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Transmission line model of the interaction of a long metal wire with the ionosphere
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An equivalent electric circuit model is used to study the electrodynamic interactions of long
orbiting metallic tethers with the ionospheric plasma and, in particular, to derive current and potential
profiles along bare metallic tethers. In contrast with other models, this approach is dynamic, enabling
both the transient behavior of the wire and its final equilibrium state to be derived. A comparison
with the results of other models indicates the advantage of the present approach, especially in
those cases where the internal resistance of the tether plays a major role in determining the current

and potential distributions.

1. INTRODUCTION

The electrodynamic interactions of long metallic
tethers in the ionospheric plasma have been the
subject of some recent studies [Dobrowolny, 1978;
Morrison et al., 1979]. Such studies consider the
equilibrium state of the tether and derive current
and voltage profiles for bare metallic tethers, taking
into account the effect of the wire resistance R.
In the case of Dobrowolny [1978], a numerical
procedure is developed, starting with the current
and voltage profiles for a perfectly conducting tether
(R = 0), which are derived by imposing no net
accumulation of charge on the tether. Then a small
resistance is introduced in the ordinary Ohm’s law
and gradually increased until the profiles in presence
of the actual tether resistance are obtained. On
the other hand, Morrison et al. [1979] use a simpli-
fied model for particle collection and derive a
differential equation for the potential, which is
amenable to an analytical solution.

The present work differs from the previous ones
in that it is a dynamic formulation that derives the
equilibrium state of the wire as the end product
of the dynamic evolution of the system, starting
from a set of initial conditions. More specifically,
the model is based on an electric circuit equivalent
of the tether, in which the electric charge at a set
of points along the tether is obtained as a function
of time by numerical integration of the equations
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giving the rate of change of charge at each point.
This approach allows the transient behavior of the
wire to be obtained, as well as the equilibrium state.

This new method of computing charge distribution
on a tether has been added to a large computer
model that calculates the dynamics of long wires
in space, taking into account the effects of electro-
dynamic forces (induction drag) on the various
elements of the wire [Anderson et al., 1979].

Rather than going into details of the dynamical
motions of the wire, we limit ourselves to the
derivation of current and potential profiles for a
moving tether assumed to be in a ‘straight line
configuration. Also, as in the previously quoted
works, we implicitly assume a negligible impedance
of the circuit external to the tether. The considera-
tion of such circuit is at this moment a quite open
problem [see Drell et al., 1965; Dobrowolny et al.,
1979]-.

The plan of the presentation is the following:
an explanation of the equivalent circuit of the tether
and of the computational method used is given in
section 2. Section 3 gives some results on the
transient buildup of potential and currents in a
metallic tether coated with dielectric. This dynami-
cal case could not be reproduced by any of the
previous methods. Section 4 obtains current and
potential profiles in equilibrium for a bare metallic
tether and discusses them as a function of the
tether’sinternal resistance. The comparison of these
results with those of previous methods (section 5)
leads to criticisms of such methods and indicates
the advantage of the present formulation, especially
in situations where the tether’s internal resistance
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Fig. 1. Equivalent electric circuit of an orbiting wire.

is high and therefore crucial in determining the
current and potential profiles.

2. EQUIVALENT ELECTRIC CIRCUIT OF THE
ORBITING WIRE

The tether has been modeled as a conducting
cylinder with distributed resistance and capacitance.
Although inductance could also be included, it has
not been because of the low value of the inductive
reactance per unit length compared to the other
reactances. The electrical state of the wire is speci-
fied by giving the electric charge on each of the
discrete points representing the wire. The electric
charge as a function of time is obtained by numerical
integration of an equation giving the rate of change
of charge at a given point. If inductance were
included, it would also be necessary to integrate
the current by using an expression for its rate of
change.

The transmission line model of the orbiting wire
uses the equivalent electric circuit, shown in Figure
1, to represent the wire itself. Each node in the
circuit diagram represents the lumped propertics
of a section of the wire. Thus we associate with
node i a resistor R, and a capacitor C,, as indicated.
Besides, one must include a conductance o,, which
represents the leakage current Q, from the plasma
to node i. This is a noniinear function of the
electrostatic potential ¥, due to the charge g,

Q,=f(¥V) 1
which we will discuss and give explicitly in sections
3 and 4. In turn, the potential V, is obtained from

V.=4q,/C, )

