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LYAPUNOV OPTIMAL SATURATED CONTROL FOR
NONLINEAR SYSTEMS*

Rush D. Robinett! and Gordon G. Parker?
Sandia National Laboratories, Albuquerque, NM 87185

Hanspeter Schaub® and John L. Junkins®
Texas AEM Unuwversity, College Station, TX 77843

A generalized feedback control law design methodology is presented that
applies to systems under control saturation constraints. Lyapunov stability
theory is used to develop stable saturated control laws that can be augmented
to any unsaturated control law that transitions continuously at a touch point
on the saturation boundary. The time derivative of the Lyapunov function,
an error enerqy measure, is used as the performance index which provides a
measure that is invariant to the system dynamics. Constructive use of Lya-
punov stability theory is used to establish stability characteristics of the
closed-loop dynamics. Lyapunov optimal control laws are developed by min-
imizing the performance index over the set of admissible controls, which is
equivalent to forcing the error energy rate to be as negative as possible.

I. Introduction

HE slewing of precision pointing spacecraft with

reaction wheels has produced a need to address
the stability of systems under saturated control. If
a slew maneuver is performed that saturates one or
more of the reaction wheels, does the spacecraft re-
main stable? Should the feedback gains be scaled
back to keep all the controls in the unsaturated re-
gion or is it more beneficial to let some controls sat-
urate and others operate unsaturated? These ques-
tions have led to the development of nonlinear op-
timal feedback control systems that are designed by
Lyapunov’s Direct Method and remain stable under
saturated conditions.

The concept of optimal feedback controllers that
are designed with Lyapunov stability theory can be
found as far back in the literature as a homework
problem in Reference 1, which originated in issues
raised by Reference 2. Kalman and Bertram? intro-
duced the idea of designing an optimal controller for
a linear system that has saturation constraints. In
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this case, the controller design is performed for the
entire state space region (i.e., both saturated and
unsaturated). More present day applications include
developments in References 3 and 4 where the con-
cept of “Lyapunov Optimal” is utilized for feedback
controller design. A control law is “Lyapunov Opti-
mal” if it minimizes the first time derivative of the
Lyapunov function over a space of admissible con-
trols. More generally, a set of feedback gains are
optimized by minimizing the tracking error of the
feedback controller while tracking a specific refer-
ence maneuver.

In this paper, we employ the concept of Lyapunov
optimality to design stable, saturated controllers for
nonlinear systems. The Lyapunov function is the
total error energy which for most mechanical sys-
tems is equivalent to an appropriate Hamiltonian
function.® The performance index is the first time
derivative of the Lyapunov function which is the in-
stantaneous work rate and is a kinematic relation-
ship independent of the system dynamics.® This
truth is fundamental, because it means the struc-
ture of the controller depends only on the kinematic
model and so the same control law stabilizes a large
class of dynamical models. This means a high de-
gree of robustness is implicit in this approach. A key
region of interest is all of the state space where the
controls are saturated. As a result of developments
herein, the unsaturated control space is only consid-
ered when the saturated controller approaches the
saturation boundary which may be a touch point.
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Upon passing through the saturation boundary, an
unbounded optimal feedback controller can be em-
ployed in the unsaturated region. It is usually desir-
able, especially for flexible structures, that control
transitions be continuous.

II. General Controller Design

Lyapunov’s Direct Method is attractive to design
globally asymptotically stable, nonlinear feedback
controllers. The Lyapunov function is typically cho-
sen as the total error energy of the system,

U=T+V (1)
where T is the kinetic energy and V is the poten-
tial energy. The implicit reference state in Eq. (1) is
the target state. U is typically positive definite; but
when it is not, an additive fictitious energy func-
tion®* equivalent to a position feedback loop with
to-be-designed feedback gains can be used to modify
U appropriately. Since most mechanical systems are
natural systems, the Hamiltonian specializes for this
case to the total system energy which motivates the
alternative use of the Hamiltonian as a more gen-
eral Lyapunov function candidate.® The reference
state in Eq. (1) is the target state, thus U can be
interpreted as the error energy of the system.

