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Feedback Control Law for Variable
Speed Control Moment Gyros

Hanspeter Schaub∗, Srinivas R. Vadali† and John L. Junkins‡

Abstract

Variable speed control moment gyroscopes are single-gimbal gyroscopes where the fly wheel speed is allowed
to be variable. The equations of motion of a generic rigid body with several such variable speed CMGs
attached. The formulation is such that it can easily accommodate the classical cases of having either control
moment gyros or reaction wheels to control the spacecraft attitude. A globally asymptotically stabilizing
nonlinear feedback control law is presented. For a redundant control system, a weighted minimum norm
inverse is used to determine the control vector. This approach allows the variable speed control moment
gyroscopes to behave either more like classical reaction wheels or more like control moment gyroscopes,
depending on the local optimal steering logic. Where classical control moment gyroscope control laws have
to deal with singular gimbal angle configurations, the variable speed control moment gyroscopes are shown
not to encounter any singularities for many representative examples considered. Both a gimbal angle velocity
and an acceleration based steering law are presented. Further, the use of the variable speed CMG null motion
is discussed to reconfigure the gimbal angles to preferred sets. Having a variable reaction wheel speed allows
for a more general redistribution of the internal momentum vector.

Introduction

Instead of using thrusters to perform precise spacecraft attitude maneuvers, usually control mo-
ment gyros (CMGs) or reaction wheels (RWs) are used. A single-gimbal CMG contains a wheel
spinning at a constant rate. To exert a torque onto the spacecraft this wheel is gimbaled or rotated
about a body-fixed axis.1,2, 3 The rotation axis and rotation angle are referred to as the gimbal axis
and gimbal angle respectively. A separate feedback control loop is used to spin up the rotor to the
required spin rate and maintain it. The advantage of a CMG is that a relatively small gimbal torque
input is required to produce a large effective torque output on the spacecraft. This makes a cluster
of CMGs a very popular choice for reorienting large space structures such as the space station or
Skylab. The drawback of the single-gimbal CMGs is that their control laws can be fairly complex
and that such CMG systems encounter certain singular gimbal angle configurations. At these singu-
lar configurations the CMG cluster is unable to produce the required torque exactly, or any torque
at all if the required torque is orthogonal to the plane of allowable torques. Several papers deal with
this issue and present various solutions.4,1, 2, 3 However, even with singularity robust steering laws or
when various singularity avoidance strategies are applied, the actual torque produced by the CMG
cluster is never equal to the required torque when maneuvering in the proximity of a singularity.
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The resulting motion may be stable, but these path deviations can be highly undesirable in some
applications.

Reaction wheels (RWs), on the other hand, have a wheel spinning about a body fixed axis whose
spin speed is variable. Torques are produced on the spacecraft by accelerating or decelerating the
reaction wheels.5,6 RW systems don’t have singular configurations and typically have simpler control
laws than CMG clusters. Drawbacks to the reaction wheels include a relatively small effective torque
being produced on the spacecraft and the possibility of reaction wheel saturation. To exert a given
torque onto a spacecraft, reaction wheels typically require more energy than CMGs.

Variable Speed Control Moment Gyroscopes (VSCMGs) combine positive features of both the
single-gimbal CMGs and the RWs. The spinning disk can be rotated or gimbaled about a single
body fixed axis, while the disk spin rate is also free to be controlled.7 This adds an extra degree
of control to the classical single-gimbal CMG device. Note that adding this variable speed feature
would not require the single-gimbal CMG to be completely reengineered. These devices already have
a separate feedback loop that maintains a constant spin rate. What might need to be changed is the
torque motor controlling the RW spin rate, which would need to be stronger, and the constant speed
RW feedback law, which would be abandoned. With this extra control, singular configurations, in the
classical CMG sense, will not be present. Because CMGs are known to be more efficient energy wise
than RWs, away from a classical single-gimbal CMG singular configuration, the VSCMG steering
law will ideally act like the classical CMG steering law. As a single-gimbal CMG singularity is
approached, the VSCMGs should begin to act more like RWs to avoid the excessive torques that
would normally occur and ensure that the applied torque of the VSCMG cluster is exactly equal
to the required torque. This strategy will allow for precise steering without path deviations near
classical CMG singularities because the actual commanded torque will be generated at all times.
In this paper, both a gimbal velocity based and an gimbal acceleration based steering law will be
presented. Lyapunov analysis will be used to guarantee global asymptotic stability of the feedback
control law. Further, the use of the VSCMG null motion to reconfigure the gimbal angles and modify
the RW spin speed is discussed. Having a variable speed RW allows for this to be done in a much
more general manner. The torque required of these types of maneuvers and whether they could be
done with existing CMG hardware will be investigated.

Equations of Motion

To simplify the development and notation, the rotational equations of motion are first derived for
the case where only one VSCMG is attached to a rigid spacecraft. Afterwards, the result is expanded
to incorporate a system of N VSCMGs. Let G be the gimbal reference frame whose orientation is
given by the triad of unit vectors {ĝs, ĝt, ĝg} as shown in Figure 1. The vector components of the
unit vectors ĝi are assumed to be given in the spacecraft reference frame B. Note that because
the VSCMG gimbal axis ĝg is fixed relative to B, only the orientation of the spin axis ĝs and the
transverse axis ĝt will be time varying as seen from the B frame. Given an initial gimbal angle γ0,
the spin and transverse axis at a gimbal angle γ(t) are given by

ĝs (t) = cos (γ(t)− γ0) ĝs (t0) + sin (γ(t)− γ0) ĝt (t0) (1)
ĝt (t) = − sin (γ(t)− γ0) ĝs (t0) + cos (γ(t)− γ0) ĝt (t0) (2)

The spin rate of the VSCMG about ĝs is denoted by Ω. The angular velocity vector of the G frame
relative to the B frame is

ωG/B = γ̇ĝg (3)

The angular velocity vector of the reaction wheel frame W relative to the gimbal frame G is

ωW/G = Ωĝs (4)
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Figure 1: Illustration of a Variable Speed Control Moment Gyroscope

To indicate in which reference frame vector or matrix components are taken, a superscript letter
is added before the vector or matrix name. Because the G frame unit axes are aligned with the
principal gimbal frame axes, the gimbal frame inertia matrix [IG] expressed in the G frame is the
constant diagonal matrix.

