Current Status and Plan of Korean SLR System for Space Geodesy and Space Debris

2012. 9. 27

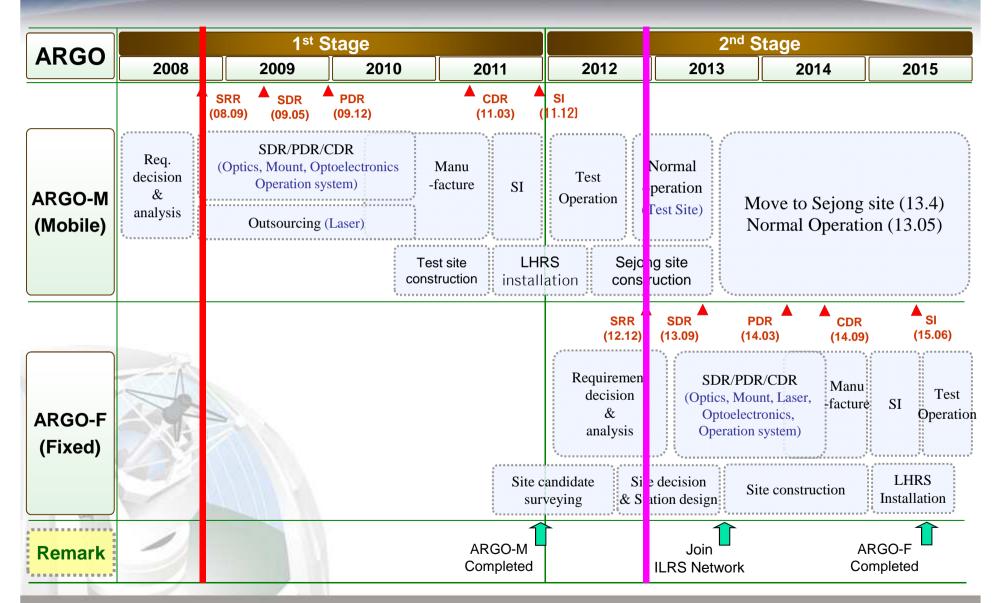
Hyung-Chul Lim

Korea Astronomy and Space Science Institute

4

Overview of Korean SLR Project

ARGO


- Name of Korean SLR project
- Accurate Ranging system for Geodetic Observation
- Development Period
 - 2008 2015 (8 years)
- Final Goal
 - One mobile system(40cm/10cm) : ARGO-M
 - One fixed system(1m) : ARGO-F

Objectives

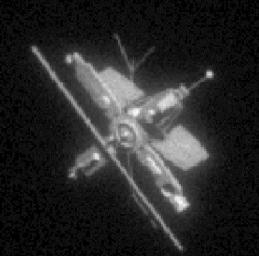
- Space geodesy research and GEOSS/GGOS contribution by laser ranging for satellites with LRA
- Precise obit determination(POD) through laser ranging measurement with mm level accuracy
- Contribution to international SLR societies and ILRS network participation

Milestone of ARGO Project

Major Characteristics of ARGO-M

- Capable of tracking satellites between 300km and 25,000km altitude
 - STSAT-2(300x1,500km), KOMPSAT-5, GPS, Galileo
- KHz laser ranging
- Daylight and night tracking
- Ranging Accuracy
 - Lageos : 10mm(SS), 5mm(NP)
 - Ground Target : 5mm(SS)
- Operational Functions
 - Controlled from the remote site
- Automated scheduling, planning and orbit prediction capability
 - Automatic ranging based on schedule and aircraft detection(using radar)
 - Automated diagnostic warning to monitoring system

• Etc


- Container and central locking dome (move by using a trailer)

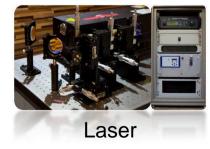
Major Characteristics of ARGO-F

- Capable of tracking satellites between 300km and 36,000km altitude
 - STSAT-2(300x1,500km), KOMPSAT-5, GPS, GEO satellites
- Daylight and night tracking
- Satellite imaging using adaptive optics
- Ranging Accuracy
 - Lageos : 4~6mm(SS), 1~2mm(NP)
 - Ground Target : 2~4mm(SS)
- Operational Functions
 - Fully automatic remote operation