The first time derivative of the Lyapunov function
in Eq. (1) is the instantaneous work rate

. ) " OH
U=H(pgq) =
— Opi

Qi (2)
where H is the Hamiltonian, ¢ = ¢(t) is the n-
dimensional generalized coordinate vector, p is the
n-dimensional generalized momentum vector, @ is
the generalized force vector, and () = d/dt(). To be
more specific,® L is defined as the system Lagrangian
where

L=T(g,4)—V(q) (3)

with the classical definitions

oL
94

Di

(4)
and

H(gp) =Y pidi — L(g:4)
i=1

leading to Hamilton’s canonical equations

. OH
=5 (6)
and SH
)i = — i 7
P 6%+Q (7)
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The combination of Egs. (2) (7) produces the power
(work/energy) equation

n M N
U= qQi=Y Li-wi+Y F-Ri (8)
i=1 i=1 i=1

which is independent of the system dynamics.
Eq. (8) is a kinematic quantity that applies to
any system and is an ideal performance index
for this problem.”™® In Eq. (8) {Fi,...,Fy} and
{Ly,..., Ly} denote a set of forces and moments
acting on a mechanical system. R; denotes the iner-
tial linear velocity of the point where Fj is applied.
The component w; denotes the inertial angular ve-
locity of the point where L; is applied. It is im-
portant to note that Eq. (8) can be written imme-
diately without further reference to the dynamical
modeling assumptions and therefore holds for an in-
finity of systems. It is implicitly necessary, however,
that the actual system must be controllable and the
actual Hamiltonian must be positive-definite with
respect to departures from the target state. Other-
wise, it is necessary to establish sufficient insight to
modify U and/or the number of control inputs.?

The goal of the controller design process is to
choose a control law (i.e., select the equation form of
the generalized forces) from an admissible set that
will stabilize the system in an optimal fashion (i.e.
make U as negative as possible). For saturated con-
trols, the classical stabilizing controller takes the
form

Qi =—Qi,...597(q) (9)

which is Lyapunov Optimal for the performance in-
dex

J=U= Z ¢iQi (10)

The control law is optimal in a sense analogous
to Pontryagin’s Principle for optimal control be-
cause the controls are selected from an admissible set
|Q:i| < Q... such that the instantaneous work rate
is minimized at every point in time. Two examples
are solved in this section to demonstrate the gener-
ality of this feedback controller design process; sub-
sequent examples of increasing dimensionality and
generality are used to further illustrate the ideas.

Example 1: Duffing Oscillator

The first example is the design of a control law for
a single degree of freedom nonlinear oscillator. The
equation of motion is

mi+ci+kr+kya®=u

(11)
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and the Lyapunov function (the system Hamiltonian
of the unforced and undamped system) is

(12)

The performance index is the time derivative of
Eq. (12) and can be written immediately from

Eq. (8) as

1 1 1
U= §7ni'2 + 51%'2 + ZkNx'l

J=U =iQ = i(—ci + u) (13)

For bounded control |u| < upmqz, the performance

index J is minimized by the feedback controller

U= —Upaa SGN(T) (14)

Using this control law, U is reduced to the energy
dissipation rate

Uz, &) = —ci® — umagd - sgn () (15)
It is of interest to note that an arbitrary, unknown,
positive definite potential energy function AV(z)
could be added to U in Eq. (12) and the negative
gradient of AV to Eq. (11) — and ezactly the same
result is obtained for Eqs. (13) and (14). Thus the
structure of the control law and the stability guar-
antee is invariant with respect to a large family of
modeling assumptions.

