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Abstract

In this paper we generalize previous results on attitude representations using Cayley transforms. First, we show
that proper orthogonal matrices, that naturally represent rotations, can be generated by a form of “conformal”
analytic mappings in the space of matrices. Using a natural parallelism between the elements of the complex plane
and the real matrices, we generate higher order Cayley transforms and discuss some of their properties. These
higher order Cayley transforms are shown to parameterize proper orthogonal matrices into higher order “Rodrigues”

parameters.

1 Introduction

The question of the proper choice of coordinates for de-
scribing rotations has a very long and exciting history. Start-
ing with the work of Euler and Hamilton a series of differ-
ent parameterizations were introduced by several researchers
during the past hundred years. We will not delve into these
results here since they can be found in any good textbook
on attitude representations'>. We just mention the work of
Stuelpnagel in this area®, as well as the recent survey article
by Shuster” in the special issue in Ref. 5.

In this paper we take a slightly more abstract point of
view than the previous references. Our main objective is to
“unify” some of the existing results in the area of attitude
representations. It is hoped that this global view will add to
the current understanding of attitude representations. Our
motivation stems mainly from the recent results on second
order Rodrigues parameters®®. In particular, in Ref. 8 it
was shown that these (Modified) Rodrigues parameters can
be generated by a second order Cayley transform, the same
way the classical Cayley-Rodrigues parameters are generated
by the Cayley transform'®. Viewing the Cayley transform
as a bilinear transformation which maps the space of skew-
symmetric matrices onto the space of proper orthogonal ma-
trices (and vice versa) one is naturally led to the notion of
conformal mappings (a generalization of the bilinear trans-
formation) from the imaginary axis onto the unit circle (and
vice versa). We seek to generalize these conformal map-
pings to matrix spaces. Drawing on the insightful statements
by Halmos'® we show that such an intuitive generalization
is indeed possible. We are therefore able to generate the
Euler parameters, the Rodrigues parameters and the Modi-
fied Rodrigues parameters as special cases of such conformal
mappings. Higher order Rodrigues parameters can be easily
constructed using this approach, although their relevance to
applications is still to be determined. We explicitly develop
the third and fourth order “Rodrigues parameters” in order
to illustrate potential advantages as well as difficulties. The
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question of kinematics of these higher order “Rodrigues pa-
rameters” is briefly discussed in the last section of the paper.
A more in-depth discussion of the kinematics is left for fu-
ture investigation. The presentation and derivations of the
results are kept as formal as possible.

The first part of the paper reviews the standard Cayley
transform and it generalizes this transform to higher orders.
There is no restriction on the dimension of the matrices in-
volved, i.e., the results hold for n x n matrices. In the second
part of the paper we apply these results to the case of interest
to attitude dynamicists, i.e., the case n = 3.

Some notation and terminology is necessary in order to
keep the discussion clear and terse. We use the standard
mathematical notation SO(n) to denote the space of proper
orthogonal matrices of dimension n x n. The space of or-
thogonal matrices is denoted by O(n) and it is the set of all
(invertible) matrices such that ATA = AA” = I. Clearly,
if A € O(n) then det(A) = +1. The qualifier “proper” then
refers to those orthogonal matrices with qpositive determi-
nant, that is, SO(n) = {4 € R"*™ : AA I, det(A) =
+1}. These matrices represent rotations, while the or-
thogonal matrices with determinant -1 involve, in general,
reflections''. The space SO(n) (as well as O(n)) forms a
group. We will see later on that one can define a differential
equation for elements of SO(n). The solutions of this differ-
ential equation form trajectories (one-parameter subgroups)
on SO(n) and this differentiable structure makes SO(n) ac-
tually a Lie group (i.e. a group with a differentiable manifold
structure). The space of n x n skew-symmetric matrices will
be denoted by so(n) That is, so(n) = {4 € R"*" : A =
—AT}. The space so(n) is actually the tangent vector space
to SO(n) at the identity'!. Finally, following the standard
mathematical language, we use the symbols C, R, & = iR
and S! to denote the complex numbers, the real numbers,
the imaginary numbers, and the numbers with absolute value
one (i.e., the numbers on the unit circle), respectively. The
symbol sp(-) denotes the spectrum of a matrix, i.e., the set
of its eigenvalues.

2 The Cayley Transform

Cayley’s transformation parameterizes a proper orthogo-
nal matrix C as a function of a skew-symmetric matrix Q.



