  The amount of fuel used is chosen implicitly by spec- 
ifying the two parameters α1  and α2  . 

The total maneuver time for the smoothed “bang-off-bang” control is found again by twice in- 
tegrating the one dimensional principal rotation equation.

u.t xam
xam

xam

f
f ℑ

=θ
α−αα−α−α+αθ

θ
= ¨,

32
1

¨
4

2
2

211
2

21
 (21a,b)

The sample time history of principal angular acceleration, velocity and the principal angle for 
a smoothed “bang-off-bang” control is shown in Figure 2, where =α=α 21 10.  were chosen.
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Figure 2  A Sample Torque-Shaped Family of Near “Bang-Off-Bang” Maneuvers

Incorporating Angular Velocity At The Final Maneuver Time
The principal rotation maneuver presented only applies to a rest-to-rest maneuver.  To track a 

landmark, it is desired that the body have a certain angular velocity ( )ω tf  at the end of the ma- 
neuver.  This allows the spacecraft to keep the sensors pointing toward a location on Earth for a fi- 
nite duration of time and essentially achieve gross “motion compensation" for smear-free imaging.  
To accomplish this, the reference motion will be described relative to a moving target frame, not 
the inertial frame.  Three coordinate frames are used:

R: open-loop reference coordinate axes ( or follows the desired trajectory)
T: target motion coordinate frame
N: inertial coordinate frame
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Let ω NT  be the body angular velocity vector of the target frame.  In order to match up with 
our desired motion, the target frame T must have the following constraints.

( ) ( ) ( )ω=ω=ω ffNTNT 00 tt  (22a,b)

( )[ ] ( )[ ]= tNRtNT ff  (23)

Since the rest-to-rest principal rotation is described relative to the T frame, these conditions in- 
sure that the actual reference motion will have zero inertial angular velocity at t=0, and the desired 
orientation and angular velocity at the maneuver end. 

Besides these three conditions any target motion can be chosen.  The target motion used in this 
study was chosen to be a pure spin rotation about the ( )ω tf  axis, since an analytic solution exists 
for this trajectory.  The orientation of the T frame at any time t is given as

( )[ ] ( )[ ] ( )[ ]= tNTttTTtNT , ff  (24)

where the matrix ( )[ ]ttTT , f  describes the pure spin motion away from the final target posi- 
tion.  Let the modified Rodrigues parameter vector pT  parameterize the ( )[ ]ttTT , f   matrix with 
the condition that ( )tp fT = 0 .  The unit vector l̂T  is the principal axis of the target motion and 
is defined as

( )
( )| |t
t

l̂
f

f
T ω

ω
=  (25)

and θT  is the target principal rotation angle.  The target motion ( )tpT   is then defined as

( ) ltp T
TT

θ
⋅=

4
tanˆ  (26)

where ( ) =θ fT t 0 .  To match initial and final conditions of the target angular velocity a 
cubic spline was used.  By choice, this will result in the reference motion having no angular accel- 
eration at the maneuver end, but this is not a requirement of the method itself.  Any target angular 
velocity history that matches the conditions in Eqs. (22a,b) could have been used.  The target angu- 
lar velocity and acceleration are defined as:

( ) ( )| |( ) ( ) ⋅−ω=ω T
ff

fNTNT l
t
t

t
ttt

2
ˆ23  (27)

( ) ( )| | ( )( ) l
t
t

t
t

t
t

td
td

⋅−
ω

=
ω

T
fff

fNTNT ˆ66
2

 (28)

After once integrating Eq. (27) the target principal rotation angle is found.

( )
| |









≤≤−−
ω

=θ f
f

ff

NT
T ttt

t
t
tt

t
t 0

34
3

2 22
 (29)

The relative position of the reference frame to the target frame is given by the matrix ( )[ ]tTR   
which is found through

( )[ ] ( )[ ] ( )[ ]= tNTtNRtTR T  (30)

At the times t0  and tf  the relative orientations are defined as
( )[ ] ( )[ ] ( )[ ]= tNTtNRtTR 000

T  (31)

( )[ ] ( )[ ] ( )[ ] == ItNTtNRtTR T
fff  (32)

Eq. (12b) is now rewritten as
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( )[ ] ( )[ ] ( )[ ] ( )[ ]== tTRtTRtTRttRR TT
ff , 000  (33)

The matrix ( )[ ]ttRR f , 0  defined in Eq. (33) is used to define the rest-to-rest principal rotation 
motion for the case where the reference motion is supposed to have a final angular velocity.