Since U(z, &) of Eq. (15) is negative semi-definite,
it can only be concluded at this point that the sys-
tem is stable. Since admissible u, z and & will gener-
ally be bounded, Eq. (11) shows that # will also be
bounded. To prove asymptotic stability, the higher
derivatives of U must be investigated.” The the-
ory states that a sufficient condition to guarantee
asymptotic stability is that the first non-zero higher
order derivative of U, evaluated on the set of states
such that U is zero, must be of odd order and neg-
ative definite. The only equilibrium point where U
vanishes is £ = (. The second derivative of U is

d*U
dt?
which is zero for all z when & = 0. The third deriva-
tive of U is
U A3 d*z
— = =2¢#® = 208 —= — Umaw —=SgN(T
dt® z° dz® gn(#)

Using Eq. (11) we find on the set where & = 0 that

(16)

= —2cE% — UmqaaTsgn(T)

(17)

U c 2

—|  =—-2—(kz+kya® 18

dt3 im0 m ( N ) ( )
which is a negative definite function of 2. There-

fore, the saturated control law in Eq. (14) is globally
asymptotically stabilizing.

3

Ezample 2: Rigid Body Detumbling

The second example is detumbling a rigid body
spacecraft to zero angular velocity at an unspecified
orientation. The equations of motion are

Io+wxlw=u (19)
where [ is the matrix of principal moments of inertia,
w is the body- fixed angular rate vector instead of
the generalized coordinate ¢, and w is the control
torque vector. Since the rigid body orientation is
unspecified, we can consider w to be the state vector,
the system is of order three. The Lyapunov function
is then the system kinetic energy
L 7

U= v Iw (20)
and the time derivative of Eq. (20) is adopted as the
performance index (energy rate):

J=U=w"u (21)
We note Eq. (21) is simply the (kinematic)
work /energy equation which we have written im-
mediately. In this case, formal differentiation of
Eq. (20), substitution for I from Eq. (19), requires
we recognize or verify that the work rate of the gy-
roscopic term is zero, i.e. that w’(w x Iw) = 0. For
more complicated dynamics, the use of Eq. (8) saves
considerable algebra. Thus it is not necessary to
reinvent the work/energy equation for each special
case, we know it already. Obviously an infinite set of
controls make U negative definite in Eq. (21), but for
bounded controls {|u;| < Umaa, } the resulting Lya-
punov optimal control law that minimizes Eq. (21)
is clearly

u=—Asgn(w) (22)
where we use the notational compaction
sgn(w) = (sgn(wy), sgn(w2), sgn(ws))’ (23)

and A is a positive definite diagonal weight matrix.

RS
AL e 0O

This control law minimizes the performance index U
to

J=U = —w" Asgn(w) (25)

which is negative definite. Therefore u is a globally
asymptotically stabilizing saturated control able to
detumble a rigid body from any arbitrary rotation
to rest.
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At this point, it is important to note that math-
ematical difficulties? and practical system perfor-
mance issues arise if these controllers are imple-
mented directly for most systems. The discontinu-
ity at the origin must typically be replaced with
a region of unsaturated control to avoid chatter-
ing near w = (. This unsaturated controller can
either approximate the discontinuity or be some
other stable/optimal feedback controller that transi-
tions from the saturated controller on the saturation
boundary. We restrict attention to control laws that
transition continuously at the saturation boundary.
The obvious choice is to approximate Eq. (9) with a
linear controller of the type

—Kigi for |Kigi| < Qi
Jp— . Il —_ max 26
@i {_QimNSQn(Qi) for |Kiqi| > Qi,,.. (26)
or for this example with
— _kiwi for |kzwz| S Umax
= { _umazs.gn(wi) for |klwz| > Umax (27)

where K; and k; are chosen feedback gains. This
control continuously transitions across the satura-
tion boundary and eliminates chattering. Note that
Egs. (26) and (27) allow some elements of the con-
trol vector to become saturated, while others are still
in the unsaturated range. This differs from conven-
tional gain scheduling and deadband methods which
typically reduce the feedback gains to keep all con-
trols in the unsaturated range.