The calculation of the circuit analogue of Figure
1 proceeds in the following way. Charges g, are
initially given (at ¢+ = 0) on the capacitors C,. The
further time evolution of such charges is then
computed by integrating the equation

dg,fdt=1,_,—1I+ Qi 3

where the internodal current I, is obtained from
Ohm’s law:

L=[(V,- Vi,)+(v,xB,+ E)*ALl/R, )]

Here v,= V. — V.., where V_, ,is the orbital
velocity of the node (i.e., the shuttle velocity of
~7,7 km/s) and V_, is the rotational velocity of
the magnetic field (equal to the earth’s rotational
speed of ~0.46 km /s). Furthermore, E, represents
an ionospheric electric field perpendicular to the
lines of force of the earth’s magnetic field, and
Al, is the distance between the i + 1 — th and
the ith node. After a transient phase the solutions
of (3) converge to an equilibrium where g4, = 0,
and hence the sum of the currents into each node
is zero (this, in fact, provides a check on having
converged to equilibrium in the computation}. The



duration and features of the transient dynamical
phase depend, of course, on the values which are
given to the capacitors C,, On the other hand, the
equilibrium distribution of charges and currents are,
of course, independent of such capacitance values,
The capacitance C, would be easily calculated for
the particular case of a metallic tether coated with
dielectric. There we could write

C, = CAl, &)

and use for the capacitance per unit length C, the
following expression:

C= [2mey/inry/r.}] (©)

where r, is the radius of the metallic tether (without
coating) and r, the radius of the coated tether
(external radius). Capacitance is, on the other hand,
not so easily calculated for the case of a bare metallic
tether because of the difficulty of calculating the
" radial distribution of electric field surrounding the
tether. In the following we will give for the case
of a bare metallic tether only equilibrium results
and use in these calculations (5) and (6), with 7,
- r, of the order of the Debye length (although
the dimension of the sheath surrounding the tether
can be much larger than this for the case of high
potential, this choice will not affect the equilibrium
quantities).

A different approach of computation is followed
to deal with the idealized case of a perfectly
conducting tether (R = 0), by which we mean, more
physically, a value of resistance so small that it
is not affecting the equilibrinm values of potential
and current along the tether.

For the case R = 0, (3) cannot be used, and
in fact, the approach previously described in the
limit R — 0 would be giving a transient phase of
infinitesimal duration A¢ — 0, where the current
value goes to infinity. Physically, what happens
when a wire of negligible resistance is placed into
orbit is that the electrons in the wire immediately
(At — 0) redistribute themselves until the forces
that are due to charge buildup balance the external
forces arising from the electric and magnetic fields.
The equilibrium state is not, however, characterized
by an infinite current value and, in fact, is deter-
mined not by Ohm’s law but by the condition of
no net charge accumulation on the tether. This
means that

20,=0 , - (D
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As, in such a perfectly conducting case, there is
only leakage to the plasma, one has 20, = =4,
and hence differentiating (2),

EQi =2C; Vi &

On the other hand, from (4), in the limit R, —
0 and in order to have a finite current, we obtain
the relation

Vi= Vi +(v,xB,+ E)-A1,=0 ®

which in the case of a straight wire configuration
just says that the potential, in the absence of chmic
losses, is linearly distributed along the wire, As
potential differences are fixed by (9), ¥, will be
the same for all nodes, and therefore from (8),

V:' = EQJ/ECf (10

The equilibrium configuration for a perfectly con-
ducting wire is thus determined by starting from
an initial value of the potential at one node. Then
(9} gives the initial potential at all other nodes,
and (10), with such values as initial conditions,
follows the potential ¥, as a function of time until
all ¥,’s go to zero. The search for this final state
(as is seen more clearly for the case of a straight
wire) is equivalent to a search for the point of
the tether at zero potential with respect to the
plasma.

For any equilibrium potential distribution the
current /, in the wire is obtained as follows: for
the first node, I, = @, — ¢,, where ¢, = C,V,.
The current in the rest of the wire can be obtained
by using the following equation:

Ii=1_,+ Qi_'j':

at successive nodes.

The above formulation for the problem of current
and potential distribution in a pérfectly conducting
tether is quite general and can be used for any
position assumed by the tether in the course of
its orbiting in the ionosphere, i.e., for any velocity
and orientation with respect to the magnetic field
of the various lumped segments of the tether.