Given the maneuver time tf  , we would be able to accurately describe the complete target mo- 
tion.  To find tf  though, we need to know the ( )[ ]ttRR f , 0  matrix first, which itself depends on 
the target motion.  Since we only know the final, not the initial target position in advance, no 
closed form solution is available to find tf  .  An iterative method was used to find the maneuver 
time.  The initial estimate for tf  was found by assuming complete rest-to-rest motion.  Using this 
tf  a new ( )[ ]ttRR f , 0   matrix was found and with it a new tf  .  This method converged very 
quickly if half of the difference between old and new tf  was added to the old tf  .

The matrix ( )[ ]tTR   is given as
( )[ ] ( )[ ] ( )[ ]= tTRttRRtTR , 00  (34)

where the ( )[ ]tTR 0  matrix was defined in Eq. (31).  The desired reference motion relative to 
the inertial frame is found from Eq. (30) to be

( )[ ] ( )[ ] ( )[ ]= tNTtTRtNR  (35)

where the target motion ( )[ ]tNT  is given in Eq. (24).
The angular velocity and acceleration expressed in Eq. (16b,c) are now expressed relative to 

the target frame motion.  Hence, let us relabel these quantities as expressions relative to the target 
frame as

( ) ( )
( ) ( )ω

=
ω

ω=ω rTR
R

rTR
R

td
td

td
td

tt ,  (36)

where the superscripts indicate in which coordinate frame the vectors are written.  The refer- 
ence angular velocity expressed relative to the inertial frame is given as

[ ]ω+ω=ω NT
T

TR
R

NR
R TR  (37)

To find the reference angular acceleration relative to the inertial frame, the inertial derivative 
of Eq. (37) is taken.

( ) ( ) [ ] ( )

[ ] [ ][ ]TR
td

d
TR

td
d

td
d

td
d

td
d

ωω−
ω

+
ω

=

ω=ωω+ω=ω

NT
T

TR
RNT

T
TR

R

R
NR

R
NR

R
NR

R
NR

RN
NR

R

˜

˜
 (38)

For the limiting case where the target frame has zero motion, Eqs. (37) and (38) collapse back 
to the rest-to-rest case given in Eqs. (16b,c).

CLOSED-LOOP DYNAMICS

Lyapunov Method To Design Nonlinear Tracking Control Law
A nonlinear tracking control law is developed to assure that the reference trajectory is asymp- 

totically tracked in the absence of external torques.  One advantage of this nonlinear control law 
over other control laws is that it is globally, asymptotically stabilizing assuming, of course that 
there are no modeling errors present.  Secondly, through the choice of the attitude coordinates, this 
control law will bring a body, which has tumbled beyond ±180° from the reference motion, back 
to the reference trajectory through the shortest angular distance.  The three coordinate frames used 
are:

B: actual spacecraft coordinate frame
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R: reference coordinate axes
N: inertial coordinate frame
Let the [BR] matrix define the relative attitude of the spacecraft to the reference frame.  It is re- 

lated to [BN(t)] as
[ ] [ ][ ]= NRNBRB T  (39)

Let the modified Rodrigues parameter vector σ  parameterize the direction cosine matrix 
[BR].  This vector defines the orientation error of the spacecraft relative to the reference frame; 
achieving →σ 0 assumes asymptotic tracking of the reference motion.  The extradition of the σ 
vector from the [BR] matrix is easily accomplished by use of the β0  Euler parameter.  The com- 
plete transformation is given below.