III. Tracking Controller Design

To include the control problem for a slewing space-
craft, the design of tracking controllers that remain
stable under saturated conditions must be consid-
ered. The formulation of the prior section is mod-
ified to accommodate tracking a reference motion
x,(t) by rewriting Eq. (1) as the total tracking error
energy

Up = AT + AV (28)

In this case, the concept of Lyapunov optimality
is difficult to define since tracking stability cannot
typically be guaranteed during the intervals while
the controls are saturated. Nevertheless, globally
asymptotically stable tracking controllers can often
be achieved by generalizing the method used in the
prior section. A generalized work/energy equation
that is equivalent to Eq. (8) is not possible because
the position and/or attitude error tracking coordi-
nates are measured in a non-inertial reference frame.
Also, consideration must be given to whether or not
the prescribed trajectory is a feasible exact trajec-
tory of the system. The following two examples,

4

motivated by References 5 and 7, demonstrate the
tracking feedback controller design process.

Example 3: Duffing Oscillator, Trajectory Tracking

The nonlinear oscillator of Eq. (11) is discussed
first. Let the tracking error Az be given as

Ar =z —z, (29)
The Lyapunov function that is interpreted as the
total tracking error energy is defined as

Ur

1 1 1
—mAz? + ZkA2? + ZkyAz?t (30)
2 2 4

The reference trajectory x,.(t) is any smooth differen-
tiable function. The first time derivative of Eq. (30)
is

Ur = Ai [mAZ + kAz + kyAz®] (31)

which, making use of Eq. (11), and requiring Eq. (31)
to be negative, leads to the following unsaturated
feedback controller

Uys = [mjér +cz, + kz, + k’NJJi] (32)
+ 3kyzx,. Az — AAT

and for saturated control, to minimize UT in
Eq. (31), we find

U = Umaz SGN(Uus) (33)
where A is a positive feedback gain. Using u, from
Eq. (32) in Egs. (11) and (31), the performance in-
dex Uy becomes

Ur = —(c+ A)Az? (34)
which is negative semi-definite. Therefore the track-
ing errors Az and Az will be stable and bounded in
the absence of model errors. To investigate asymp-
totic stability using unsaturated control, let us inves-
tigate the higher derivatives of Ur. The only equilib-
rium point of Ur occurs where Az = 0. The second
derivative of Ur is

d*Ur

—a = et A)ARAF

(35)

which is zero at the equilibrium point, since AZ is
bounded. The third derivative of Uy is

d*Ur d*Az
= —2(c+ A)AF* - 2(c+ A)Az 36
e (c+4) (et A)As—-= (36)
Using Eq. (11) the above can be evaluated on the
set of states for which A# vanishes as
d*U A
d:f _ et (kAz + kyAz®)* (37)

m

Az=0
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which is negative definite for any tracking error Azx.
Thus the unsaturated feedback controller u,, is glob-
ally asymptotically stabilizing.’

It is prudent to evaluate the stability boundaries
of the saturated control law of Eq. (33). The first
step is to neglect the nonlinear terms and rewrite
Eq. (33) as

U = UpmazSgn([mi,. + c&, + kz,] — AAE)  (38)

which imposes the sufficient stability constraint of

|mi:r' +ci, + kl‘r‘l < |u-max| (39)
In other words, the required force to track the refer-
ence maneuver cannot exceed the maximum control
authority. In hindsight this is an obvious result, if
one expects to track an arbitrary reference trajec-
tory. The second step is to include the nonlinear
terms of Eq. (33) that produce the following suffi-
cient stability constraint condition.

| (mi:r + cx, + kx, + lmrmfi) (40)
+3kN$$7‘A1'| S |umax|
Whereas the linear approximate result of Eq. (39)
only depends on the absolute reference trajectory,
Eq. (40) shows that the nonlinear stability bound-
ary depends on the time history of the tracking error
as well as the reference trajectory. One way to in-
terpret the stability constraint of Eq. (40) is that
the rate of growth of the tracking error under sat-
urated conditions must be limited to the remaining
control authority after accounting for the reference
trajectory requirements. This may be illustrated by
expressing the stability constraint of Eq. (40) as