In the cases to be presented here, we will,
however, refer to the simpler situation of a straight
wire aligned with the z axis, with the lower end
at the origin, moving at constant velocity v, perpen-
dicular to a constant magnetic field B (see Figure
2). We also assume that the natural electrostatic
field in the ionosphere is negligible. For such geo-
metry, and referring again to the R = 0 case, any
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Fig. 2. Geometry of the tether’s motion with respect to the
earth’s magnetic field.

charge collected along the perfectly conducting wire
is immediately distributed so as to maintain a linear
voltage distribution. In such a case, (9) becomes

(11

where z, is the point where the wire is at plasma
potential. For eastward motion of the tether the

V.= Bv,(z,— 2,) = q,/C;

upper end will be positive with respect to the lower
end.

The rate of change of z, depends on the rate
of change of the total charge of the wire and can
thus be obtained from (11) as

Iy = _zq"r Bvoz C,
i 1

This equation for Z, can be used to determine z,
as a function of time, starting from some initial
value.

(12}

3. TRANSIENT BUILDUP OF CHARGES AND
CURRENTS IN A METALLIC TETHER
COATED WITH DIELECTRIC

We consider here a metallic tether coated with
dielectric. Charges are collected from the plasma
at two conducting electrodes at the end, which in
the calculations we took as spheres. In practice,
in space applications these could be the conducting
part of the Shuttle at one end and a conducting
balloon on the other, In the steady state, one has
a constant current and a linear potential distribution
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Fig. 3. Plot of the functionf(4*) (see (13)) defining the collection efficiency of spherical electrodes.



along the tether. We will show some examples of
the transient approach to such a steady state,
obtained by calculating the circuit analogue de-
scribed in section 2.

For the currents attracted at the two spherical
electrodes (either electron or ion currents according
to their polarity), we have used

;=1 f(d%)

where j = i, e for ions and electrons, respectively,
b* = |eV/kTe|(\,, /r)*/?,in which \ , is the Debye
length and V is the electrode potential, and where

(13)

ieo = ; nlelvthcA

(14)

i,o=%nZ|e|VUA (15)
are the electron and ion currents, respectively,
which are geometrically collected, 4 being the
collecting area. For the electrons we have a thermal
collection, as the electron thermal velocity v, is
much larger than the tether (Shuttle) velocity (v,
= 7.8 km/s). For the ions, on the other hand, the
opposite is true, and consequently, i,, is essentially
a ram current.

The function f(¢*), which is given in Figure 3,
was calculated elsewhere [Anderson et al., 1979]
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Fig. 4. Wire current versus time during the capacitive charging
phase.
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Fig. 5. Electrostatic potential of the balloon versus time during
the capacitive charging phase.

by extrapolating results of Alpert et al. [1965] and
Linson [1969] for particle collection from elec-
trodes at high potentials (eV/kT > 1). As is seen
from Figure 3, at such large potentials the current
can be much higher than the geometrical currents
(14) or (15).

As far as capacitance of the end electrodes is
concerned, in the calculations presented here we
have been using C = 4mwe,r,r,/(r, — r,), the
capacitance of a spherical condenser, by choosing
r, — r, of the order of the Debye length. This is
not correct in the case of an electrode at high
potential, where the dimensions of the charged
sheaths surrounding the electrode could be many
Debye lengths [Alpert et al., 1965; Mlodnosky and
Garriot, 1963] . However, the purpose of the results
presented here is that of illustrating the capacity
of the circuit analogue method to perform transient
calculations and that of illustrating the general
features of such transients rather than describing
a given case in an accurate quantitative way.

Some typical results are illustrated in Figures 4-7.
These results were obtained using a computer model
that integrates the dynamics of long wires in space
[Anderson et al., 1979]. The physical system con-
sists of a 10-km, coated wire with a 10-m radius
balloon at the lower end and a 1.668-m radius balloon
at the upper end. The upper balloon, whose size
is chosen to approximate the area of the metal
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Fig. 6. Wire current versus time as the system establishes equilibrium with the ionosphere.