[ ]( )

( )

( )

( )14

14

14

12

β+β
−

=σ

β+β
−

=σ

β+β
−

=σ

++=β

00

1221
3

00

3113
2

00

2332
1

0

RBRB

RBRB

RBRB
RBecart

 (40)

By assuring that ≥β0 0 we are guaranteed to have a modified Rodrigues vector 4  with 
| | ≤σ 1 .  By using the modified Rodrigues parameters to describe the error in orientation, the 
feedback control law will inherently know the “shortest way” back to the reference frame.  As an 
example, if the spacecraft has rotated a principal rotation of +200° off from the reference condi- 
tion, the control law will know to let the spacecraft complete the rotation.  It will perform a +160° 
principal rotation instead of a -200° maneuver, bringing the spacecraft back to the reference state 
“the short way round” 4 .

Obviously, it is desired to make the body frame track the reference frame, and thus the objec- 
tive of the tracking control law should be to make any departure motion σ  vanish.  Let all the fol- 
lowing vectors be written in the body frame B, unless noted otherwise.  The error in body angular 
velocity is given as

[ ]ω−ω=ωδ NR
R

NB RB  (41)

The reference body angular velocity vector must be transferred into the body frame, since it is 
only given in the reference frame R.  The error in body angular acceleration is found by taking the 
derivative of Eq. (41).

( ) ( ) [ ] ( ) [ ][ ]RB
td
dRB

td
d

td
d

ωω+ω−ω=ωδ NR
R

NB
N

NR
N

NB
N ˜  (42)

The Lyapunov function for the feedback control law is defined to be

( )KV σσ++ωδℑωδ= 1log2
2
1 TT  (43)

where K is a scalar gain for the attitude error feedback.  Using the logarithm of the departure 
motion will result in a feedback control law which is linear in σ  4,5 .  As Tsiotras points out in Ref. 
5, this remarkable fact occurs because ( )( )tdd σωδ=σσ+1log2 TT  .To guarantee global 
asymptotic stability, let us verify that the first time derivative of V is negative definite.

( ) K
td
dV̇ σωδ⋅+ωδℑωδ= TNT  (44)

Substituting Eqs. (42) and (2) into Eq. (44) yields
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[ ] [ ] ( )(
[ ] ( ) [ ][ ] )KRB

td
dRB

fuJV

˜

˜˜˙

σ+ωωℑ+ωℑ−

+−ω+Ωω−ωℑω−ωδ=

NR
R

NB
N

NR

NBNBNBNB
T

 (45)

After defining the control torque vector u to be

[ ] ( ) [ ][ ]( )
[ ] [ ] ( ) PKJ

RB
td
dRBu

BB
NB

BB
NB

B
NB

B
NB

B

NR
R

NB
N

NR
RB

ωδ+σ+ω+Ωω−ωℑω−

ωω−ωℑ−=

˜˜

˜
 (46)

where the matrix P is a positive definite angular velocity feedback matrix.  For clarity, all vec- 
tors were labeled with their corresponding coordinate frame.  Note that the control torque is domi- 
nated by linear terms in the attitude error σ and the angular velocity error ωδ  .  After substituting 
u into Eq. (45) V̇  is shown to be 

fPV̇ ωδ+ωδωδ−= TT  (47)

The above V̇  does not guarantee any stability if external torques are present.  All it says is that 
ωδ  will remain bounded.   After backsubstituting the control torque in Eq. (46) into the equations 

of motion and making some simplifications, the following closed loop error dynamics are found.  
Let the ′ symbol represent the inertial derivative operator.

( )−ωδ+σℑ−=′ωδ −1 fPK  (48)

( ) [ ][ ] ( ) ωδσ=ωδσσ+σ+
σσ−

=′σ ˜
2

1
2
1 gI T

T
 (49)

The two first order differential equations can be combined into one second order equation.  As- 
suming a constant external torque yields

( ) =′=ωδσ+′ωδ+′′ωδℑ fgKP 0 (50)

Except for the ( )g σ  term, this equations looks like the standard unforced vibration equation.  
Since ∈σ L∞  the function ( )g σ  will be bounded.  Because Eq. (50) has a positive damping term 
and ωδ  remains bounded, ′′ωδ  and ′ωδ  will decay to zero as time goes to infinity.  The ωδ  that 
the system will settle on is determined by

( )gK =ωδσ ∞ 0 (51)

Since the ( )g σ  matrix is always invertible 6 , ωδ ∞  will decay to the zero vector.  To find the at- 
titude tracking error, take the limit of Eq. (48) as time goes to infinity.