It is, therefore, a map 1 : so(n) — SO(n). The classical
Cayley transform® is given by

C=4@Q=I-QU+Q)'=I+Q)7'(I-Q) ()

Since @ is skew-symmetric all its eigenvalues are pure imag-
inary. Thus, all the eigenvalues of the matrix I + @ are
nonzero and the inverse in Eq. (1) exists. The Cayley trans-
form is therefore well-defined for all skew-symmetric matri-
ces. The inverse transformation is identical and is given by

Q=¢""(C)=4(C) I-oa+o)™
(I+0)"'(1-0)

= ()
The inverse transformation is not defined when C' has an
eigenvalue at —1, because in this case det(I + C) = 0. Since
C is orthogonal, all its eigenvalues lie on the unit circle S* =
{(z1,22) € R? : 2} + 23 = 1}. Therefore sp(C) C S*,
and the transformation in Eq. (2) requires that —1 ¢ sp(C).
One can easily show® that C € SO(n) if Q € so(n) and
thus, the Cayley transformation is injective (one-to-one) and
surjective (onto) between the set of skew-symmetric matrices
and the set of proper orthogonal matrices with no eigenvalue
at —1.

3 Cayley Transforms as Conformal
Mappings

The three most important subsets of the complex numbers
are the real numbers IR, the imaginary numbers S, and the
numbers with absolute value one (i.e., the numbers on the
unit circle S*.). Trivially, these sets are subsets of the com-
plex plane C. There is a very elegant analog between these
three subsets of the complex plane and the n x n matrices'?,
i.e., the elements of IR"*™. This analog can be easily un-
derstood and appreciated as follows: An elementary result
in matrix algebra states that every n X n matrix with real
elements can be decomposed into the sum of a symmetric
and a skew-symmetric matrix. For example, any A € IR"*"
can be written as A = (A + AT)/2 + (A — AT)/2. The
first matrix in this equation is symmetric and the second
matrix is skew-symmetric. Symmetric matrices always have
real eigenvalues and skew-symmetric matrices have always
imaginary eigenvalues. Recall now that a complex number
can always be decomposed into the sum of a real and an
imaginary part. This parallelism between complex numbers
and matrices allows one to treat the symmetric matrices as
the “real numbers” and the skew-symmetric matrices as the
“imaginary numbers” in the set of IR™*™ matrices'’. In ad-
dition, recall that an orthogonal matrix in IR™*™ has all its
eigenvalues on the unit circle. Drawing the previous paral-
lelism even further we can therefore treat the orthogonal ma-
trices as the “elements on the unit circle” in the space R™*".
Similar statements can be made for the case of n x n ma-
trices with complex entries (elements of C**™), where now
hermitian, skew-hermitian and unitary matrices have to be
used instead of symmetric, skew-symmetric and orthogonal
matrices, respectively.

We intend to use this heuristic correspondence between
complex numbers and n X n matrices in order to motivate
and generalize the Cayley transform to higher order. Before
we proceed, we briefly review some elements from complex
function theory!?'%. First, recall that a (complex) function
is analytic in an open set if it has a derivative at each point
in that set. In particular, f is analytic at a point zo if it is an-
alytic in a neighborhood of zp. Moreover, analytic functions
have (uniformly) convergent power series expansions'?,
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A transformation w = f(z) where w,z € C is said to be
conformal'® at a point 2o if f is analytic there and f’(z0) # 0.
A conformal mapping is actually conformal at each point in
a neighborhood of zp, since the analyticity of f at zo implies
analyticity in a neighborhood of zp. Moreover, since f' is
continuous at 2o, it follows that there is also a neighborhood
of zo with f'(z) # 0 for all z in this neighborhood'?. It is a
trivial consequence of the above definition that the compo-
sition of conformal mappings is also a conformal mapping.

A significant special class of conformal mappings in the
complex plane is the class of linear fractional transformations
(also called bilinear transformations) defined by

w_az+b
T cez+d’

(ad — bc # 0) (3)

An important property of the linear fractional transfor-
mations is that they always transform circles and lines into
circles and lines'?. In particular, in this paper we are in-
terested in conformal transformations of the form in Eq. (3)
which map the unit circle on the imaginary axis and vice
versa. One such transformation is given by w = f(z), where

1=z
T 142z

f(2) (4)

It is an easy exercise to show that if z € § then |w| = 1,
that is, w € S* and thus, w is on the unit circle. Conversely,

if w € S* then the inverse transformation z = f~'(w) given
by
1 _ 1—w
) = (5)

implies that the real part of z is zero and thus, z € S.

The inverse transformation in Eq. (5) is defined every-
where except at w = —1. The point w = —1 is mapped to
infinity (see Fig. 1). In fact, the map in Eq. (4) introduces
a one-to-one transformation f: ¥ — S*\{—1}.