[IG] = G [IG] = diag(IGs
, IGt

, IGg
) (5)

where IGs
, IGt

and IGg
are the gimbal frame inertias about the corresponding spin, transverse and

gimbal axes. The reaction wheel inertia about the same axes are denoted by IWs
, IWt

and IWt
.

[IW ] = W [IW ] = diag(IWs , IWt , IWt) (6)

Note that since the disk is symmetric about the ĝs axis W [IW ] = G [IW ]. In practice IWs
is typically

much larger than any of the other gimbal frame or RW inertias. In this development the RW and
gimbal frame inertias are not combined early on into one overall VSCMG inertia matrix; rather,
they are retained as separate entities until later into the development. This will allow for a precise
formulation of the actual physical motor torques that drive the RWs or the CMGs.

The G frame orientation is related to the B frame orientation through the direction cosine matrix
[BG] which is expressed in terms of the gimbal frame unit direction vectors as

[BG] = [ĝs ĝt ĝg] (7)

In Eq. (7) the ĝi vector components are taken in the B frame. The rotation matrix [BG] maps a
vector with components taken in the G frame into a vector with components in the B frame. The
constant diagonal inertia matrices G [IG] and G [IW ] are expressed with components taken in the B
frame as the time varying matrices8,9

B[IG] = [BG] G [IG] [BG]T = IGs ĝsĝ
T
s + IGt ĝtĝ

T
t + IGg ĝgĝ

T
g (8)

B[IW ] = [BG] G [IW ] [BG]T = IWs ĝsĝ
T
s + IWt ĝtĝ

T
t + IWt ĝgĝ

T
g (9)

The total angular momentum of the spacecraft and the VSCMG about the spacecraft center of
mass is given by

H = HB + HG + HW (10)
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where HB is the angular momentum component of the spacecraft, HG is the angular momentum
of the gimbal frame and HW is the angular momentum of the RW. Let N be an inertial reference
frame and ωB/N be the relative angular velocity vector, then HB is written as

HB = [Is]ωB/N (11)

The matrix [Is] contains the spacecraft inertias and the VSCMG inertia components due to the fact
that the VSCMG center of mass is not located at the spacecraft center of mass. Note that B[Is] is
a constant matrix as seen from the B frame. The gimbal frame angular momentum HG is given by

HG = [IG]ωG/N (12)

where ωG/N = ωG/B + ωB/N . Using Eqs. (3), (5) and (8) this is rewritten as

HG =
(
IGs ĝsĝ

T
s + IGt ĝtĝ

T
t + IGg ĝgĝ

T
g

)
ωB/N + IGg γ̇ĝg (13)

To simplify the following notation, let the variables ωs, ωt and ωg be the projection of ωB/N onto
the G frame unit axes.

ωs = ĝT
s ωB/N ωt = ĝT

t ωB/N ωg = ĝT
g ωB/N (14)

The angular momentum HG is then written as

HG = IGs
ωsĝs + IGt

ωtĝt + IGg
(ωg + γ̇) ĝg (15)

The RW angular momentum HW is given by

HW = [IW ]ωW/N (16)

where ωW/N = ωW/G + ωG/B + ωB/N . Using analogous definitions as for HG, HW is rewritten as

HW = IWs
(ωs + Ω) ĝs + IWt

ωtĝt + IWt
(ωg + γ̇) ĝg (17)

To simplify the notation from here on, let us use the short hand notation ω = ωB/N . In some
calculations it will be convenient to express ω in the G frame as

Gω = ωsĝs + ωtĝt + ωgĝg (18)

To denote that a vector x is being differentiated relative to a reference frame A, the following
notation is used.

Ad

dt
(x)

Indicating an inertial time derivatives of a vector x will be abbreviated as

Nd

dt
(x) ≡ ẋ

The equations of motion of a system of rigid bodies follow from Euler’s equation8,9

Ḣ = L (19)

if all moments are taken about the center of mass. The vector L represents the sum of all the external
torques experienced by the spacecraft. The time derivative of HW is expressed as expressed as

ḢW = ĝsIWs

(
Ω̇ + ĝT

s ω̇ + γ̇ωt

)
+ ĝt

(
IWs

γ̇ωs + IWt
ĝT

t ω̇ + (IWs
− IWt

) ωsωg + IWs
Ω (γ̇ + ωg)

)
+ ĝg

(
IWt

ĝT
g (ω̇ + γ̈) + (IWt

− IWs
)ωsωt + IWs

Ωωt

) (20)
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Let LW be the torque the gimbal frame exerts on the RW. Euler’s equation for the RW is ḢW =
LW . The torque components in the ĝt and ĝg direction are produced by the gimbal frame itself.
However, the torque component us about the ĝs axis is produced by the RW torque motor. Therefore,
from Eq. (20) the spin control torque us is given by

us = IWs

(
Ω̇ + ĝT

s ω̇ + γ̇ωt

)
(21)

Differentiating Eq. (15), the momentum rate ḢG is written as

ḢG = ĝs

((
IGs

− IGt
+ IGg

)
γ̇ωt + IGs

ĝT
s ω̇ +

(
IGg

− IGt

)
ωtωg

)
+ ĝt

((
IGs

− IGt
− IGg

)
γ̇ωs + IGt

ĝT
t ω̇ + (IGs

− IGt
) ωsωg

)
+ ĝg

(
IGg

(
ĝT

g ω̇ + γ̈
)