surfaces of the space shuttle, is at an altitude of
220 km in an equatorial orbit. The resistance of
the wire is 1909.859 & (piano steel wire). The
capacitance used for the upper balloon is 0.85 X
1077 F, and the capacitance of the lower balloon
is 0.303 x 10 ° F. The circuit analogue used in the
calculations consists of only two nodes representing
the balloons with a resistor between them. The
capacitance of the wire has been neglected.
Figure 4 shows the wire current versus time during
the first millisecond. Figure 5 shows the voltage
of the upper balloon and the lower balloon for the
same time period. The initial charge on the capaci-
tors is zero. Since there is no initial electrostatic
potential difference, the current starts out at the
resistively limited value of 1.174 A, obtained by
dividing the induced voltage of 2242.3 V by the
wire resistance. As current flows the balloons
become charged up, as shown in Figure 5. Since
the capacitance of the upper balloon is much smaller
than that of the lower balloon, it acquires a large
positive potential, and the lower balloon acquires
a small negative potential. As the balloons become
charged, the electrostatic potential opposes the
induced voltage, and the current drops. At the end
of the first millisecond the upper balloon is at 1224.9
V and is collecting an electron current of —0.45470
A. The lower balloonis at —164.4 V and is collecting
an ion current of 0.02624 A. The wire current is

0.44662 A, giving a resistive potential drop of 853
V. This first phase is the capacitive charging of
the system. If there were no leakage to the plasma,
the system would be essentially in equilibrium at
the end of the first millisecond. However, using
the formulas for collection efficiencies [see (13)-(15)
and Figure 3}, we see that the upper balloon is
collecting a much larger electron current than the
ion current collected by the lower balloon, so that
the total charge is changing,.

Figures 6 and 7 show the current and potentials
of the system during the first 0.07 s. On this scale
the part of the curve corresponding to Figures 4
and 5 is compressed into a small region at the left.
The positive charge acquired by the upper balloon
during the capacitive charging of the system is being
neutralized by the large current of electrons collect-
ed from the plasma. Meanwhile, the lower balloon
is becoming more negative as aresult of the electron
current from the wire, which is much larger than
the ion current collected from the plasma. The
system evolves until the currents collected by the
two balloons are equal in magnitude and opposite
in sign and equal in magnitude to the wire current.
At that point the total current into each node is
zero, and the system has reached equilibrium, At
the end of the first 0.07 s, the upper balloon is
at +3.4614 V and is collecting an electron current
of —0.069402 A. The lower balloon is at
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Fig. 7. Electrostatic potential of the balloon versus time as the system establishes equilibrium with the
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—0.2104.3713 V and collecting an ion current
0.068731 A. The wire current is 0.069396 A, and
the system is nearly in equilibrium at this point.

4. EQUILIBRIUM CURRENT AND POTENTIAL
PROFILES IN BARE METALLIC TETHERS

The results presented in this section refer to a
tether of length L = 100 km and radius » = 0.5
mm. We also use v, = 7 km/s and B, = 0.5 G,
giving a total potential drop A¢, for a perfectly
conducting wire of 35 kV. (Actually, for a Shuttle-
borne tether, more appropriate values would be
B = 0.3 G and Ad, = 20 kV. We have employed
the above values here in order to compare our results
with those of Dobrewolny [1978].) Finally, we refer
to the case of a tether deployed downward from
the shuttle at a nominal altitude of 220 km and
use 7 = 6.28 X 10" m™* for the electron density
and T == 0.18 eV for the electron temperature.

The current per unit length attracted from the
" plasma by a point of the wire at potential ¥ is
calculated from

a ” 2 2
i} =12r neZ, : U+

. {2 \/ Yoea- erf\/-n_J)e“f'i| (16)
T

where e is the electron charge, v, is the thermal

velocity of species j particles (j = i for ions and

J = efor electrons), Z, = 1 for singly ionized oxygen

atoms in the ionosphere, and v, is a dimensionless

potential given by

a eV /kT,|
14 @/ w0/ vg,)

The attracted current will be an ion current for
those portions of the wire where ¥ < 0 and an
electron current where ¥ > 0. The current repelled
by the wire is given by

ki 2 2 v
r
i; = |2r neZ,| Ivlhj + vge

The function f(V;) introduced in (2), i.e., the total
current from the plasma, will then be the ion current
minus the electron current.

Equation (16) for the attracted current corre-
sponds to the orbital-motion-limit approximation of
Langmuir and Mott-Smith [1961]. It is equivalent
to the formulation used in Dobrowolny [1978] and
others [Hoegy and Wharton, 1972; Shkarofsky,
1972]. A discussion of the validity of this approx-

(17

Wy

(18)
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Fig. 8. Voltage, current, and charge distribution for a 100-km bare wire with zero resistance.

imation for the case under consideration here is
contained in Dobrowolny et al. [1976].

In the limit of very high potential, eV/kT =
1, which would be expected along most of the tether,
the attracted current simplifies to

i; = ernlelvthj v, 19

which corresponds to the model used by Morrison
et al. [1979] and, indeed, is a very good approxima-
tion everywhere along the wire except in the imme-
diate vicinity of zero potential.

