
Predicate Logic

(SE 212 Tutorial 5)

Amin Bandali1

Wed Oct 9, 2019

1
bandali@uwaterloo.ca

Today's plan

• do some semantics questions from homework 4

• do some ND questions from homework 5

Today's plan

• do some semantics questions from homework 4

• do some ND questions from homework 5

h04q05

Provide a counterexample to show that the following argument is

not valid and demonstrate that your answer is correct.

forall y : M . exists x : N . p(g(x), y)

|=

exists z : M . p(z, z)

h04q05 (cont'd)

Domain:

M = {m1, m2}

N = {n1, n2}

Mapping:

Syntax | Meaning

g(.) | G(n1) := m1

| G(n2) := m2

p(., .) | P(m1, m1) := F

| P(m1, m2) := T

| P(m2, m1) := T

| P(m2, m2) := F

h04q05 (cont'd)

Premise:

[forall y : M . exists x : N . p(g(x), y)]

= [exists x: N. p(g(x), ^m1)] AND

[exists x: N . p(g(x), ^m2)]

= (P(G(n1), m1) OR P(G(n2), m1)) AND

(P(G(n1), m2) OR P(G(n2), m2))

= (P(m1, m1) OR P(m2, m1)) AND

(P(m1, m2) OR P(m2, m2))

= (F OR T) AND (T OR F)

= T

h04q05 (cont'd)

Conclusion:

[exists z: M . p(z, z)]

= P(m1, m1) OR P(m2, m2)

= F OR F

= F

h04q06

Express the following sentences in predicate logic. Use types in your

formalization. Is the set of formulas consistent? Demonstrate that

your answer is correct using the semantics of predicate logic.

All programmer like some computers.

Some programmers use MAC.

Therefore, some people who like some computers use MAC.

h04q06 (cont'd)

All programmer like some computers.

Some programmers use MAC.

Therefore, some people who like some computers use MAC.

Formalization:

programmer(x) means x is a programmer

usesmac(x) means x uses MAC

likes(x, y) means x likes y

forall x: Person . programmer(x) =>

exists y: Computer . likes(x, y),

exists x: Person . programmer(x) & usesmac(x)

|-

exists x: Person .

(exists y: Computer . likes(x, y) & usesmac(x))

h04q06 (cont'd)

These sentences are consistent. Here is an interpretation in which

all the formulas are T:

Domain:

People = {John}

Computer = {MacPro}

Mapping:

Syntax | Meaning

programmer(.) | programmer(John) = T

likes(.,.) | likes(John, MacPro) = T

usesmac(.) | usesmac(John) = T

h04q06 (cont'd)

formula 1:

[forall x: Person . programmer(x) =>

exists y: Computer . likes(x, y)]

= [programmer(^John) =>

exists y: Computer . likes(^John, y)]]

= programmer(John) IMP likes(John, MacPro)

= T IMP T

= T

formula 2:

[exists x: Person . programmer(x) & usesmac(x)]

= programmer(John) AND usesmac(John)

= T AND T

= T

h04q06 (cont'd)

formula 3:

[exists x: Person . (exists y: Computer .

likes(x, y) & usesmac(x))]

= [exists y: Computer .

likes(^John, y) & usesmac(^John)]

= likes(John, MacPro) AND usesmac(John)

= T AND T

= T

h05q01a

If the following arguments are valid, use natural deduction AND

semantic tableaux to prove them; otherwise, provide a

counterexample.

forall x . s(x) | t(x),

forall x . s(x) => t(x) & k(c, x),

forall x . t(x) => m(x)

|-

m(c)

where c is a constant

h05q01a (cont'd)

#check ND

forall x . s(x) | t(x),

forall x . s(x) => t(x) & k(c, x),

forall x . t(x) => m(x)

|-

m(c)

h05q01a (cont'd)

1) forall x . s(x) | t(x) premise

2) forall x . s(x) => t(x) & k(c, x) premise

3) forall x . t(x) => m(x) premise

4) s(c) | t(c) by forall_e on 1

5) s(c) => t(c) & k(c, c) by forall_e on 2

6) t(c) => m(c) by forall_e on 3

7) case s(c) {

8) t(c) & k(c, c) by imp_e on 5, 7

9) t(c) by and_e on 8

10) m(c) by imp_e on 6, 9

}

11) case t(c) {

12) m(c) by imp_e on 6, 11

}

13) m(c) by cases on 4, 7-10, 11-12

h05q01b

Is this formula a tautology?

|- (exists x . p(x)) => forall y . p(y)

h05q01b (cont'd)

No, this formula is not a tautology. Interpretation:

1) Domain = {a, b}

2) Mapping:

Syntax | Meaning

p(.) | P(a) = T

| P(b) = F

Conclusion:

[(exists x. p(x)) => forall y. p(y)]

= (P(a) OR P(b)) IMP (P(a) AND P(b))

= (T OR F) IMP (T AND F)

= T IMP F

= F

h05q01d

Is this argument valid?

forall x . p(x) | q(x),

forall x . !p(x)

|-

forall x . q(x)

h05q01d (cont'd)

#check ND

forall x . p(x) | q(x), forall x . !p(x) |- forall x . q(x)

1) forall x . p(x) | q(x) premise

2) forall x . !p(x) premise

3) for every xg {

4) p(xg) | q(xg) by forall_e on 1

5) case p(xg) {

6) !p(xg) by forall_e on 2

7) q(xg) by not_e on 5, 6

}

8) case q(xg) {}

9) q(xg) by cases on 4, 5-7, 8-8

}

10) forall x. q(x) by forall_i on 3-9

Announcements

• no tutorial next week (Oct 16) (reading week)

• no tutorial the week after (Oct 23) (midterm marking)