Im 1.2

1+z

SI

-
N

Fig. 1 Bilinear transformation.

Let us now introduce the conformal mapping g, : S* — S*

defined by
gn(w) = w", n=23,... (6)

The function g, is a mapping from the unit circle onto the
unit circle. This transformation is only locally injective.
Therefore the inverse of g, exists only locally. Given x =
e € S the solution of the equation x = w", (n=2,3,...)
yields that

i (O+2km)/n k=0,1,2,...,n—1

w= (M)
Equation (7) shows that, in general, the equation y = w"
has more than one solution. This result will turn out to be
beneficial in Section 5 when we discuss the application of

higher order Cayley-transforms to attitude representations,



because these roots can be used to avoid the inherent sin-
gularities of three-dimensional parameterizations of SO(3).
For k = 0 in Eq. (7) we get that w = ¢*®/™). We will call
this the principal nth root of x.

The composition of the maps f and g, is the function
hn : S — S' defined by hy, = g, o f, that is

1—2 ) "
1+2
which maps the imaginary axis onto the unit circle. Similarly

to gn, this map is only locally invertible. A local inverse is
obtained, for example, by setting k¥ = 0 in Eq. (7), in which

% € S (recall that x = h,(2) =

ha(2) = ( (8)

case we have that z =

67,'9)-

4 Higher Order Cayley Transforms

One of the most celebrated results in matrix algebra is
the Cayley-Hamilton theorem. This theorem states that a
matrix satisfies its own characteristic polynomial. An impor-
tant consequence of this theorem is that, given any matrix
A € R™™™ and an analytic function F(z) inside a disk of ra-
dius 7 in the complex plane, one can unambiguously define
the matrix-valued function F(A) if the eigenvalues of A lie
inside the disk of radius r. In other words, if F' is given by
F(z) = > 7 aiz' (|z2] < r) then F(A) = > ° a;A* and
the previous series converges assuming that |A;| < r, where
Aj € sp(A) for j =1,2,...,n. Therefore, the matrix F'(A) is
well-defined. Moreover, the eigenvalues of the matrix F(A)
are F(Aj) ( =1,2,...,n) (Refs. 14,15).

Consider now the conformal mapping f from Eq. (4)
which maps the imaginary axis on the unit circle. This
function is analytic everywhere. According to the previous
discussion, the matrix

FQ=0-QU+Q '=I+Q'I-Q) (9

is well-defined for Q € so(n) and, actually, C = f(Q) €
SO(n). Comparison between the previous equation and
Eq. (1) reveals that the Cayley transform can be viewed as a
special case of a conformal mapping in the space of matrices.

We have seen that there is a natural correspondence be-
tween & and so(n), as well as between S' and SO(n). (We
caution the the mathematically inclined reader to take these
statements in the context of the discussion in Section 3.
We do not claim that this correspondence carries any more
weight than providing one qualitative motivation for the gen-
eralization of certain complex analytic results to analogous
results in the space of matrices). Following Eq. (8) we can
also define a series of transformations h, : so(n) — SO(n)
by

(@ =T-Q"I+Q) " =(I+Q)"I-Q)"

where @ is a skew-symmetric matrix. It should be clear by
now that C = h,(Q) is a proper orthogonal matrix, i.e.,
C € SO(n). We shall refer to the family of maps h,(Q) in
Eq. (10) as Higher Order Cayley Transforms. The conse-
quences of such a generalization in attitude representations
will become apparent in the next section.

(10)

For now, let us concentrate on the inverse map h, ' :
S0(n) — so(n). Since h, = g, o f one obtains h,"
f~'ogn!'. The function f~! is given by Eq. (5) which, when
applied to a proper orthogonal matrix @ with no eigenvalue
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at —1, gives the inverse of the classical (or first order) Cay-
ley transform as in Eq. (2). The map g;; ' : SO(n) = SO(n)
on the other hand requires the nth root of an orthogonal
matrix. First, we show that g, ' is well-defined in the sense
that the nth root of a (proper) orthogonal matrix with no
eigenvalue at —1 is also a (proper) orthogonal matrix with
no eigenvalue at —1. This will also prove that the composi-
tion of maps g, ' and f~! is well-defined since the range of
g ' is in the domain of f~1.