[tas + AAZ| < |Umaz] (41)
Employing the triangle inequality yields the suffi-
cient condition
[AAZ| < [umae| — [tus] (42)
which is a conservative stability constraint on AAzZ.
Positive values of A cause the control to saturate ear-
lier than if a control effort bound is simply placed
on Eq. (32) for A = 0. However, under the satu-
rated condition, the system is still stable so long as
Eq. (40), or more conservatively Eq. (42), is satis-
fied. Since closed-loop stability is dependent on the
reference maneuver and predicted dispersions off the
reference maneuver, trajectory design is an iterative
procedure.
Continuing with Example 3, system stability and
trajectory design issues will be further exemplified

5

by simulation results using numerical values for this
example. The mass m is 1 kg, the stiffness k is
5 N/m, the nonlinear stiffness ky is 25 N/m? and the
damping ¢ is 0.1 Ns/m. The velocity feedback gain
A is 100 and the maximum controller effort w,,q; is
set at 30 N. The reference trajectory adopted is

z,. = 0.5+ 0.4sin(2xt- 1.5Hz) (43)
Notice that the maximum force required for the mass
m to track z, is larger than u,,.,, saturating the ac-
tual applied force. While the lack of compatibility
between ,q, and x,.(t) is easily resolved by chang-
ing either, we consider this difficulty because we of-
ten face this situation in practice. To help illustrate
the difference between control saturation and stabil-
ity constraint violation, the time regions where the
stability constraint of Eq. (40) is violated are greyed
out in the following figures.

E 00+ R
5 N
S 0Lt N
m ‘ ] ‘
2 : : AN
£ 02 RERE \p/\
© . .
g : : N
=
: : : :
0 1 2 3 4 5

time[s]

Fig. 1 Tracking Error

The tracking errors shown in Figure 1 grow dur-
ing the intervals where the stability constraint is vio-
lated. Likewise, there is a slight decrease in tracking
error between these unstable regions, consistent with
the theoretical asymptotic stability for the unsatu-
rated regions.

40

Actuator Force u [N]
o
!

time[s]

Fig. 2 Actuator Force

Figure 2 shows the control force u. Although the
control clearly saturates, the stability constraint is
violated only during subintervals of the torque sat-
uration regions. A plot of Uy is shown in Figure 3.
Recall that the stability constraint of Eq. (40) is de-
rived from enforcing Ur to be negative. For this
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one-dimensional system the region where the sta-
bility inequality Eq. (40) fails corresponds directly
with the region of positive Ur. For higher dimen-
sional systems, this type of stability condition will
typically provide a much more conservative estimate
of the stable region boundary than what the actual
stability region boundary really is. This truth will
be illustrated in the following example.

2,,
Q)
£
Z . . . .
= 0 or : F i
° . . . .
- ‘ ‘ : ‘
2 . . . .
he]

2 IR N FE :

i i i i
0 1 2 3 4 5

time[s]

Fig. 3 Time Derivative of Ur

In practice, the reference maneuver can be de-
signed with Eq. (40) in mind to allow an adequate
margin for a finite Ax stability region. An important
issue for practical applications is the dependence of
the above process on knowledge of the system dy-
namical model.

Example 4: Detumbling Rigid Body to Specific State

Another tracking example deals with detumbling
a rigid body and requiring it to track a prescribed
reference trajectory. The body orientation relative
to an inertial frame N is given through the 3x3 ori-
entation (direction cosine) matrix [BN]. The refer-
ence orientation is given by the orientation matrix
[RN]. The relative orientation between the actual
and the reference orientation is given at any instant
by [BR]=[BN][RN]". The attitude tracking error is
then described by the modified Rodrigues param-
eter'® 3 vector ¢, which minimally parameterizes
the [BR] matrix. Choosing ¢ to parameterize the
attitude error is one of many possibilities, but as
is evident below, this leads to a very attractive con-
trol law. Among many other advantages, these three
parameters are non-singular for all possible +180°
rotations and have near-linear kinematics for up to
+90° rotations.'®141% For tracking motions, we are
virtually certain of always being in the near-linear
range. This truth vastly expands the ranges of physi-
cal motions over which linear control theory (for gain
design) is valid. The differential kinematic equation
for o is