Comparisons between ARGO-M and ARGO-F

Item	Parameter	ARGO-M	ARGO-F
Telescope	Optical path	Bistatic	Common Coude
	Rx and Tx telescope	40/10 cm	> 120 cm
	Primary mirror F-ratio	1.5	-
	Transmit beam divergence	5 ~ 200 arcsec	3 ~ 25 arcsec
	Max slew rate	20 deg/sec (Az) 10 deg/sec (El)	10 deg/sec (Az) 10 deg/sec (El)
	Tracking & Pointing accuracy	< 5 arcsec	< 1 arcsec
Detector	Туре	C-SPAD	MCP-PMT or C-SPAD
	Quantum efficiency	20%	-
Laser	Wavelength	532 nm	532 nm
	Pulse energy	2.5mJ @2 kHz	> 2mJ @2 kHz
	Pulse width	50 ps	10 ~ 30 ps
	Repetition rate of Operation	2 kHz	-
	Beam diameter @ Tx telescope	7.5 cm	> 80 cm
Etc	Timing system	Event timer	Event Timer
	Aircraft detection type	Radar	-

Configuration of ARGO-M

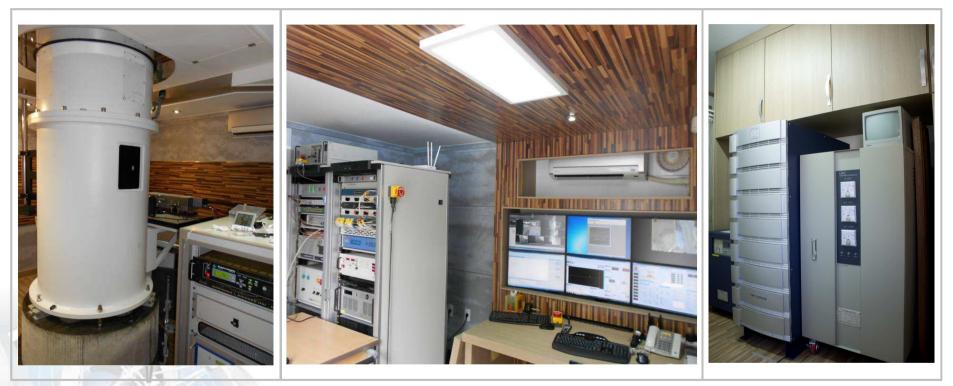


Operation System

Electronics

External Image of ARGO-M

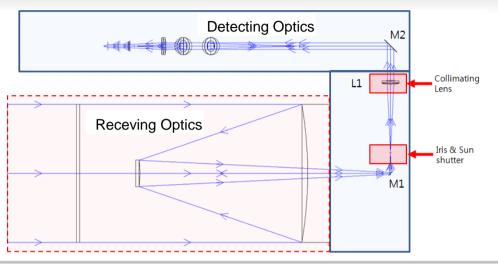
Test site at KASI HQ


Internal Structure of ARGO-M

Laser room

Operation room

Accessory room

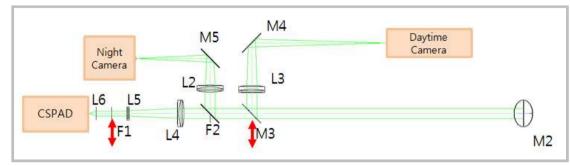


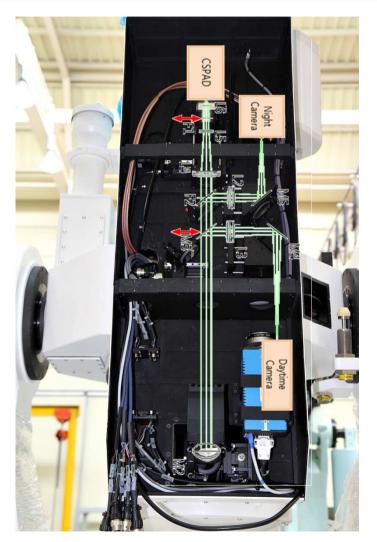
- Tracking mount
- Laser
- Optical table
- Ground target pillar
- Electronics : Event timer, GPS and etc
- Tracking mount servo system
- Operation system
- Radar controller(LCU)
- Firewall and network system