+ (IGt − IGs) ωsωt

) (22)

From here on it is convenient to combine the inertia matrices of the RW and the gimbal frame into
one VSCMG inertia matrix [J ] as

[J ] = [IG] + [IW ] = diag(Js, Jt, Jg) (23)

Let LG be the torque vector that the combined RW and CMG system exerts onto the spacecraft,
then Euler’s equation states that ḢG + ḢW = LG. The LG torque component about the ĝg axis is
produced by the gimbal torque motor. Adding Eqs. (20) and (22) and making use of the definition
in Eq. (23), the gimbal torque ug is then expressed as

ug = Jg

(
ĝT

g ω̇ + γ̈
)
− (Js − Jt)ωsωt − IWs

Ωωt (24)

The inertial derivative of HB is simply

ḢB = [Is]ω̇ + [ω̃][Is]ω (25)

where the tilde matrix operator [ω̃] is defined as

[ω̃] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (26)

To further simplify the equations of motions, we define the total spacecraft inertia matrix [I] as

[I] = [Is] + [J ] (27)

Substituting Eqs. (20), (22) and (25) back into Eq. (19) and making use of the definition in Eq. (27),
we find the equations of motion for a rigid spacecraft containing one VSCMG.

[I]ω̇ = −[ω̃][I]ω − ĝs

(
Jsγ̇ωt + IWs

Ω̇− (Jt − Jg)ωtγ̇
)

− ĝt ((Jsωs + IWsΩ) γ̇ − (Jt + Jg) ωsγ̇ + IWsΩωg)
− ĝg (Jgγ̈ − IWsΩωt) + L

(28)

At this point, we make the common assumption that Js ≈ IWs , i.e,. that the gimbal frame inertia
IGs about the spin axis is negligible. The corresponding equations of motion are simplified to

[I]ω̇ = −[ω̃][I]ω − ĝs

(
Js

(
Ω̇ + γ̇ωt

)
− (Jt − Jg) ωtγ̇

)
− ĝt (Js (ωs + Ω) γ̇ − (Jt + Jg) ωsγ̇ + JsΩωg)
− ĝg (Jgγ̈ − JsΩωt) + L

(29)
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To obtain the equations of motion of a rigid spacecraft with several VSCMGs attached, we add
the effects of each ḢG and ḢW . To simplify notation, let us define the following useful matrices.
The matrices [Gs], [Gt] and [Gg] contain the unit direction vectors of each VSCMG gimbal frame.

[Gs] = [ĝs1 · · · ĝsN
] [Gt] = [ĝt1 · · · ĝtN

] [Gg] = [ĝg1 · · · ĝgN
] (30)

The total spacecraft inertia matrix is expressed as

[I] = [Is] +
N∑

i=1

[Ji] = [Is] +
N∑

i=1

Jsi ĝsi ĝ
T
si

+ Jti ĝti ĝ
T
ti

+ Jgi ĝgi ĝ
T
gi

(31)

The effective torque quantities τsi , τti and τgi are defined as

τs =


Js1

(
Ω̇1 + γ̇1ωt1

)
− (Jt1 − Jg1) ωt1 γ̇1

...
JsN

(
Ω̇N + γ̇NωtN

)
− (JtN

− JgN
) ωtN

γ̇N

 (32a)

τs =

 Js1 (Ω1 + ωs1) γ̇1 − (Jt1 + Jg1) ωs1 γ̇1 + Js1Ω1ωg1

...
JsN

(ΩN + ωsN
) γ̇N − (JtN

+ JgN
) ωsN

γ̇N + JsN
ΩNωgN

 (32b)

τg =

 Jg1 γ̈1 − Js1Ω1ωt1
...

JgN
γ̈N − JsN

ΩNωtN

 (32c)

The rotational equations of motion for a rigid body containing N VSCMGs are then written com-
pactly as

[I]ω̇ = −[ω̃][I]ω − [Gs]τs − [Gt]τt − [Gg]τg + L (33)

Also, The rotational kinetic energy T of a rigid spacecraft with N VSCMGs is given by

T =
1
2
ωT [Is]ω +

1
2

N∑
i=1

Jsi
(Ωi + ωsi

)2 + Jti
ω2

ti
+ Jgi

(ωgi
+ γ̇i)

2 (34)

The kinetic energy or work rate, found after differentiating Eq. (34) with respect to time and
performing some lengthy algebra, is found to be

Ṫ =
N∑

i=1

γ̇iugi + Ωiusi + ωT L (35)

Actually, the energy rate expression for this system of rigid bodies was known apriori from the Work-
Energy-Rate principle.10 Hence, the derivation of Eq. (35) from the equations of motion validates
the equations of motion.

Feedback Control Law

In this section, a feedback law is derived using Lyapunov control theory. Given some initial
angular velocity and attitude measure, the goal of the control law is to bring the rigid body to rest
at the zero attitude (aligned with the reference frame). The attitude coordinate system is chosen
such that the zero attitude is the desired attitude. To describe the rigid spacecraft attitude, this
paper uses the very elegant set of recently developed Modified Rodrigues Parameters (MRP) along
with their “shadow” counterparts.11,12,13,14,15,16 They allow for a non-singular rigid body attitude
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description with several other useful attributes. The MRPs can be defined in terms of the Euler
parameters β as11,13,16

σi =
βi

1 + β0
i = 1,2,3 (36)

Or, in terms of the principal rotation axis ê and the principal rotating angle φ, the MRP vector is

σ = ê · tan(φ/4) (37)

Note that the tangent function typically behaves very linearly for angles up to 20 degrees. Since
Eq. (37) shows that σ is written in terms of tan(φ/4), the MRPs behave very linearly for principal
rotations up to ±80 degrees. This is a much larger range of rotations that can be assumed to behave
near-linearly than what can be typically achieved using standard Euler Angles or even the classical
Rodrigues parameters.