‘jl_‘; = % [1 (#) + (4] +oaT] Sw  (44)

Let w be the actual body angular velocity written

6

in the body fixed coordinate system and let w, be
the reference body angular velocity written in the
reference attitude coordinate system. Then the error
in body angular velocity is

dw = w — [BR]w, (45)

The error in body angular acceleration is given by

0w = w— [BR]wr + w x [BR]w, (46)
Let the Lyapunov function be defined as!'?11:14
1
Ur = 55&’15&) +2Klog (14 070) (47)

where K is a scalar attitude feedback gain. Using
the log function on a positive measure of tracking
error in Ur results in the remarkable truth _that o
appears linearly, without approximation, in Ur.!!
Ur = 6wT 186 + 6T (Ko) (48)
After using the expression for the body angular ac-

celeration and substituting the equations of motion
given earlier, Uy is reduced to

Up = 0w (—w x (Iw) + u — I[BR],

. (49)
+Iw x ([BR)wy) + Ko)

Note, since we are using a trajectory rather than a

fixed point as the energy reference, we cannot write

Ur immediately using Eq. (8). Let us define the

unsaturated control torque u,s as

uus = I([BRJor — w x ([BR]w;))

50
+wx (Iw)— Ko — Péw (50)

where P is a positive definite body angular velocity
feedback gain matrix. This unsaturated control law
reduces Ur of Eq. (49) to the non-positive quadratic

form
(51)

and causes the closed-loop equations of motion to be
the elegantly simple linear form

Ur = —6wT Péw

Idw = —Ko — Péw (52)

Since Up is simply negative semi-definite, only
stability and not asymptotic stability can be con-
cluded. To prove that this unsaturated control law
indeed leads to asymptotic stability, the higher order
derivatives of Ur need to be investigated.® All points
where UT vanishes lie on the set Z where dw = 0.
The theory states that the first non-zero higher order
derivative of Ur must be of odd order and negative
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definite for the system to be asymptotically stable.
The second derivative of Urp is
d*Ur
dt?

= —60! Péw — dw! Psw (53)

which is zero on Z where dw = 0. The third deriva-
tive of Up is

d*Urp

5 = —00T Pow—260T Poo—dwT PSiy < 0 (54)

After using Eq. (52), evaluating d*Uz/dt? is

AUy
dt3 dw=0

= 2(I"'Ko) ' P(I"'Ko)  (55)

which is negative definite on the set Z where dw = 0.
Therefore u, s is a asymptotically stabilizing tracking
control law.

Now assume that the available control torque
about the i-th body axis is limited by %mqe,. Then
following earlier analyses, we define a modified con-
trol law u as

for |uusi| S Umaz;

for |uys,| > Umax; (56)

Us = uusi
i =
Umaz; * Sgn’(uusi)

A conservative stability boundary (a sufficient
condition for stability) for the above modified con-
trol torque is found to be

|(I([BR]w — w x ([BRw))

57
o x (1) = Ko)| < fimars] )

Note that for this higher dimensional system, this
stability constraint may be overly conservative. The
condition in Eq. (57) is violated if the inequality fails
about any one axis. As will be shown in the follow-
ing example, for higher dimensional cases the region
where the stability inequality constraint is violated
will typically be larger than the region of positive
Ur.

If zero reference motion is assumed from the be-
ginning, then the above analysis leads to a globally
asymptotically stable regulator for bounded torques.
Thus if #,(t) — 0 at some “final time,” then there-
after the end game has global asymptotic stability.
Following the above analysis, the unsaturated con-
trol torque becomes the simple linear control law

Uys = —Ko — Péw (58)

and the modified control torque is the same as before
in Eq. (56). Note that this control law guarantees
to return a rigid body from any arbitrarily large er-
rors in orientation and angular velocity to a specified
orientation at rest, assuming of course that enough

fuel is available. Thus global nonlinear controlla-
bility and stability are guaranteed. By using the
modified control torque, reaching a uy,q,, about one
of the body axis does not affect whether or not Ur
is negative, and thus does not affect the asymptotic
stability. Due to the fact that the reference motion
and model nonlinearity affects the structure of the
unsaturated control law in Eq. (50) and the stabil-
ity boundary in Eq. (57), the robustness of this ap-
proach to tracking controller design requires further
study for each family of maneuvers and estimates of
model uncertainty.