- UPS
- Power distribution unit
- Surge protection device

Status of ARGO-M System Integration (OPS)

Design of Receiving Optics

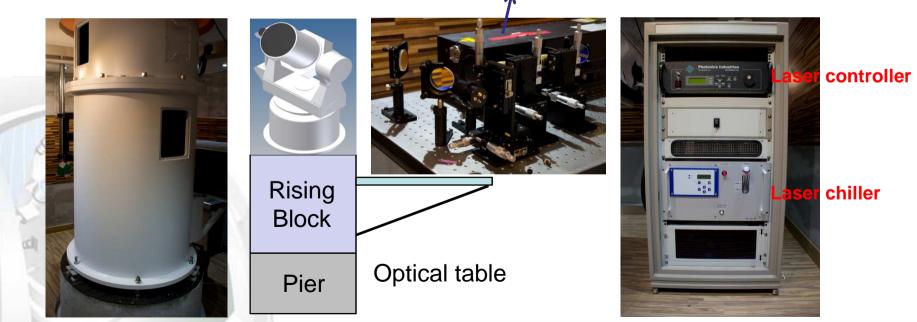



- Separate path(Tx/Rx telescope) to reduce back scattering
 - Aperture : 40cm Rx telescope & 10cm Tx telescope
 - FoV of Rx telescope : 5 arcmin
 - Reflectivity of primary and secondary mirror : >90% @532nm
- Iris
 - 3 holes and one blocked hole
 - the spatial filters(day, night and twilight) and the sun shutter
 - controlled by the operation system for hole choice
- Collimating Lens
 - controlled by the operation system for focusing of C-SPAD and camera

Status of ARGO-M System Integration (OPS)

Design of Detecting Optics

- Bandpass filter(F1): 0.3nm for daytime tracking
- Switching mirror(M3) :
 - change the beam path for daytime camera and C-SPAD
 - On : the daytime camera is activated
 - Off : C-SPAD and the nighttime camera are activated
- C-SPAD : Peso Consulting(Austria)
- Daytime camera : PCO1600
 - Resolution pixel : 1600 x 1200
 - Data interface : IEEE1394a, camera link, GigE Vision
- Nighttime camera : Watec WAT-120N
 - CCD size : 0.5 inch



The data contained in this document, without the permission of KASI, shall not be used, duplicated or disclosed, in whole or in part, for any purpose other than ARGO development.

13

RGL-532 Model (Photonics Industry, USA)

- Nd:YAG(laser material) and 532nm wavelength
- Pulse energy : 2.5mJ@2KHz
- Pulse width : 30ps
- Beam diameter : 1.9mm at the exit of laser head.
 - It is expanded to 25mm on the optical table using two beam expanders ٠
- Head size : $600 \times 192 \times 127$ mm
- M^2 : < 1.2

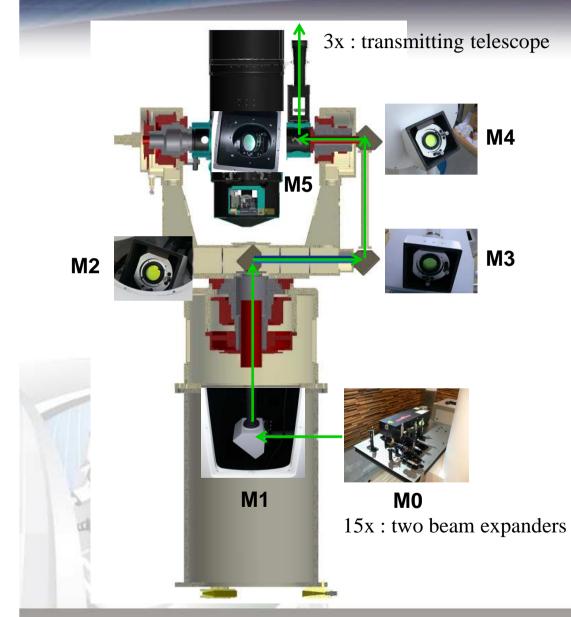
Laser head

Status of ARGO-M System Integration (LHRS)