To this end, consider an orthogonal matrix C € SO(n)
such that A # —1 for all A € sp(C). Since the matrix C is
normal it can be decomposed as C = UOU™ for some unitary
matrix U" where © = blockdiag(©1,02, ..., O(n—1)/2,+1) if
n is odd, © = blockdiag(©1,0O2,...,0,/s) if n is even, and
0, = diag(e*%i e~ ), The diagonal elements of the matrix
O are the eigenvalues of C. The principal kth root of the
matrix C is then given by W = UOY*U* where W* = C

and ©'F = blockdiag(©,'*,0,/*,...,0/%,, ,,+1) if n is
odd, OYF = blockdiag(('-)}/k,@;/k, .. ,@:L//’;) if n is even,

and @;/k = diag(e?¥i/®) e~ /%))  Since e # —1 for all
j=1,..,n (n—1) the angles 6; # +180 deg and thus also
6;/k # +180deg for k = 2,3,... and thus €'%i/%) £ _1.
Notice that in order to keep W proper we always choose the
positive root of the eigenvalue +1.

5 Attitude Representations

In this section we concentrate on the ramifications of
the previously developed results to attitude representations.
Our motivation for investigating Cayley transforms in the
first place, stems from the fact that proper orthogonal ma-
trices represent rotations. In particular, SO(3) is the con-
figuration space of all three-dimensional rotations. In other
words, every element of SO(3) represents a physical rotation
between two reference frames in IR? and conversely, every ro-
tation can be represented by an element in SO(3).

As a reference frame, viz. a body, rotates freely in the
three-dimensional space, the corresponding rotation matrix
C traces a curve in SO(3) such that C(t) € SO(3) for all ¢ >
0. The differential equation characterizing this trajectory on

SO(3) is given by
¢=w]C (11)

where, given a vector w = (w1,w2,ws) € R?, the matrix [w]
is defined by

0 w3  —wa
Wwl=] —ws 0 w1
w2 —w1 0
In the sequel we apply the results of the previous section
in order to parameterize the rotation group. In particular,
the series of conformal mappings from Eq. (10) provides a

family of parameters on SO(3). Before undertaking this task
we investigate another important conformal mapping.

(12)

5.1 The Exponential Map and the Euler Parame-

ters

Linear fractional transformations are not the only class of
conformal mappings from the imaginary axis onto the unit
circle. The exponential map, defined by

(13)

L A unitary matrix satisfies UU* = U*U = I, where U* denotes
the complex conjugate transpose of the matrix U.

w =exp(z) = e°




also maps S (actually the strip —i7 < z < iw) onto S.
Clearly, if z = i6 then |w| = 1. The inverse transformation
is

z =logw =i (0 + 2nm),

n=0+1,42,... (14)

and is defined only locally.

We can therefore define the exponential map from the
space of skew-symmetric matrices to the space of proper or-
thogonal matrices. This exponential map is defined, as usual,

by
=X

n=0

Q" (15)

S|

and the series converges for every (). One can easily show
that C thus defined is indeed proper orthogonal. For the
three-dimensional case, the matrix Q@ € so(3) can be pa-
rameterized by @ = [B8]. As before, given a vector 8 =
(B1,82,03)T € R® we use the notation [3] to denote the
skew-symmetric matrix in Eq. (12). Euler’s formula* yields

18P

vl
=TI +sing — —cos¢ 16
" +(1 ) = po (16)
where ¢ = ||B||. Normalizing the vector 8 we get a unit
vector
s_ B
6= - 17
Bl (n

Euler’s theorem! states that any rotation can be represented
by a finite rotation (principal rotation) about a single axis
(principal axis). That is, the principal axis and the prin-
cipal angle suffice to determine the rotation matrix. From
a mathematical perspective this amounts to parameterizing
elements in SO(3) by the principal axis and the principal
angle.

By letting the principal axis be along the direction of
the unit vector é and by letting the principal angle be ¢ as
above, Eq. (16) shows how this parameterization is achieved.
Clearly,

C(¢,) = e

Moreover, 1ntr0duc1ng the FEuler parameter wvector q
(q07q15q27q3)

(18)

qo = oS q =é,-sin§, 1=1,2,3 (19)
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and substituting in Eq. (16) one obtains the well-known

formula for the rotation matrix in terms of the Euler
parameters4

Cla) = (a6 — 4" DI +247" + 2q0[q] (20)
where § = (q1,¢2,¢93)T € IR? is the vector part of the Euler
parameters.