( ) ( )limlim
∞→∞→ tt

+ωδ−σ−=′ωδℑ fPK  (52)

Because the body angular velocity and acceleration error will decay to zero, the attitude error 
will converge to the finite offset

lim
∞→t

=σ
K
f  (53)

Note that in the absence of external torques the attitude error decays to zero, making the track- 
ing error dynamics globally asymptotically stable!  In the presence of a disturbing external torque, 
the body angular velocity errors still decays to zero.  However, the attitude will converge to a finite 
offset shown above, making the system Lagrange stable or bounded.  Since the external torques en- 
countered are typically very small, this attitude offset is usually also very small.  I can be reduced 
by choosing a larger attitude feedback gain K or by implementing an adaptive update scheme to es- 
timate and compensate for the actual external torque.
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Control Feedback Gain Selection
Assuming zero external torques, the closed-loop dynamics are found by substituting Eqs. (2) 

and (42) into Eq. (46).  The resulting differential equation only depends on the attitude error σ  
and the body angular velocity error ωδ  . 

( ) PK
td
d

ωδℑ−σℑ⋅−=ωδ N −− 11  (54)

Note that the differential equation for ωδ   is linear without making any approximations.  The 
nonlinearity of the closed-loop dynamics come in through the coupling with σ .  If =σ 0 , then 
the poles of Eq. (54) could be chosen arbitrarily.  The differential equation for σ depends quadrati- 
cally on σ .   After linearizing Eq. (49) about =σ 0 , the following approximation is obtained

td
d ωδ

≈
σ

4
 (55)

Remember that the modified Rodrigues parameters act like angles over four.  This fact is vis- 
ible again in the above approximation.  Because of this, the linearization using modified Ro- 
drigues parameters will be valid for twice the rotation range compared to the classical Rodrigues 
parameters, and four times the range over the most attractive set of Euler angles.  After combining 
Eqs. (54) and (55), the following closed-loop error dynamics are found:

( )

( )



















[ ][ ]ωδσℑ−ℑ⋅−
=

ωδ

σ

PK
I

td
d
td
d

N

N

−−

0
11

4
1

 (56)

Given an arbitrary inertia matrix ℑ , a root-locus method could be used to find the poles of 
Eq. (56).  The roots cannot be placed arbitrarily because K is only a scalar gain.  If the inertia ma- 
trix ℑ and the angular velocity feedback matrix P are chosen to be diagonal matrices, then Eq. 
(56) can be decoupled into three sets of two equations

[ ]






[ ] =ωδ
σ

−−
=

ωδ
σ 3,2,1

0
˙

˙

ℑℑ i
i

pKi
i 4

1

i
i

i

i  (57)

whose roots can be solved explicitly as

( )






 ( )









ℑ
+

ℑ
−−

ℑ
−=λ

ℑ
+

ℑ
−+

ℑ
−=λ

2
1

2
1 pKpdnapKp

i

i

ii

i

i

i

ii

i 22
 (58)

Note that the only approximations made in the above analysis are the linearization of Eq. (49) 
and the assumption of a diagonal inertia matrix ℑ .  Since the linearization of the modified Ro- 
drigues parameters are valid for four times the rotational range of the Euler angles, and the off di- 
agonal terms in the inertia matrix are usually very small compared to the diagonal terms, this line- 
arization will typically predict the dynamics of the nonlinear system for moderately large tracking 
errors.

Figure 3 shows the root-locus plot of Eq. (58).  A separate pi  can be chosen for each body 
axis, but only one attitude error feedback gain K can be chosen.
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Figure 3  Root-Locus Plot of the Decoupled, Linearized Error Dynamics

Assuming that the closed-loop dynamics will be slightly under-damped, we can write the angu- 
lar velocity feedback gains pi  in term of the controller decay time constants Tc  .

i
T

p
c

ii =ℑ= 3,2,12ln2  (59)

The scalar attitude feedback gain K is still free to be chosen.  For the close-loop dynamics to 
be under-damped, the condition on K is

i
p

K =
ℑ

>
2

i

i 3,2,1  (60)

Note that both K and pi  determine whether the closed-loop dynamics are over-, critically-, or 
under-damped.  But if the system is under-damped, then only pi  determines how fast a state error 
will decay. On the other hand, the gain K influences the frequency of the oscillations ωci  .