In Figure 8, we show the profiles of voltage,
current, and charge distribution corresponding to
a perfectly conducting tether. The maximum current
is ~4.4 A. The zero potential is found about 3
km from the top of the 100-km wire; most of the
wire therefore is negative with respect to the plasma,
with only the top 3 km being positive. This is in
agreement with what is found by using Do-
browolny’s equations for the same parameters.

Figure 9 gives the profiles with the resistance
of the wire taken into account; this case refers
to an alloy steel wire of resistivity p = 0.15 p.Q0 m,
and thus the total resistance of the wire is R =
19.1 k). As seen, values of the maximum current
(~1.75 A) and potential are reduced, but the general

behavior of the profiles remains the same as in
the case of zero resistance.

We repeated our dynamic calculation using the
parameters from Dobrowolny’s [1978] Figures 5
and 6. The voltage profile is similar to his Figure
6, but the current profile is quite different. Rather
than current spikes or reversals, we get a current
that is constant at ~1.8326 A for a section about
70 km long in the middle of the wire and goes
to zero at both ends (the 1.8326-A current corre-
sponds to the current »,BL/R determined by re-
sistance). We discuss these discrepancies in the
next section.

Assuming now a resistivity of p = 1.5 pQ m,
i.e., a total resistance of 191 k{ (stainless steel
wire), we obtain the profile shown in Figure 10.
For such high resistance, the current is resistivity-
limited to the maximum value i, = 0.18326 A
over most of the wire, which is what is obtained
from

v,BL
R

g =

20)

In other words, there is no current leakage from
the plasma along most of the wire. Correspondingly,
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the potential in such a resistivity-limited section
is very small (—0.6233 V) and g = 0.

Variations in the potential occur only in two
relatively narrow regions at the ends of the wire,
i.e., over approximately the first 10 km of the lower
end (with a maximum negative potential at the lower
end of —2600 V) and the last kilometer from the
top (with a maximum value of ~15 V). Notice that
because of the small value of the potential over
most of the wire, the determination of the point
where the potential is zero becomes quite critical.
Within the limits set by the finite resolution of the
method (the smallest segment of the wire used in
the computation was 1 km), we conclude that the
point of zero potential is located within the last
kilometer from the top.

5. COMPARISON WITH OTHER METHODS

The difference between the current profiles ob-
tained by the new method for resistivity-limited
cases and those given in Dobrowolny [1978]
prompted a reexamination of the iterative method
used by Dobrowolny. In his approach, he started
with current and potential profiles corresponding

to R = 0 and arrived at the real value of the wire’s
resistance by gradually increasing the resistance,
An important criticism of that method can be seen
by looking at Ohm’s law in the following form:

v R
; = u,B — E i(z) 2
The resistivity-limited current
i) = 1= 2 @)
R
is a solution of (14) corresponding to
& = 23)
dz

However, it is not possible for such a solution to
be valid for the entire wire, because the charge
balance could not be satisfied unless R = w and
i, = 0, as in the case of a dielectric wire. For
R large but finite, we would expect (22) and (23)
to hold over a large portion of the wire, but in
restricted regions, toward the two ends, we would
find variations in the potential, as indicated by the
V profile in Figure 5.
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Now, in the jth step of the iterative method,
(21} can be replaced by

dv, dV,, AR

L= - j 24
dz dz L b1 @9

where V (z)is the potential profile obtained in terms
of the profiles of potential ¥,_, (z}and current i _1(2)
from the previous iterative step, and AR, is the
increment in resistance at the jth step. At each
stage of the iteration we must make sure that

dv;

—=0 25
o (23)

i.e., that the potential maintains monotonic behav-
ior.

Clearly, if we want to approach a resistivity-limit-
ed case, where (23) would be approximately true
over a large portion of the wire, condition (25)
requires that (24) be calculated in infinitesimaily
small iterative steps. The iterative method, then,
becomes completely impractical in cases where the
current is resistivity limited, such as that treated
in Dobrowolny [1978]. We now believe that the
spikes and reversals obtained iteratively in Do-
browolny’s current profile were mainly due to the
fact that from a certain point, the iteration steps
were not small enough to satisfy (25) and hence
caused incorrect results.