Like the Euler parameters, the modified Rodrigues parameters are not unique. A second set of
modified Rodrigues parameters, called the “shadow” set, can be used to avoid the singularity of the
“original” MRP at φ = ±360◦ at the cost of a discontinuity at a switching point. The transformation
between the “original” and “shadow” sets of MRPs for any arbitrary switching surface σT σ =
constant is11,17,15

σS = − σ

σT σ
(38)

Typically the MRP vector σ is switched to it’s alternate set whenever σT σ > 1 which corresponds
to the rigid body having tumbled past φ = ±180 degrees. The MRP differential kinematic equation
only contains a quadratic nonlinearity and is given by

dσ

dt
=

1
2

[
[I3×3]

(
1− σT σ

2

)
+ [σ̃] + σσT

]
ωB/N (39)

where [I3x3] is a 3x3 identity matrix. In designing the control law, we assume that estimates of
ω, σ, Ωi and γi are available. The following Lyapunov function V is a positive definite, radially
unbounded measure of the total system state error relative to the target state ω = σ = 0 where K
is a scalar attitude feedback gain.6

V (ω,σ) =
1
2
ωT [I]ω + 2K log

(
1 + σT σ

)
(40)

The use of the logarithm function in this context was first introduced by Tsiotras in Ref. 13 and leads
to a control law which is linear in σ. Using Eqs. (14) and (31) the Lyapunov function is rewritten as

V =
1
2
ωT [Is]ω +

1
2

N∑
i=1

(
Jsiω

2
si

+ Jtiω
2
ti

+ Jgiω
2
gi

)
+ 2K log

(
1 + σT σ

)
(41)

Differentiating the Lyapunov function V yields

V̇ = ωT

(
[I]ω̇ +

N∑
i=1

(Jsi
− Jti

) γ̇iωti
ĝsi

+ Kσ

)
(42)

Lyapunov stability theory requires that V̇ be negative semi-definite to guarantee stability. Let [P ]
be a positive definite angular velocity feedback gain matrix, then V̇ is set to be

V̇ = −ωT [P ]ω (43)
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which, when combined with Eq. (42), leads to the following condition for stability.

[I]ω̇ = −Kσ − [P ]ω −
N∑

i=1

(Jsi − Jti) γ̇iωti ĝsi (44)

After substituting the equations of motion given in Eq. (33) into Eq. (44) and simplifying the result,
the following stability requirement is obtained.

N∑
i=1

(
ĝsi

Jsi
Ω̇i + ĝgi

Jgi
γ̈i + ĝti

(Jsi
(Ωi + ωsi

)− Jti
ωsi

) γ̇i

)
= Kσ + [P ]ω + L (45)

To express this condition in a more compact and useable form, let us define the following 3xN
matrices.

[D0] = [ĝs1Js1 · · · ĝsN
JsN

] (46a)
[D1] = [ĝt1Js1 (Ω1 + ωs1) · · · ĝtN

JsN
(ΩN + ωsN

)] (46b)
[D2] = [ĝt1Jt1ωs1 · · · ĝtN

JtN
ωsN

] (46c)
[B] = [ĝg1Jg1 · · · ĝgN

JgN
] (46d)

Let Ω̇, γ̈ and γ̇ be Nx1 vectors whose i-th element contains the respective VSCMG angular velocity
or acceleration or RW spin rate. Then the stability condition in Eq. (45) is

[D0]Ω̇ + [B]γ̈ + ([D1]− [D2]) γ̇ = Lr (47)

where Lr = Kσ + [P ]ω + L is called the required control torque. Dropping the [D0]Ω̇ term, the
standard single-gimbal CMG stability condition is retrieved as it is developed in Ref. 1. Note that
the condition in Eq. (47) only guarantees global stability in the sense of Lyapunov for the states ω
and σ because V̇ in Eq. (43) is only negative semi-definite, not negative definite. However, Eq. (43)
does show that ω → 0 as time goes to infinity. To prove that the stability condition in Eq. (47)
guarantees asymptotic stability of all states including σ, the higher order time derivatives of V must
be investigated. A sufficient condition to guarantee asymptotic stability is that the first nonzero
higher-order derivative of V , evaluated on the set of states such that V̇ is zero, must be of odd order
and be negative definite.18,19,20 For this dynamical system V̇ is zero when ω is zero. Differentiating
Eq. (43), the second derivative of V is

d2

dt2
V = −2ωT [P ]ω̇ (48)

which is zero on the set of states where ω is zero. Differentiating again, the third derivative of V is

d3

dt3
V = −2ω̇T [P ]ω̇ − 2ωT [P ]ω̈ (49)

By substituting Eq. (44) and setting ω = 0, we may express the third derivative of the Lyapunov
function as

d3

dt3
V = −K2σT

(
[I]−1

)T
[P ][I]−1σ (50)

which is a negative definite quantity because both [I] and [P ] are positive definite matrices. Therefore
the stability condition in Eq. (47) does guarantee global asymptotic stability.
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Velocity Based Steering Law

Note that the stability condition in Eq. (47) does not contain the physical control torques usi

and ugi
explicitly. Instead only gimbal rates and accelerations and RW accelerations appear. This

will lead to a steering law that determines the required time history of γ and Ω such that Eq. (47)
is satisfied. The reason for this is two fold. First, commercial CMGs typically require γ̇ as the
input, not the actual physical torque vector ug. Secondly, writing Eq. (47) in terms of the torque
vectors us and ug and then solving for these would lead to a control law that is equivalent to solving
Eq. (47) directly for γ̈. As has been pointed out in Ref. 1, this leads to a very undesirable control
law with excessive gimbal rates. A physical reason for this is that such control laws provide the
required control torque mainly through the [B]γ̈ term. In this setup the CMGs are essentially being
used as RWs and the potential torque amplification effect in not being exploited. Because CMG
gimbal inertias Jg are typically very small compared to their spin inertia Js, the corresponding [B]
will also be very small which leads to very large γ̈ vectors.