The control law in Eq. (56) is illustrated with
the following numerical simulation. The diago-
nal inertia matrix has the entries are 385 kgm?,
298 kgm? and 212 kgm?. The reference maneu-
ver is a smoothed near-minimum-time maneuver'*
starting at rest from the 3-1-3 Euler angles (-20°,
15°, 4°) to the angles (40°, 35°, 40°) with a final
body angular velocity of (0°/s, 1°/s, 0°/s). This
type of open-loop reference maneuver replaces any
instantaneous torque switches with cubically splined
ones. The final maneuver time is 112 seconds. The
initial attitude error in 3-1-3 Euler angles is (1°, -
2°, 1°). The initial body angular velocity error is
(-.025°/s, .1°/s,.025°/s). The umq, vector contain-
ing the maximum available torque about each body
axis is (0.15 Nm, 0.2 Nm, 0.15 Nm). The simula-
tion was purposely chosen to periodically saturate
the controls and violate the stability constraint of

Eq. (57).

0.010

o

a9

= 0.005+ |

=

0.000 i i
50 100
time[s]

Fig. 4 Attitude Tracking Error Norm

As with the numerical simulation in Example 3,
the time regions where Eq. (57) is violated due to
torque saturation are shaded a light grey. As a com-
parison, the regions where Ur is actually positive
are shaded a dark grey. As expected, the stability
constraint violations of Eq. (57) are overly conserva-
tive and no longer coincide with areas of positive Ur
as they did with the one-dimensional example previ-
ously. The maneuver is behaving in a stable fashion
despite having large regions with stability constraint
violations. Note that Ur is ultimately strictly neg-
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ative after ¢ = 80 seconds. Since Eq. (57) is very
restrictive, the reference maneuvers for such torque
saturated rotations often need to be designed inter-
actively using Eq. (57) as an initial estimate.

The attitude tracking error ¢ is shown in Figure 4.
The initial tracking error is reduced to almost zero
by the maneuver end. This occurs despite the stabil-
ity boundary being violated during two time spans.
Keep in mind that having occasional excursions of
Uy > 0 does not guarantee instability, it simply can-
not guarantee stability.

03
@ 1
Z o2
()
b=
3 0l
0.0 - i
0 50 100

time[s]

Fig. 5 Angular Velocity Tracking Error Norm

The angular velocity tracking error w is shown in
Figure 5. It too is reduced to near-zero by maneu-
ver end. The torque vector u is shown in Figure 6.
As in Figure 2, the regions where Uy is positive is
a subset of the regions where the torque about one
of the body axis is saturated. Note also that not
always are all three body axes saturated. The sim-
ulation contains cases where only one or two body
axis are saturated. Note that the light grey stabil-
ity constraint region of Eq. (57) extends over most
of the torque saturated regions and even over some
unsaturated regions. However, the dark grey regions
of positive Ur only actually cover a smaller portion
of the saturated torque cases. Covering some un-
saturated regions further illustrates the conservative
nature of the stability constraint in Eq. (57), since
all unsaturated regions were shown to be asymptot-
ically stable.
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Fig. 6 Control Torque Vector
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IV. Concluding Remarks

A study is presented of Lyapunov Optimality and
the role of saturation constraints when using Lya-
punov’s Direct Method to design nonlinear feedback
controllers for mechanical systems. For the spe-
cial and usual case of controlled dynamics near a
fixed point, how to efficiently design control laws
and analyze global closed-loop stability properties is
shown. These laws are robust with respect to dy-
namical model errors because they are derived from
a kinematic work/energy principal. For the case of
tracking-type controllers, the fixed point develop-
ments are extended and how to design controllers
and analyze closed-loop stability using Lyapunov’s
Direct Method is illustrated. Certain difficulties and
pitfalls are noted due to saturation constraints, con-
servativeness of stability sufficient condition, and ro-
bustness issues.