In Figure 11, we show current and potential
profiles obtained with the iterative method (solid
lines) for R = 1 kQ (a case not resistively limited)
and the same profiles obtained with the transrmission

line model presented in this paper (dashed lines
and crosses). We see that there is good agreement
between the two results. In particular, agreement
for the potential is so good that the curves are
indistinguishable; the crosses are the numbers ob-
tained with the transmission line model. However,
the present dynamic formulation which is able to
test correctly the resistive cases and in addition
calculate transient behavior clearly supercedes the
previous work of Dobrowolny.

It should also be pointed out that the differential
problem solved by Morrison et al. [1979] does not
appear directly applicable to cases of very high
resistance. The reason is that their model for the
flux of attracted particles (see (12)) is correct only
forlarge potentials and hence fails for those portions
of the wire that are resistivity limited and where
the potential is very small (¥ = —0.622 V in Figure
10). Even in these cases, however, their model can
be employed (see appendix) to determine the ap-
proximate thickness of the small regions at the
extreme ends of the wire, where the potential
variations are localized. Note that the cases treated
by Morrison et al. [1979] are not resistivity limited
in the sense of Figure 10. We show in Figure 12
results obtained with the transmission line model,
for which we used the same parameters as in Figure
b of Morrison et al. [1979]; our results agree well
with theirs.

In conclusion, with respect to methods previously
used, the transmission line model presented here
appears to be the only one capable of calculating
current and potential profiles for cases of high
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resistance of the tether, such that the current has
the resistivity-limited value given by (22) over a
large portion of the tether. At the same time, our
model agrees well with the other two methods when
the tether resistance has only moderate effects.

APPENDIX: AN APPROXIMATE BOUNDARY LAYER
SOLUTION FOR HIGH-RESISTANCE TETHERS

Differentiating (21) and using (19) for the current
of attracted particles, if the repelled particle con-
tribution to the current is neglected, we get the
differential equation for V used by Morrison et
al. [1979]. In dimensionless terms this can be
written

dd B
E’T; = —(§)"? (A1)
where { = z/L, ¢, = |eV/kT,[, and
P AT, 1
g = ——t—— (A2)

" Ren 2r, Loy,

Here, j = i in the region of negative potential,
and j = e in the region of positive potential.

As indicated in the main body of the paper, (Al)
cannot be used for cases of high resistance for
that portion of the tether where the potential is
very small and the current is resistivity limited.
1t can, however, still be used as an approximation
for the restricted regions where there are potential
variations (see Figure 10). For high resistance we
havee, < 1, and (Al)clearly gives rise to a boundary

layer problem [Cole, 1968]. For example, for R -

= 191 kQ (the value for the profiles of Figure 10)
we have g, = 4.3 X 10 and e, = 1.1 x 1075,
Introducing the following variable
gj = C/EJ (A3)

to obtain variations over very short intervals, (Al)
becomes

1 d%, )
- =—)"? Ad
. g $,) (A4
so that on the scale [, we get, to the lowest order,
ae,
=0 Aj
ac (A3)

and hence near the ends of the wire there will be
two regions of approximately linear variation of
the potential. Furthermore, we know the slope of

the linear variation, because as the current goes
to zero at the extremes of the wire, (21) gives

(dV) (dV) BL 46)
— ={— =9,
dt).o \dt/., '

This information is now sufficient to estimate
the approximate thickness of the two regions where
the potential variations are localized and the current
is below the resistive value (20). We can obtain
the widths AZ, and AZ, of the negative and positive
regions, respectively, from the condition that the
currents collected in each of them must equal the
resistive current (20). In this way, we get

roLnle|vg, $y/ (ALY = ig (AT)

where &, = v,BL/kT. We then see that Af, scales
as R™%?; furthermore, for T ~ 0.18 ev, Az,/Az,
~ 40 (i.e., the negative region is always wider than
the positive one). Using the parameters from the
calculations in Figure 5, we find

Az,~8km Az, ~200m (A8)

Taking into account the approximate nature of the
solution, which is really validin a layer much smaller
than Az, these results compare rather well with
those obtained with the transmission line model
and shown in Figure 10.

Finally, using the two widths and the slope z,B
of the approximate potential variation in these two
regions, we can estimate the values of the potential
at the two extremes of the wire as

VEz=0)=—-28kV ¥V(E=100km)=70V (A9)

The value at z = 0 is in very good agreement with
that in Figure 10. Figure 10 gives a lower value
of the potential at z = 100 km, because the region
of nonzero potential is about a factor of 5 smaller
than the I-km resolution used in the transmission
line model.
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