Therefore, the Euler parameter representation, as well as
the Euler axis/angle representation are obtained by gener-
alizing the conformal mapping in Eq. (13) to the space of
matrices. Notice from Eq. (20) that C(q) = C(—q) and
both ¢ and —q can be used to describe the same physical
orientation. This fact can be used to construct alternative,
or “shadow”, sets of kinematic parameters obtained via the
Cayley transforms.
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5.2 Rodrigues Parameters

Since the Euler parameters satisfy the additional con-
straint g2 + g7 + ¢2 + g3 = 1, one is naturally led to consider
the elimination of this constraint, thus reducing the number
of coordinates from four to three. The Rodrigues parameters
achieve this by defining

4
Pi = _J:

1 =1,2,3
q0 J

(21)

The three parameters pi,p2,ps then provide a three-
dimensional parameterization of SO(3). The inverse trans-
formation of Eq. (21) is given by

1 Pi

90 = ——H7= 4% = ——-71
LT )R

1 =1,2,3
(1+ﬁ2)% ) J ) 4

(22)

where p*> = pTp = p? + p3 + p3. The Rodrigues parame-
ters are related to the principal axis and angle through the
equation

p = tan % é (23)
The rotation matrix in terms of the Rodrigues parameters
can be easily computed using Eq. (20) and Eq. (22).

1

Clp) = W

(-4 (24)

)T +2pp" +2[p])

It is remarkable the fact that the previous parameterization
of SO(3) can also be achieved by means of the Cayley trans-
formation in Eq. (1). If we introduce the skew-symmetric
matrix R = —[p], the transformation

C=I-R{I+R)"'=I+R'I-R) (25
produces exactly the matrix in Eq. (24). Therefore the classi-
cal Cayley-Rodrigues parameters representation is obtained
by generalizing the conformal mapping in Eq. (4) to the
space of matrices.

5.3 Modified Rodrigues Parameters

The normalization in Eq. (21) is not the only possi-
ble one. A more judicious normalization for eliminating
the Euler parameter constraint is through stereographic
projection!?13:16:17 . Using this approach, the new variables

aj

= ) j=1,2
UJ 1+q07 J 1a3

(26)

provide another set of parameters on SO(3). These param-
eters are referred to in the literature as the Modified Ro-
drigues parameters’ and have distinct advantages over the
classical Rodrigues parameters. In particular, while the Ro-
drigues parameters do not allow eigenaxis rotations of more
than 180 deg, the Modified Rodrigues parameters allow for
eigenaxis rotations of upto 360deg™®'58  This can be
immediately deduced by the corresponding relationship be-
tween o and the principal axis and angle

o= tan?é (27)

which is well-behaved for 0 < ¢ < 2w. Since both ¢ and —¢q

describe the same physical orientation (recall the discussion

at the end of Section 5.1), a second set of parameters defined

by

of = q;
1— qo

- b j = ]" 233 (28)

-



referred to as the “shadow” set'”, can be used to describe the
same physical orientation. These parameters are also given
by

1
= ¢ 29
7 tan(p/4) © (29)
The transformation between o and o° is given by'”
ot =-2Z (30)
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where 6% = 070 = 0 + 05 + 03 = tan®(¢/4). The rotation

matrix associated with the Modified Rodrigues Parameters
is given by*'®8

Clo)=1+ 4((11_::2))2 2 [‘7]2

[o] + (31)

8
(1+462)
In Ref. 8 it was shown that these parameters can also be
defined by a Cayley transformation of second order. That
is, if S = —[o] then the transformation

C=I-8)>UT+8)>=U+S5)°(I-58) (32)
produces exactly the matrix in Eq. (31). Notice that the in-
verse of the transformation (32) is not unique and it requires
the square root of an orthogonal matrix. Given C' € SO(3)
we need to find a matrix W such that C = W?2. Once a
matrix W is calculated, the skew-symmetric matrix S con-
taining the Modified Rodrigues parameters is computed from

S=I-WYT+W) '=T+W)'I-W) (33)
Reference 8 outlines this approach. To every orthogonal ma-
trix corresponds a principal angle and a principal direction
according to Eq. (18). From Egs. (18) and C = W? one
therefore has that

W = e(¢/2)[é] (34)

and W has half the principal angle of C. It should be ap-
parent now how the Modified Rodrigues parameters double
the domain of validity of the parameterization by taking the
square of the classical Cayley transform.

This observation motivates the search of higher dimen-
sional Cayley transforms for attitude representations. Such
transformations are expected to increase the domain of va-
lidity even further. This is the topic of the next section.

5.4 Higher Order Rodrigues Parameters

According to the discussion in the previous section one ex-
pects that higher order Cayley transformations will increase
the domain of validity of the corresponding parameters. The
main task of this section is to derive these higher order pa-
rameters and find their connections to the Rodrigues param-
eters, the Modified parameters and the Euler parameters.
To this end, consider first the fourth order Cayley transform
defined by

C=(-T)'I+17)"

for some skew-symmetric matrix T = —[7].
the matrix C is (proper) orthogonal.

(35)
We know that

Let 7 = (11,72, 73)7 € IR® be the vector of these pa-
rameters. Our purpose is to establish connections between
the “attitude” parameters 7 and the other classical attitude
parameters such as the Euler parameters of the Modified
Rodrigues parameters.