To take advantage of the potential torque amplification effect, most of the required control torque
vector Lr should be produced by the ([D1]− [D2]) γ̇ term. This is why classical CMG steering laws
control primarily the γ̇ vector and not γ̈. For the VSCMGs it is desirable to have the required torque
Lr be produced by a combination of the Ω̇ and γ̇ terms in Eq. (47). Paralleling the development
of the classical single-gimbal CMG velocity steering laws, the terms containing the transverse and
gimbal VSCMG inertias are ignored at this level. Eq. (47) then becomes

[D0]Ω̇ + [D1]γ̇ = Lr (51)

Comparing the [D1] matrix to that of standard CMG steering laws it is evident that an extra
ĝtJsωs term is present in the VSCMG formulation. This term is also dropped in the standard CMG
formulation because it can be assumed that ωs will typically be much smaller than Ω. However,
since for a VSCMG the RW spin speed Ω is variable, this assumption can no longer be justified and
this term is retained in this formulation.

For notational convenience, we introduce the 2Nx1 state vector η

η =
[
Ω
γ

]
(52)

and the 3x2N matrix [Q]

[Q] =
[
D0

... D1

]
(53)

Eq. (51) can then be written compactly as

[Q]η̇ = Lr (54)

Note that each column of the [D0] matrix is a scalar multiple of the ĝsi vectors, while each column
of [D1] is a scalar multiple of the ĝti

vectors. In the classical 4 single-gimbal CMG cluster, singular
gimbal configurations are encountered whenever the rank of [D1] is less than 3. This occurs whenever
the ĝti

no longer span the three-dimensional space but form a plane. If this occurs, any required
torque which does not lie perfectly in this plane is not generated exactly by the CMG cluster and the
spacecraft deviates slightly from the desired attitude. If the required control torque is perpendicular
to this plane, then the CMG cluster produces no effective torque on the spacecraft. These singular
configurations can never occur with a VSCMG because the rank of the [Q] matrix will never be
less than 3! Since the ĝsi

vectors are perpendicular to the ĝti
vectors, even when all the transverse

axes are coplanar, there will always be at least one spin axis that is not in this plane. Therefore
the columns of [Q] will always span the entire three-dimensional space as long as at least 2 or more
VSCMGs are used with unique ĝgi vectors.

Because the [Q] matrix is never rank deficient, a minimum norm solution for η̇ can be obtained
using the standard Moore-Penrose inverse. However, because ideally the VSCMGs are to act like
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classical CMGs away from single-gimbal CMG singular configurations, a weighted pseudo inverse is
used instead.21 Let [W ] be a 2Nx2N diagonal matrix

[W ] = diag{Ws1 , . . . , WsN
,Wg1 , . . . , WgN

} (55)

where Wsi
and Wgi

are the weights associated with how nearly the VSCMGs are to perform like
regular RWs or CMGs. Then, the desired η̇ is

η̇ =
[
Ω̇
γ̇

]
= [W ][Q]T

(
[Q][W ][Q]T

)−1
Lr (56)

Note that there is no need here to introduce a modified pseudo-inverse as Nakamura and Hanafusa
did in developing the singularity robustness steering law in Ref. 22. To achieve the desired VSCMG
behavior, the weights are made dependent on the proximity to a single-gimbal CMG singularity. To
measure this proximity the scalar factor δ is defined as

δ = det
(
[D1][D1]T

)
(57)

As the gimbal angles approach a singular CMG configuration this parameter δ will go to zero. The
weights Wsi

are then defined to be

Wsi = W 0
si

e(−µδ) (58)

where W 0
si

and µ are positive scalars to be chosen by the control designer. The gains Wgi
are

simply held constant. Away from CMG singularities this steering law will have very small weights
on the RW mode and essentially perform like a classical single-gimbal CMG. As a singularity is
approached, the steering law will start to use the RW mode to ensure that the gimbal rates do
not become excessive and that the required control torque Lr is actually produced by the VSCMG
cluster.

Two types of CMG singularities are commonly discussed. The simpler type of singularity is when
the rank of the [D1] matrix drops below 3 which is indicated by δ, defined in Eq. (57), approaching
or becoming zero. The VSCMG velocity steering law in Eq. (56) handles temporary rank deficiencies
very well. The required control torque is always produced correctly by making use of the addition
control authority provided by the RW modes. Another type of singularity is when the required
control torque is exactly perpendicular to the span of the transverse VSCMG axis (i.e. Lr is in the
nullspace of [D1]). Naturally, this is only possible whenever δ is zero. To measure how close the
required torque Lr is to the nullspace of [D1] the orthogonality index O is used.1

O =
LT

r [D1]T [D1]Lr

||Lr||2
(59)

Whenever Lr becomes part of the nullspace of [D1], then O will tend towards zero. A classical
single-gimbal CMG steering law demands a zero γ̇ vector with this type of singularity which “locks
up” the gimbals produces no effective torque on the spacecraft. The VSCMG steering does not
prevent the gimbals from being locked up in these singular orientations; however, the Lr vector is
still being produced thanks to the RW mode of the VSCMGs. If a gimbal lock is actually achieved,
then without any further changes, such as a change in the required Lr, the VSCMG will simply
continue the maneuvers acting like pure RWs. Running numerical simulations it was found that
unless one starts the simulation in a pure gimbal lock situation, it was very unlikely for the VSCMG
steering law to lock up the gimbals. Once a singularity is approached, the RWs are spun up or
down which also in return affects the gimbal orientation and lowers the likelihood of having the
orthogonality index O go to zero. However, at present this VSCMG steering law makes no explicit
effort to avoid these singular configurations during a maneuver.
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Acceleration Based Steering Law

The simplified formulation provided by the gimbal velocity based steering law in Eq. (56) is
convenient to study and analyze the steering law. However, to provide a more realistic simulation,
the transverse inertia should be included and γ̈ should be used as the actual control input. Having
a gimbal angle acceleration expression will also allow for simulations that study the actual work
done by the steering laws. If the transverse inertias are considered, then the stability condition in
Eq. (45) is given by

[D0]Ω̇ + [B]γ̈ + [D]γ̇ = Lr (60)

where [D] = [D1] + [D2]. The goal of the gimbal acceleration based steering law is to provide the
same performance as the gimbal velocity based steering law. Let the vector η̇d be the desired Ω̇ and
γ̇ quantities provided by Eq. (56).