( ) ( )( ) =
ℑ

+ωℑ=
ℑ

−
ℑ

=ω
i

i
ci

i

i

i
c ii 3,2,1

2
1 ipKpK 2

2
2

 (61a,b)

To avoid reaction wheel saturation, a method of control gain scheduling would be used 10 .

STATE ESTIMATION
The purpose of this nonlinear estimator is to cancel any measurements errors in the body atti- 

tude vector q (given in modified Rodrigues parameters) and the body angular velocity ω , even in 
the presence of an unmodeled external torque f  and a gyro rate bias b .  Let the measured states 
be denoted as Xm  , the estimated states as X tse  and the actual states as X .

















































b

q
X

b

q
X

b

q
X

tse

tse
tse

tse

m

m
m

m ω=ω=ω=  (62)

The rate gyro bias b is assumed to be constant for small time intervals, thus having the follow- 
ing kinematic equation

( )btd
d

= 0 (63)

Let the estimator error be defined as
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















b

q
XXe

∆
ω∆

∆
=−= tse  (64)

From Eqs. (2,8,63), the actual system dynamics can be written as

( ) ( )















duXFX

td
d

+ℑ−=
0

0

0

0
−1  (65)

where the F() function contains the dynamical system.  The angular acceleration d  due to the 
unmodeled external torques is defined as

fd ℑ= −1  (66)

and is assumed to have a known bound D satisfying dD ii ≥  .  If the bounds of the rate gyro 
bias error ∆b and of the angular acceleration due to external forces d  are known, then the follow- 
ing dynamics of the estimated state scan be shown to be asymptotically stable for arbitrary large 
estimated state attitude and angular velocity errors.

( )








































































bXXHE
E

ubXFX
td
d

+−−−ℑ−−=
ω

−
tsemtse

q

tsemtse
0

0

00

0

0

0
1  (67)

The estimator feedback gain matrix H is positive definite and partitioned as

















HHH
HHH
HHH

J =
332313
322212
312111

 

The vectors Eq  and Eω  are defined as 11  

[ ] [ ]( )( ) ( )∆⋅∆= qbHE iixamiq sgnabsmax 21  (68)

[ ] [ ]( )( ) ( )ω∆⋅+∆= DbHEω iiixami sgnabsmax 22  (69)

The asymptotic stability of Eq. (67) is proven with the Lyapunov function

eeV =
2
1 T  (70)

Let the measured states be broken up into the true states, the random white noise v and the 
rate bias components.








bvXXm ++=
0

0
 (71)

By enforcing the asymptotic stability requirement V 0˙ <  and by making use of Eqs. (64), (65) 
and (67), the following asymptotic stability condition is found.







( ) ( )( ) ( )

( ) eHebHbbHdE

bHEqvHXFbvXFe

TTT

q
TT

ω <∆∆−∆++ω∆−

∆+∆−+−∆−+
0

0

3322

21
 (72)

Note that since H is positive definite, the right-hand side (RHS) of Eq. (72) will always be 
greater than zero for e = 0 .  Assuming there is no measurement noise, no rate gyro bias and no 
unmodeled external torques, than the estimator dynamics in Eq. (67) is globally asymptotically 
stable.  We offer the following qualitative observations regarding tuning of the estimator.
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If an unmodeled external angular acceleration d  is present with a known bound D , then the 
estimator dynamics are still stable, since the ∆qT  term of the left-hand side (LHS) is guaranteed 
to be negative definite by the definition of Eq  . Stability is still guaranteed for any positive defi- 
nite H and any estimated attitude and angular velocity errors.

If a rate bias b is introduced with a bounded error ∆b , then H can no longer be arbitrarily 
small.  The first term of the LHS could be positive.  The estimator feedback gain matrix H must be 
chosen large enough such that eHeT  is always larger than the first term of the LHS.  The second, 
third and fourth term of the LHS are guaranteed to be negative definite by the definition of Eq  
and Eω  , and because H 33  is positive definite.