Recall from the results of Section 3 that if F' is analytic
function, then the eigenvalues of the matrix F'(A) are given
by F()\;) where \; are the eigenvalues of A. It is an easy
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exercise to show that the eigenvalues of the skew-symmetric
matrix T are given by {0, +i(ry + 75 + T32)%} Similarly,
the eigenvalues of the matrix S are given by {0, +i (a7 +
a3+ a%)%}. Let A, denote an eigenvalue of T and A\, an
eigenvalue of S. Comparing Egs. (32) and (35) one sees that
the matrices S and T are related by

I-8){I+8) ' '=(I-T*T+T)"? (36)
This suggests that A, and A, are related by
1=X _ (1=X)?
1+/\(,_<1+AT) (37)
or ( .
1+ A
L+ = 55 (38)

Solving for A, and substituting the expressions for A\, and
Ar in the previous equation one obtains that

(17 + 73 +73)%

.2 2 2,1 .
:|:’L(G'1 '|'0'2'|'0'3)2 =i211_7_12_7_22_7_32 (39)
Upon squaring this expression one obtains
2 2 2
2 2 2 Ti +73 + 73
=4 40
o1 +o05+ 03 (1_7_12_7_22_7.32)2 ( )
This equation suggests that o and 7 are related by
27; .
oj = 1_;2, j=1,2,3 (41)

where 7% = 7% + 74 + 73. Arbitrarily, and without loss of
generality, we choose the solution with the plus sign. Sub-
stitution in S and computing C from Eq. (32) verifies the
expression in Eq. (41).

The relation between 7 and ¢ is obtained by observing
that

27; qj .
——J = =1,2.3 42
1 _ %2 1 + qO b j b) b ( )
After some calculations one obtains that
2 ::I:\/E—l—\fl—i—qg (43)
-7 Jita
Using now Eq. (42) one finally obtains that
qj :
T = , i=123 (44)
140+ /2(1 + qo)
Conversely, starting from
2
1-7°
1 =2 —— 4
ra=2 (155 (45

and using Eq. (42) one obtains that the Euler parameters
are given in terms of the 7 parameters from

(1-#%)

a4 = 4ij7 j=12,3 (46)
and ,
1—72 (1—672 +4%)
—o =T ) =L T 4
@ (1+%2) 1+72)? 47

where 7* = (7#2)%. Letting W = (I — T)(I + T)~! and since
C = W* one obtains that

W = e(®/DE (48)



where ¢ is the principal angle of C. Moreover, using the
definition of the Euler parameters from Eq. (19) one obtains
the following result for the 7 parameters

- sin(¢/2) 5
" 14 cos(¢/2) £ 2cos(¢/4)

(49)

where € is the unit vector along the principal axis. Keeping
the plus sign, Eq. (49) can be further reduced to the simple
formula

re=tan2é  (—ar << am) (50)

8
From Eq. (50) it is apparent that 7 is proportional to the
principal rotation axis, like the classical and the Modified
Rodrigues parameters, where now the proportionality factor
is f(¢) = tan(¢/8). Equation (50) is reassuring, since it
proves that the 7 parameters indeed behave as “higher order”
Rodrigues parameters which can be used to “linearize” the
domain of validity of the kinematic parameterization. By
this, we mean that Eq. (50) behaves almost linearly as a
function of the principal angle ¢ (especially in the region
—7m < ¢ < ); see also Fig. 2.

- /f(@)
2f 1S
[, - T+ T§
ani
8 1
B Pi Pi 7 Pi ©

:\\'_

T+

Fig. 2 Comparison of original and “shadow” 7 parameters.

If we choose the minus sign in Eq. (49) we obtain that

T_ =

Moreover, reversing the signs of the Euler parameters in
Eq. (44), one obtains that the 7 parameters have a unique
set of “shadow” parameters like the Modified Rodrigues
parameters'”. These parameters are obtained by setting

5= —sin(¢/2)

"1 —cos(¢/2) £ 2sin(p/4) ¢

(51)

(52)

It can be easily verified that the corresponding “shadow”
parameters reduce to

= % ¢ (“2m<¢<bm)  (53)
and . 5
= % 6 (<bm<d<2m)  (54)

As the original 7 parameters approach +1, the associated
“shadow” parameters 7° approach zero and vice versa. The

533

general transformation between the original and the “shad-
ow” set is given by

IR 1—72
N 272 + (1 4+ 72)7

(55)
where 7 = (?2)%. Equations (50),(51),(53) and (54) can be
used in order to compute the four distinct roots of Eq. (35).
Note also that Egs. (50),(53),(51) and (54) can be also writ-
ten in the form