References

1. Bryson, A. E. and Ho, Y., Applied Optimal Control.
Hemisphere Publishing Corporation, 1975.

2. Kalman, R. E. and Bertram, J. E., “Control Sys-
tem Analysis and Design Via the ”Second Method” of
Lyapunov: Continous Time Systems,” Transactions of
ASME: Journal of Basic Engineering, June 1960.

3. Junkins, J. L. and Bang, H., “Lyapunov Optimal Con-
trol Law for Flexible Space Structure Maneuver and Vi-
bration Control,” Advances in Astronautical Sciences,
July—Aug. 1991. Paper AAS 91-143.

4.  Kim, Y., Suk, T., and Junkins, J. L. “Optimal Slew-
ing and Vibration Control of Smart Structures,” Smart
Structures, Nonlnear Dyanamics and Control, Vol. II.
Prentice Hall, to appear in 1996.

5. Junkins, J. L. and Bang, H., “Manuever and Vibration
Control of Hybrid Coordinate Systems Using Lyapunov
Stability Theory,” Journal of Guidance, Control and
Dynamacs, Vol. 16, No. 4, Jul.—Aug. 1993, pp. 668-676.

6. Meirovitch, L., Methods of Analytical Dynamaics.
McGraw Hill, New York, 1970.

7.  Oh, H. S., Vadali, S. R., and Junkins, J. L., “On the use
of the work-energy rate principle for designing feedback
control laws,” AIAA Journal of Guidance, Control and
Dynamaics, Vol. 15 No. 1, Jan Feb 1992, pp. 272 277.

8. Juang, J., Wu, S., Phan, M., and Longman, R. W.,
“Passive Dynamic Controllers for Nonlinear Mechanical
Systems,” Journal of Guidance, Control and Dynamacs,
Vol. 16, No. 5, Sept. Oct. 1993, pp. 845 851.

9.  Junkins, J. L. and Kim, Y., Introduction to Dynamaics

and Control of Flexible Structures. ATAA Education Se-

ries, Washington D.C., 1993.

Schaub, H. and Junkins, J. L., “Stereographic Orienta-

tion Parameters for Attitude Dynamics: A Generaliza-

tion of the Rodrigues Parameters,” AAS/AIAA Space-
flight Mechanics Meeting, Albuquerque, New Mexico,

Feb. 13 16 1995. paper AAS 95 137.

Tsiotras, P., “New Control Laws for the Attitude Sta-

bilization of Rigid Bodies,” IFAC Symposium on Auto-

matic Control in Aerospace, Palo Alto, CA, Sept. 12-16

1994, pp. 316 321.

Marandi, S. R. and Modi, V. J.; “A Preferred Coordi-

nate System and the Associated Orientation Represen-

tation in Attitude Dynamics,” Acta Astronautica, Vol.

15, No. 15, 1987, pp. 833-843.

10.

11.

12.

American Institute of Aeronautics and Astronautics



13.

14.

15.

Shuster, M. D., “A Survey of Attitude Representations,”
Journal of the Astronautical Sciences, Vol. 41, No. 4,
1993. pp. 439-517.

Schaub, H., Robinett, R. D.; and Junkins, J. L.,
“Globally Stable Feedback Laws for Near-Minimum-
Fuel and Near-Minimum-Time Pointing Maneuvers for
a Landmark-Tracking Spacecraft,” AAS/AIAA Astro-
dynamics Specialist Conference, Halifax, Nova Scotia,
Canada, Aug. 14-17 1995. paper AAS 95-417.

Schaub, H., Tsiotras, P., and Junkins, J. L., “Princi-
pal Rotation Representations of Proper NxN Orthog-
onal Matrices,” International Journal of Engineering
Science, Vol. 33, No. 15, Elsevier Science Ltd., Great
Britain, 1995, pp. 2277-2295.

9
American Institute of Aeronautics and Astronautics