Once white measurement noise is introduced, the estimated states will not converge to the ac- 
tual states of course, but will oscillate about them.  While doing discrete sampling of the states at 
∆t intervals, the dominant noise term of the estimator dynamics is vH  .  The actual jump due to 
noise from one sample to another is bounded by tvH xam ∆  .  To further adjust the filter characteris- 
tics, the sampling time interval can be tuned.  The measurement noise also has a second degrading 
effect.  It may cause the sgn functions in Eqs. (68,69) to return an incorrect sign of ∆qi  and ω∆ i  .  
This will cause a secondary noise induced effect of the estimated states between samples, of the 
order of tEq∆  and tEω∆  respectively.  Again the filtering errors are controlled by choosing the 
sampling interval.

Under- and over-damped estimator dynamics were compared.  For a given decay time con- 
stant, the over-damped system was better able to cancel measurement noise than the under- 
damped system.  To assure that all the attitude and angular velocity measurement errors decay at 
the same rate, the estimator feedback matrix H was chosen to be of diagonal form.

















H
IH

IH
H ⋅

⋅
=

b

tse
tse

00
00
00

 (73)

Writing the estimator feedback gain H tse  in terms of an estimator error decay time constant 
we get

T
H

E
tse =

2ln  (74)

The estimator feedback gain Hb  can have a much larger decay time constant than H tse  , 
since the rate gyro bias is assumed to change very slowly.  Having a small Hb  helps in reducing 
the secondary noise effect for the rate gyro bias estimation.  In practice, we may use the above esti- 
mation algorithm to baseline a Kalman-Filter, or other linear state algorithm, appropriate for 
real-time on board implementation.

RESULTS
The following figures show the results of rigid body rotation simulation.  The body inertia ma- 

trix ℑ has only diagonal entries of 200 kgm 2 , 200 kgm 2  and 118 kgm 2  corresponding to the first, 
second and third body axis.  The spacecraft has three reaction wheels aligned with the body axis 
whose inertia about the rotation axis are 0.00955 kgm 2 , 0.1240 kgm 2  and 0.00955 kgm 2  respec- 
tively.  The maneuver takes the spacecraft (in 3-2-1 Euler angles) from (-4°,-55°,4°) to 
(4°,55°,-4°).  The rotation is mainly about the pitch axis with some slight yawing and rolling.  The 
craft starts out with zero angular velocity and is required to have a final angular velocity of -1°/s 
about the pitch axis at the end of the maneuver.  The error in initial attitude and angular velocity is 
(-0.05°,0.8°,0.05°) and (-0.025°/s,0.1°/s,0.025°/s).

The feedback control law was chosen to have a time constant T c  of 4 seconds and an attitude 
feedback gain K of 44.  This results in the feedback response in the pitch and yaw axis having a 
damped frequency of 9.05 °/s, and the roll axis having damped frequency of 14.4 °/s.  The estima-
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tor time constant T E  was set to be 0.4 seconds, an order of magnitude faster than T c .  The initial es- 
timated 3-2-1 Euler angles were (-4.1°,-55.5°,3.95°).  The attitude noise measurements were sub- 
jected to random noise of the magnitude of 4e-5 (given in MRP).  The initial estimated body angu- 
lar velocities were (-0.02°/s,0.15°/s,0.03°/s).  The angular velocity measurement noise level was 
set to 5e-5 °/s. 
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Figure 4  Open- and Closed-Loop Attitude for 2nd Body Axis
The total maneuver time was 104.09 seconds.  Figures 4 and 5 show the attitude time history 

in MRP space.  The closed-loop motion accurately tracks the open-loop trajectory.  Figure 4 shows 
the large pitching maneuver.  Since a final negative angular velocity is required about the 2nd body 
axis, the craft has to rotate beyond the target attitude and return to it with the desired angular veloc- 
ity.  The open-loop maneuver designed in this paper performs this task in a very smooth and 
near-optimum fashion.
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Figure 5  Open- and Closed-Loop Attitude for 1st and 3rd Body Axis

Figures 6 and 7 show the time history of the angular velocities.  The open-loop maneuver cor- 
rectly ends with a zero angular velocity about the 1st and 3rd body axis, and with -1°/s about the 
second body axis with no angular acceleration.  If a final angular acceleration is required, this 
could easily be incorporated into the target trajectory used to generate the open-loop motion.