_ ¢ _ E)A
T—tan(8 k4 é,

respectively. The “shadow” parameter set 7° is shown side-
by-side with the original 7 parameters in Fig. 2. The “shad-
ow” set is plotted in grey color. Figure 2 also shows that 7
parameters are indeed very linear for small rotations within
+180 deg.

k=0,1,2,3 (56)

As with the Modified Rodrigues parameters (and other
stereographic parameters’”), these “shadow” parameters
represent the same physical orientation as the original set
and abide by the same differential kinematic equation. They
could be used to avoid the problems of approaching the
4720 deg principal rotation. By switching to the “shad-
ow” trajectory, all numerical problems would be avoided.
Having, however, a principal rotation range of £720 deg is
really more than needed. Limiting the principal rotations to
be within +180 deg would suffice and be much more attrac-
tive. As the magnitude of 7 approaches tan(w/8) then one
would simply switch the 7 to their “shadow” set. Having
[|7]|| = tan(7/8) corresponds to go = 0. From Eq. (44) one
can then see that at this point, the two sets of parameters
are related by 7 = — 7°. The combined set of original and
“shadow” T parameters would provide a set of attitude coor-
dinates which are “very linear” with respect to the principal
rotation angle, more so even than the Modified Rodrigues
parameters. We note in passing that the previous approach
can be easily extended to any Cayley transform of order 2%,
since Eqgs. (36) and (37) can be used iteratively.

For the third order Cayley transform we have that

C=(I-PP>’UI+P)°=I+P)°I-P)> (57
where P = —[p] and p = (p1,p2,p3)” € IR® the correspond-
ing parameters. If A\, and A, denote the respective eigen-
values of the skew-symmetric matrices R and P then, using
Egs. (25) and (57), they must be related by

-3\

1+ X
Upon expanding the previous equality and solving for A, one
obtains

1= _
1+,

(58)

(B4
P 1430

The previous equation suggests that p; and p; are related
by

(59)

p; = 421 B =Pt —p5 —ph)
! 1-3(p} +p}+pd)’

7=1,2,3 (60)

In order to get the relation of p to the Euler parameter
vector one can set

piB-—pl-pP3-93) _q¢

1-3( +p3+p3) @

(61)



and solve for $? = p? + p3 + p3. After some algebraic calcu-
lations, it is not difficult to show that, in fact,
@+1)° _ 1

(1-3p2)?2 ¢

Solution of the previous equation for p* requires the solution
of a cubic equation. Once p? is known however, it can be
substituted into Eq. (61) to get the desired result. Actually,
from Egs. (61) and (62) we have that

(62)

1— 3p?
§7

. _ A2
e A .=:|:IM j=1,2,3 (63)
(1+p2)% !

(14522

Letting W = (I — P)(I + P)~" then since C = W3 one
obtains that

o =

W = e(#/3)e] (64)

where ¢ is the principal angle of C. A straightforward, but
tedious calculation shows that the parameters p are related
to the principal axis and angle through

p=tan % & (=37 << 3m) (65)
Similarly to Egs. (50)-(54), multiple solutions using the
“shadow set” can also be derived, and are left to the in-

terested reader.

6 Kinematics

The kinematic equations in terms of the 7 parameters can
be computed as follows. From Egs. (11) and (35) we have
that

¢ = LTI +T) 4 (-1 ST+ T
= LI-TT+T) (66)
or that
- - oML+ = (T -T)*  (67)
dt dt
where we have used the fact

that d A~'/dt = —A~'(d A/dt)A~" for any square matrix A.
Using also the fact that d A™/dt = ij—; Al(dAJdt)AmI1
and performing the differentiations in the left-hand-side of
Eq. (67), one obtains a set of nine linear equations in terms
of 71, 72. and 73. Similarly, the right-hand-side of Eq. (67) is
linear in terms of wi, w2, ws. Choosing three (independent)
equations out of these nine, we get a linear system of the
form

Vir)r=U(r)w (68)
Solving for 7 we finally get that the kinematic equations for
the 7 orientation parameters are given by

dr

pr =V '(NUT)w=G(r)w (69)
where the matrix G(7) is given by
G(r) = ﬁ [2(3 — #%)rrT — 4(1 — #%)[7]
+(1 —67% + #9)I] (70)

These kinematic equations are not as simple as the corre-
sponding kinematic equations for the Rodrigues or the Mod-
ified Rodrigues parameters®'%!7, The limiting behavior of

534

these equations as 7 — £1 will be investigated next. We
will show that Eq. (69) is actually well-defined and the ap-
parent singularity at 7 = =+1, equivalently at ¢ = 27, is
removable.