η̇d = [W ][Q]T
(
[Q][W ][Q]T

)−1
Lr (61)

where the matrix [Q] is now defined as

[Q] =
[
D0

... D
]

(62)

The vector η̇ contains the actual Ω and γ̇ states. As is done with CMG steering laws in Ref. 1,
a feedback law is designed around the desired η̇d such that the current η will approach η̇d. To
accomplish this we define the positive definite Lyapunov function Vγ̇ as

Vγ̇ =
1
2

(η̇d − η̇)T (η̇d − η̇) (63)

with the derivative

V̇γ̇ = (η̇d − η̇)T (η̈d − η̈) (64)

To guarantee global asymptotic stability, V̇γ̇ is set to

V̇γ̇ = −Kγ̇ (η̇d − η̇)T (η̇d − η̇) (65)

where Kγ̇ is a positive scalar quantity. This leads to the following stability condition.

η̈ = Kγ̇ (η̇d − η̇) + η̈d (66)

As was done in designing the single-gimbal CMG acceleration steering law in Ref. 1, the vector η̈d

is assumed to be small and is neglected. Substituting Eq. (61) into (66) we get

η̈ =
[
Ω̈
γ̈

]
= Kγ̇

(
[W ][Q]T

(
[Q][W ][Q]T

)−1
Lr −

[
Ω̇
γ̇

])
(67)

The vector γ̈ is the desired gimbal angle acceleration vector. The vector Ω̈, which represents
the reaction wheel “jerk”, is also assumed to be very small and is neglected. After some algebraic
manipulations, the desired RW and CMG angular acceleration vectors are given through the steering
law [

Ω̇
γ̈

]
=
[
I 0
0 Kγ̇I

](
[W ][Q]T

(
[Q][W ][Q]T

)−1
Lr −

[
0
γ̇

])
(68)

Note that the RW angular acceleration vector Ω̇ in Eq. (68) is the same as is commanded by the
velocity based steering law in Eq. (56). Since generally the initial γ̇ vector will not be equal to the
desired velocity vector at the beginning of a maneuver, the gimbal acceleration vector γ̈ will drive
the gimbal velocities to the desired values and then remain relatively small.



12 Schaub, Vadali and Junkins

Reconfiguring the VSCMG Cluster using Null Motion

To perform a given spacecraft maneuver, there are infinitely many CMG configurations that would
produce the required torques. Depending on the torque direction and a given CMG momentum, some
of these initial gimbal configurations will encounter CMG singularities during the resulting maneuver,
while others will not. Vadali, et al. show in Ref. 23 a method for computing a preferred set of initial
gimbal angles γ(t0) for which the maneuver will not encounter any CMG singularities. To reorient
the CMG cluster to these preferred gimbal angles without producing an effective torque onto the
spacecraft, the null motion of [D1]γ̇ = Lr is used. However, the set of gimbal angles between which
one can reorient the classical CMGs is very limited, because the inertial CMG cluster momentum
vector must remain constant. Also, the null motion involves the inverse of the [D1][D1]T matrix
which has to be approximated with the singularity robustness inverse whenever the determinant
goes to zero. This approximation results in a small torque being applied to the spacecraft itself.

If the VSCMGs are rearranged, however, there are now twice as many degrees of control available.
In particular, the CMG angles can be rearranged in a more general manner by also varying the RW
spin speed vector Ω. The null motion of Eq. (54) is given by

η̇ =
[
[IN×N ]− [W ][Q]T

(
[Q][W ][Q]T

)−1
[Q]
]
d = [τ ]d (69)

Note that the symmetric matrix [τ ] is a projection matrix and has the useful property that [τ ]2 = [τ ].
Let the constant vector ηf be the preferred set of Ωf and γf . The error vector e is defined as

e = [A] (ηf − η) (70)

where [A] is the diagonal matrix

[A] =
[
aRW [IN×N ] [0N×N ]

[0N×N ] aCMG[IN×N ]

]
(71)

The parameters aRW and aCMG are either 1 or 0. If one is set to zero, this means that the resulting
null motion will be performed with no preferred set of either Ωf or γf . The derivative of e is

ė = −[A]η̇ (72)

The total error between preferred and actual states is given through the Lyapunov function

Ve(e) =
1
2
eT e (73)

Using Eqs. (69) and (72), the derivative of the Lyapunov function is

V̇e = eT ė = −eT [A][τ ]d (74)

After setting d = kee, where the scalar ke is a positive, and making use of the properties [A]e = e
and [τ ]2 = [τ ], V̇e is rewritten as

V̇e = −eT [τ ]T [τ ]e ≤ 0 (75)

which is negative semi-definite. Therefore, the VSCMG null motion

η̇ = ke

[
[IN×N ]− [W ][Q]T

(
[Q][W ][Q]T

)−1
[Q]
]
[A]
(
Ωf −Ω
γf − γ

)
(76)

is a globally stable. Note, however, that no guarantee of asymptotic stability can be made. As is
the case with the classical single-gimbal CMG null motion, it is still not possible to reorient between
any two arbitrary sets of η vectors because the internal momentum vector must be conserved. If
the momentum is not conserved, than some torque acts on the spacecraft.
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Figure 2: Four VSCMGs in a Pyramid Configuration

Numerical Simulations

Neglecting the VSCMG transverse and gimbal inertia effects not only simplifies the analysis and
simulation, but only directly provides the correct control input γ̇ required by CMGs. However,
including these small inertia terms and using the gimbal acceleration based steering law provides for
a more accurate simulation. Also, the physical torques required by the RW and CMG torque motors
can be obtained. Results for two simulations are presented in this section. The first simulation uses
the gimbal velocity based steering law in Eq. (56) to study the desired performance. The second
simulation uses the acceleration based steering law to verify that it does indeed track the velocity
based steering law.