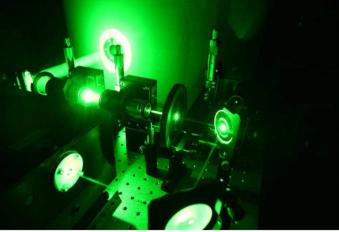
- Provides a means of detecting aircraft before they intersect a transmitted laser beam
- Laser beam is disable when aircraft is detected
- Made by Honeywell(USA)

Specification

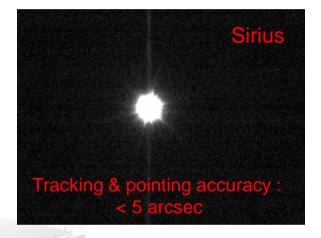
- Max. detection range : 40 km
- Beamwidth : 2.8 deg
- Position resolution : 0.09 deg for Az/EI
- Max. slew rate : 15 deg/sec for Az/EI

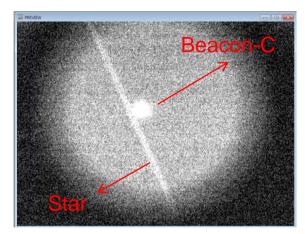

Current Status

- System installation and test : 2012.01
- Helicopter and fighter detection test : 2012.06

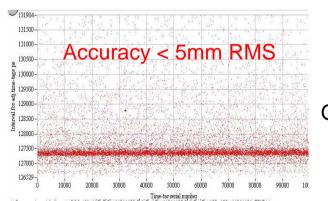


Optical Coude Path & Ground Target of ARGO-M





Current Status of ARGO-M Development


- Satellite optical tracking experiment for tracking performance verification
- Laser ranging experiment of ground target
- Waiting for an approval from Korean government to fire laser into the sky

Optical tracking Experiment

GT laser ranging Experiment

Future Plan – Fundamental Station

Composition

- VLBI, GNSS : NGII (National Geographic Information Institute)
- SLR, DORISS : KASI (Korea Astronomy & Space Science Institute)
- Location
 - Sejong city
 - ARGO-M will be moved to Sejong site in March 2013
- Normal operation : April 2013

Future Plan – Laser Tracking System of Space Debris (1)

Earth Orbiting Space Debris

- Object > 10 cm : 15,000
- Object > 1 cm : 350,000

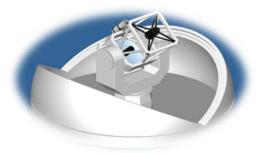
Damage from Space Debris Collision

- 5 ~ 15 mm : will damage or impair a spacecraft
- > 15 mm : will destroy a spacecraft

Korean Satellites

- Several satellites in LEO (Low Earth Orbit)
- In the face of collision risk against space debris

Laser tracking system for space debris monitoring


Future Plan – Laser Tracking System of Space Debris (2)

Development Strategies

- Development period : 2016 ~ 2018 (3 years)
- ARGO-F(Fixed SLR system) upgrade
 - New high power laser system installation
 - Operation system modification

Laser Tracking System of Space Debris

- Performance
 - Capable of tracking space debris > 10 cm
 - Tracking coverage : < 1,000 km
- Tracking accuracy : < 0.2 arcsec
- Laser Spec.
 - > 20 Hz repetition rate, > 5 J/pulse energy
 - < 5 ns pulse width, M^2 < 1.5

Summary

Three SLR Systems

- ARGO-M for space geodesy
- ARGO-F and laser tracking system of space debris for space surveillance

ARGO-M

- Develop period : 2008 ~ 2012
- System integration & optical alignment was finished
- It will be moved to Sejong site in March 2013 for the fundamental station

ARGO-F

- Development period : 2012 ~ 2015
- Capable of tracking satellites up to geostationary orbits
- Satellite imaging using adaptive optics
- Laser tracking system of space debris
 - Development period : 2016 ~ 2018
 - Capable of tracking space debris > 10 cm within 1,000 km altitude
 - ARGO-F upgrade

Thanks for your attention !!!