To this end, denote by || - ||]2 the Frobenious norm of a
real matrix A, i.e., ||A||3 = trace(ATA). For the kinematic

equations in Eq. (69) then, after some laborious but straight-
forward calculations, one obtains

IG5 trace[G(r)" G(r)]

T

64(1 — 72)
+4(3 - )1 - 677 + #)rr”
+ (1 -67"+ 74’1 —16(1 — #*)°[1]’]

trace [4(3 — 2’22

(71)

From the definition of the matrix [r] we have that [r]
T — #2I.  Substituting in Eq. (71) and noticing that
trace(rrT) = 7%, Eq. (71) reduces to

o (=22 (1+4%)°
IGOIE = 5 o7 = 51 (72)
thus,
lim [|G(7)]l2 = & < o (73)
7251 4

The last equation implies that the behavior of the 7 parame-
ters is well-conditioned at ¢ = £2x. In addition, because of
the near-linear behavior between ¢ and the magnitude of T,
for small principal angles, Eq. (69) is expected to behave in a
more “linear-like” fashion than either the Cayley-Rodrigues
or the Modified Rodrigues parameters.

Similarly, for the third order Cayley parameters, one can
derive the following kinematic equations

dp 1 A2 T

+3(1 = 3p") | w

7)lp]
(74)

These equations can be derived starting from Egs. (11) and
(57) and using similar arguments as before. A similar anal-
ysis as before shows that the limiting behavior of this sys-
tem as p — ++/3 is well-defined and no singularity is en-
countered during integration. This is also verified through
numerical simulations in the next section. In fact, for all
the parameters o,p and 7 the singularity of the kinematics
is entirely due to the same mechanism, as for the classical
Cayley-Rodrigues parameters p. Namely, the kinematic dif-
ferential equations themselves are well defined and continu-
ous functions (as opposed to the Eulerian angle case) but the
quadratic and higher order polynomial nonlinearities induce
the possibility of finite escape times.

7 Numerical Example

In order to demonstrate the potential benefits of the
previous kinematic parameters we present the results of
the following simulations. We integrated Eqgs. (69) and
(74) as well as the corresponding kinematic equations in
terms of the Cayley-Rodrigues (p) and the Modified Ro-
drigues parameters (o) starting from the zero orientation
and subject to the constant angular velocity vector w
(0.25,0.4, —0.1) (rad/sec). This corresponds to a linearly
increasing value of the principal angle ¢. The results of the
simulations are shown in Fig. 3. This figure actually shows
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Fig. 3 Orientation parameter comparison.
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Fig. 4 Orientation parameters and their “shadow” sets.

only the first components of the kinematic parameter vec-
tors, as the other two components exhibit similar behavior.

As it is evident from this figure, the classical and the Mod-
ified Rodrigues parameters encounter the singularity earlier
that the 7 and the p parameters. Also the p parameters
become singular earlier than the 7 parameters. We note,
however, that since discontinuities in the parameter descrip-
tion are typically acceptable in applications, the Modified
Rodrigues parameters can be made to avoid the singularity
altogether by simply switching to their “shadow” set. The
same also holds for the 7 parameters via Eq. (55) or the p
parameters. Figure 4 shows the simulation where the param-
eters o and T are allowed to switch to their respective “shad-
ow” sets. Although the points of switching are arbitrary and
can be chosen according to the particular application, a rea-
sonable choice is to switch when the parameters and the
corresponding “shadow” set have opposite signs. This en-
sures continuity of the magnitude. From Eqgs. (30) and (55)
this occurs when ¢ = kw, k = £1,+2,.... This is the sit-
uation depicted in Fig. 4. The 7 parameters are shown in
solid line, and the o parameters are shown in dashed line.
Since the classical Rodrigues parameters do not have an as-
sociated “shadow” set (better, the shadow set coincides with
the original parameters), only the o and 7 parameters are
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plotted in Fig. 4.

8 Conclusions

We have extended the classical Cayley transform which
maps skew-symmetric matrices to proper orthogonal matri-
ces to higher orders. The approach is based on the obser-
vation that Cayley transforms can be viewed as generalized
conformal (bilinear) mappings in the space of matrices. The
Euler parameters, the Rodrigues parameters and the Modi-
fied Rodrigues parameters follow as special cases of this ap-
proach. In addition, we have generated a family of higher
order “Rodrigues parameters” which could be used as pa-
rameters for the rotation group. It still remains, however, to
determine the applicability of these higher order parameters
in realistic attitude problems.
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