A rigid spacecraft with some initial body angular velocity ω and non-zero attitude σ is to be
brought to rest at a zero attitude vector. The σ vector is assumed to be measured from a desired
attitude. Four equal VSCMGs are embedded in the spacecraft in a standard pyramid configuration
as shown in Figure 2. All simulation parameters are shown in Table 1. The angular velocity feedback
matrix [P ] is chosen to be of diagonal form with the entries shown in the table. The initial γ̇ value
is only used in the gimbal acceleration based steering law.

The VSCMG steering laws are compared to the single-gimbal CMG steering laws presented by Oh
and Vadali in Ref. 1. Their steering law combines the Singularity Robustness Steering Law (SRSL)

γ̇ = [D1]T
(
[D1][D1]T + αI3x3

)−1
Lr (77)

with a variable angular velocity feedback gain matrix [P ]. The parameter α depends on the singu-
larity index δ through

α = α0e
−δ (78)

The SRSL smoothly handles rank deficient [D1] matrices by having a slightly inaccurate matrix
inverse. To escape situations where the orthogonality index O has gone to zero, the required torque
is varied by changing the feedback gain matrix [P ] elements through

[P ] =

 P1 −δP δP
δP P2 −δP
−δP δP P3

 (79)

where the smoothly varying parameter δP is related to the orthogonality factor through

δP =

{
δP0

O0−O
O0

for O < O0

0 for O ≥ O0

(80)
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Table 1: VSCMG Simulation Parameters

Parameter Value Units
Is1 86.215 kg-m2/sec
Is2 85.070 kg-m2/sec
Is3 113.565 kg-m2/sec

σ(t0) [0.414 0.3 0.2]
ω(t0) [0.01 0.05 − 0.01] rad/sec

N 4
θ 54.75 degrees
Js 0.13 kg-m2

Jt 0.04 kg-m2

Jg 0.03 kg-m2

γi(t0) [0 0 90 − 90] deg
γ̇i(t0) [0 0 0 0] rad
Ω(t0) 14.4 rad/sec
[P ] [13.13 13.04 15.08] kg-m2/sec
K 1.70 kg-m2/sec2

Kγ̇ 1.0 sec−1

W 0
si

2.0
Wgi 1.0
µ 10−9

The parameter O0 was set to 0.01 and δP0 is 0.1. The comparison of the steering laws is not
done to establish that one control law is necessarily better than the other. They both have different
purposes. The modified SRSL method is included because it illustrates the inherent problems of
classical single-gimbal CMG steering laws and how they temporarily may not be able to provide
the required torque. The VSCMG steering law is designed to always provide the required torque.
However, as will be seen in the following simulation results, this does come at a price of increased
energy consumption.

The first simulation utilizes the VSCMG steering law in Eq. (56). As a comparison, the results of
using the modified SRSL in Ref. 1 are included too and are indicated by the dashed lines in Fig. 3.
Having the third and fourth VSCMG gimbal angles be initially +90 and -90 degrees each makes the
determinant δ zero at the beginning of the simulation as is shown in Figure 3.i. The determinant
becomes nonzero for a few seconds and then goes back to zero for a while. About 18 seconds into
the maneuver, the determinant becomes nonzero for the VSCMG steering law and then remains
nonzero for the entire maneuver duration of 500 seconds. The standard CMG steering law has a
similar behavior initially, but never becomes nonzero again after dipping back to zero at 5 seconds
into the maneuver. The reason for this is seen by studying the orthogonality index O in Figure 3.ii.
The index O is nonzero to begin with, allowing the CMG steering law to provide some torque onto
the spacecraft. However, as the δ becomes zero again O also goes to zero for the CMG steering
law, while the VSCMG steering law retains a nonzero O throughout the maneuver. The modified
feedback gain matrix [P ] does change Lr sufficiently that the spacecraft does approach the desired
attitude as is shown in Figure 3.iii. However, this occurs very slowly. Here is a situation where the
classical CMG steering law effectively remains trapped near a singular configuration which results
in a very degraded performance. On the other hand, both the attitude and body angular velocity
decay as described by the feedback law for the VSCMG as shown in Figures 3.iii and 3.iv. If it
were essential for the mission that the spacecraft would actually follow the prescribed trajectory, the
results of the classical CMG steering law clearly would be unsatisfactory, while the VSCMG steering
law stays right on track.