The initial state errors are canceled by the feedback control law and the open-loop trajectory is 
tracked accurately.
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Figure 6  Open- and Closed-Loop Body Angular Velocity for 2nd Body Axis
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Figure 7  Open- and Closed-Loop Body Angular Velocity for 1st and 3rd Body Axis

Figures 8 and 9 show the time history of the internal control torque exerted onto the three reac- 
tion wheels.  The maximum torque encountered is 0.3108 Nm by the second reaction wheel.  The 
measurement noise is not visible in Figure 4 because of the relatively high torques.  The 
closed-loop time history appears smooth and asymptotically approaches the open-loop torque.

0.40
0.30
0.20
0.10
0.00

-0.10
-0.20
-0.30
-0.40

co
nt

ro
l t

or
qu

e 
[N

m
]

1101009080706050403020100
time [s]

axis 2 (open loop)

axis 2 (closed loop)

 
Figure 8  Open- and Closed-LoopControl Torque for 2nd Reaction Wheel

The measurement noise is visible for the 1st and 3rd reaction wheels, since they are only exert- 
ing relatively low torques.  But even here the noise is small compared to the torques and does not 
pose any fine pointing problems.  The closed-loop motion still asymptotically approaches the 
open-loop control torque.  
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Figure 9  Open- and Closed-Loop Control Torque for 1st and 3rd Reaction Wheels

Figure 10 shows the time history of the attitude tracking error between the estimated states 
and the open-loop states.  The linearization used to find the controller feedback gains very accu- 
rately models the actual nonlinear feedback dynamics.  The decay time constants and the damped 
frequencies match with the simulation very well. 

4e-03

3e-03

2e-03

1e-03

0e+00

-1e-03

at
tit

ud
e 

er
ro

r [
M

R
P]

4035302520151050
time [s]

axis 3
axis 2
axis 1

 
Figure 10  Closed-Loop Attitude Tracking Error

Figure 11 shows the time history of the angular velocity tracking error.  Similar observations 
as with the attitude tracking error can be made.  In both cases the initial state error is asymptoti- 
cally canceled.  The error is effectively gone after about 20 seconds.  The measurement noise lev- 
els are too low to be visible on these figures.
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Figure 11  Closed-Loop Body Angular Velocity Tracking Error
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Figures 12 and 13 show the time histories of the estimator tracking error between the esti- 
mated states and the actual states.  Again the predicted estimator responses matches very well with 
the actual nonlinear response.  The estimator dynamics are over-damped and errors decay an order 
of magnitude faster than the controller dynamics.  The errors are effectively gone after about 2 sec- 
onds.
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Figure 12  Estimator Attitude Tracking Error
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Figure 13  Estimator Body Angular Velocity Tracking Error

CONCLUSIONS
A nonlinear feedback control approach has been developed for large three-dimensional rota- 

tional maneuvers.  A unique coordinate choice and the use of Lyapunov control design methods 
are the key new ingredients blended to produce these results.  To avoid excessive “ringing” of the 
structure, the near-minimum-time and near-minimum-fuel reference control torques were 
smoothed with cubic splines. 

The feedforward/feedback control law presented is globally asymptotically stable without, and 
Lagrange stable with bounded external torques. The nonlinear estimator has proven Lyapunov 
stability, and asymptotic stability in the absence of measurement noise.  It is also able to compen- 
sate for unmodeled external torques and rate gyro biases.

The actual closed-loop controller and estimator feedback dynamics matched very well with 
the dynamics predicted in the feedback gain selection sections, since only the attitude dynamics 
had to be linearized.  Because of the choice of attitude coordinates, the modified Rodrigues param- 
eters, this linearization is valid for a range of attitude errors four times larger than if Euler angles 
were used, and two times larger than if the classical Rodrigues parameters were used.
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The maneuver demonstrated was able to track the open-loop trajectory asymptotically and can- 
cel any initial state or estimator errors.
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