Figures 3.v and 3.vi show the gimbal angles and gimbal angle rate time histories. For both the
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Figure 3: Gimbal Velocity Based Steering Law Simulation
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VSCMG and CMG steering law the gimbal rates are relatively large at the beginning of the maneuver
where the CMGs remain close to a singular configuration. After about 6 seconds the CMG rates
remain almost zero because the steering law is essentially “entrapped” in the singular configuration.
Figure 3.vii compares the required torque Lr to the actual torque La produced by the CMG steering
law. The VSCMG actual torque is not shown in this figure because it is always equal to Lr. While
having the SRSL and the time varying [P ] matrix to help the standard CMG steering law and this
spacecraft would eventually reach the desired target state, this Figure shows clearly that the actual
torque produced at several time segments much less than the required torque. However, for the
VSCMG steering law to keep the spacecraft on track comes at the expense of spinning the RW up
or down on occasion. The RW spin speeds Ω are shown in Figure 3.viii. The RW mode is employed
twice when the determinant δ goes to zero. Once the CMGs are away for a singular configuration,
the spin speeds remain essentially constant.
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Figure 4: Gimbal Acceleration Based Steering Law Simulation

The second simulation uses the gimbal acceleration based steering law in Eq. (68) and the results
are shown in Figure 4. The gimbal acceleration were designed such that they would provide the
same performance as the velocity based steering law. Figures 4.i and 4.ii show the gimbal angle
rates for both the gimbal acceleration and velocity based steering laws. As expected, during the
initial phase of the maneuver the two gimbal rates are quite different as seen in Figure 4.i. This is
because the initial gimbal rates were set to zero and were not equal to the desired gimbal rates from
Eq. (56). However, as Figure 4.ii shows clearly, after about 10 to 20 seconds into the maneuver, the
gimbal rate performance of the acceleration steering approaches that of the desired velocity based
steering law. The corresponding gimbal angles for both cases are shown in Figure 4.iii.

The natural drawback to using the RW modes of the VSCMG to maneuver through classical CMG
singularities is evident when studying the work rate of the VSCMG steering law compared to the
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standard CMG steering law in Figure 4.iv. The work rate Ẇ for the VSCMGs is defined as

Ẇ =
N∑

i=1

|Ωiusi |+ |γ̇iugi | (81)

During the initial phase of the maneuver, where the determinant δ is very small, the energy con-
sumption to drive the RW modes is relatively large compared to the CMG modes. Away from this
singularity, the energy consumption is very comparable to that of the CMG steering law. The power
of RW torques is typically the limiting factor for the VSCMG devices to decide on how large a struc-
ture they could be used. However, for smaller spacecraft which may be able to afford temporary
RW modes, the VSCMG steering law provides interesting possibilities. Other authors have looked
into augmenting CMG cluster with thrusters to keep the spacecraft on track during near singular
configurations. Using the RW modes has several benefits over using thrusters. They provide a much
smoother response compared to using thrusters and will excite few flexible modes within the space-
craft. Also, RW don’t require propellant to operate, but use electrical power which can be readily
recharged from solar arrays.
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Figure 5: Reconfiguring the CMG Gimbals using VSCMG Null Motion

The third simulation shown in Figure 5 illustrates the use of the VSCMG null motion to reorient
the CMGs to a set of preferred gimbal angles where the final Ω was irrelevant (i.e. aRW = 1 and
aCMG = 1). The initial and preferred gimbal angles are (0, 0, 0, 20) degrees and (45, 45,−45,−45)
degrees respectively. The scalar ke was set to 0.1 and the weights Wsi

were held constant at 2. Note
that this gimbal angle reconfiguration cannot be performed with the classical CMG null motion
where Ω is held constant, because the initial configuration has an internal momentum vector and
the preferred configuration would have none. The performance of the classical CMG null motion is
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shown in Figure 5 through dashed lines. Figure 5.i clearly shows that the VSCMG null motion is able
to reconfigure the γ much closer to γf than the CMG null motion. The corresponding gimbal rates
γ̇, shown in Figure 5.ii, are smooth and remain relatively small compared to the maximum allowable
gimbal rates of 2 rad/s. The VSCMGs achieve this feat by varying the RW spin speeds. However,
as shown in Figure 5.iii, they do not have to be changed much to prevent a torque being applied
onto the spacecraft. The corresponding torque required by the RW motors is shown in Figure 5.iv.
The magnitude of these torques are of the same order as the RW torques required by the classical
CMG to maintain a constant Ω during a spacecraft reorientation. Therefore, no hardware change
would be required to use the VSCMG null motion to reconfigure the gimbal angles, only a change
in the feedback control law of the RW speeds.

Another simulation was performed where the initial gimbal angles were (0, 0, 0, 0) degrees as was
done in Ref. 23. Note that this reconfiguration can be accomplished with CMG null motion because
the initial and final configuration has the same internal momentum vector. The VSCMG null motion
was identical to the CMG null motion where Ω was held constant even though Wsi was held constant
at 2. The minimum norm inverse automatically used the more efficient CMG mode here.

Besides reorienting the gimbals with the VSCMG null motion, it is also possible to change the RW
spin speeds Ω to desired values by setting aRW = 1. The extra degrees of control allow the internal
momentum vector to be redistributed across the CMG and RW modes in an infinity of ways. A
limiting factor in how fast this reconfiguring can be done is the typically the maximum allowable
RW motor torques. The speed of the VSCMG null motion is directly control by the size of ke.

Conclusions

The equations of motion of a rigid spacecraft with N VSCMGs embedded are introduced, including
the physical control torques required by the gimbal and the RW motors. A globally asymptotically
stable feedback control law based on Lyapunov theory is developed to stabilize the spacecraft at a
given attitude. The velocity based steering law contains a weighted minimum norm inverse. The
RW mode weights depend on the proximity of the gimbal frame to a classical single-gimbal CMG
singularity. Away from such a singularity the RW mode weights are essentially zero and the VSCMG
performs like a CMG. Close to a singularity the CMG mode is augmented with the RW mode to
ensure that the required torque Lr is always precisely produced. An acceleration based steering law
is also presented that will yield the desired velocity based steering law performance and allows for
work rate studies. Further, the use of the VSCMG null motion to reconfigure the gimbal angles and
RW speeds is presented. The gimbal angles are able to be reoriented in a much more general manner
than was possible with the CMG null motion, thus making it easier to avoid singularities altogether.
The resulting torques required of the RW motors are typically well within the current capabilities
of single-gimbal CMG reaction wheel motors. Therefore, utilizing the VSCMG null motion in this
manner would only require a change the RW feedback law and not necessary a hardware redesign.
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