
APMO 2024 – Problems and Solutions

Problem 1
Let ABC be an acute triangle. Let D be a point on side AB and E be a point on side AC such
that lines BC and DE are parallel. Let X be an interior point of BCED. Suppose rays DX
and EX meet side BC at points P and Q, respectively such that both P and Q lie between B
and C. Suppose that the circumcircles of triangles BQX and CPX intersect at a point Y 6= X.
Prove that points A, X, and Y are collinear.

Solution 1

A

B C

D E

X

PQ

Y

Z ′

Z

Let ` be the radical axis of circles BQX and CPX. Since X and Y are on `, it is sufficient to
show that A is on `. Let line AX intersect segments BC and DE at Z and Z ′, respectively.
Then it is sufficient to show that Z is on `. By BC ‖ DE, we obtain

BZ

ZC
=
DZ ′

Z ′E
=
PZ

ZQ
,

thus BZ ·QZ = CZ · PZ, which implies that Z is on `.

Solution 2

A
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X

PQ

Y

S
T
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Let circle BQX intersect line AB at a point S which is different from B. Then ∠DEX =
∠XQC = ∠BSX, thus S is on circle DEX. Similarly, let circle CPX intersect line AC at a
point T which is different from C. Then T is on circle DEX. The power of A with respect
to the circle DEX is AS · AD = AT · AE. Since AD

AB
= AE

AC
, AS · AB = AT · AC. Then A is

in the radical axis of circles BQX and CPX, which implies that three points A, X and Y are
collinear.

Solution 3
Consider the (direct) homothety that takes triangle ADE to triangle ABC, and let Y ′ be the
image of Y under this homothety; in other words, let Y ′ be the intersection of the line parallel
to BY through D and the line parallel to CY through E.

A

B C

D E

X

PQ

Y
Y ′

The homothety implies that A, Y , and Y ′ are collinear, and that ∠DY ′E = ∠BY C. Since
BQXY and CPXY are cyclic,

∠DY ′E = ∠BY C = ∠BYX+∠XY C = ∠XQP +∠XPQ = 180◦−∠PXQ = 180◦−∠DXE,

which implies that DY ′EX is cyclic. Therefore

∠DY ′X = ∠DEX = ∠PQX = ∠BYX,

which, combined with DY ′ ‖ BY , implies Y ′X ‖ Y X. This proves that X, Y , and Y ′ are
collinear, which in turn shows that A, X, and Y are collinear.
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Problem 2
Consider a 100 × 100 table, and identify the cell in row a and column b, 1 ≤ a, b ≤ 100, with
the ordered pair (a, b). Let k be an integer such that 51 ≤ k ≤ 99. A k-knight is a piece that
moves one cell vertically or horizontally and k cells to the other direction; that is, it moves from
(a, b) to (c, d) such that (|a − c|, |b − d|) is either (1, k) or (k, 1). The k-knight starts at cell
(1, 1), and performs several moves. A sequence of moves is a sequence of cells (x0, y0) = (1, 1),
(x1, y1), (x2, y2), . . . , (xn, yn) such that, for all i = 1, 2, . . . , n, 1 ≤ xi, yi ≤ 100 and the k-knight
can move from (xi−1, yi−1) to (xi, yi). In this case, each cell (xi, yi) is said to be reachable. For
each k, find L(k), the number of reachable cells.

Answer: L(k) =

{
1002 − (2k − 100)2 if k is even
1002−(2k−100)2

2
if k is odd

.

Solution
Cell (x, y) is directly reachable from another cell if and only if x − k ≥ 1 or x + k ≤ 100 or
y−k ≥ 1 or y+k ≤ 100, that is, x ≥ k+1 or x ≤ 100−k or y ≥ k+1 or y ≤ 100−k (∗). Therefore
the cells (x, y) for which 101− k ≤ x ≤ k and 101− k ≤ y ≤ k are unreachable. Let S be this
set of unreachable cells in this square, namely the square of cells (x, y), 101− k ≤ x, y ≤ k.
If condition (∗) is valid for both (x, y) and (x ± 2, y ± 2) then one can move from (x, y) to
(x ± 2, y ± 2), if they are both in the table, with two moves: either x ≤ 50 or x ≥ 51; the
same is true for y. In the first case, move (x, y) → (x + k, y ± 1) → (x, y ± 2) or (x, y) →
(x ± 1, y + k) → (x ± 2, y). In the second case, move (x, y) → (x − k, y ± 1) → (x, y ± 2) or
(x, y)→ (x± 1, y − k)→ (x± 2, y).
Hence if the table is colored in two colors like a chessboard, if k ≤ 50, cells with the same
color as (1, 1) are reachable. Moreover, if k is even, every other move changes the color of
the occupied cell, and all cells are potentially reachable; otherwise, only cells with the same
color as (1, 1) can be visited. Therefore, if k is even then the reachable cells consists of all
cells except the center square defined by 101 − k ≤ x ≤ k and 101 − k ≤ y ≤ k, that is,
L(k) = 1002 − (2k − 100)2; if k is odd, then only half of the cells are reachable: the ones with
the same color as (1, 1), and L(k) = 1

2
(1002 − (2k − 100)2).
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Problem 3
Let n be a positive integer and a1, a2, . . . , an be positive real numbers. Prove that

n∑
i=1

1

2i

(
2

1 + ai

)2i

≥ 2

1 + a1a2 . . . an
− 1

2n
.

Solution
We first prove the following lemma:

Lemma 1. For k positive integer and x, y > 0,(
2

1 + x

)2k

+

(
2

1 + y

)2k

≥ 2

(
2

1 + xy

)2k−1

.

The proof goes by induction. For k = 1, we have(
2

1 + x

)2

+

(
2

1 + y

)2

≥ 2

(
2

1 + xy

)
,

which reduces to
xy(x− y)2 + (xy − 1)2 ≥ 0.

For k > 1, by the inequality 2(A2+B2) ≥ (A+B)2 applied at A =
(

2
1+x

)2k−1

and B =
(

2
1+y

)2k−1

followed by the induction hypothesis

2

((
2

1 + x

)2k

+

(
2

1 + y

)2k
)
≥

((
2

1 + x

)2k−1

+

(
2

1 + y

)2k−1
)2

≥

(
2

(
2

1 + xy

)2k−2
)2

= 4

(
2

1 + xy

)2k−1

,

from which the lemma follows.
The problem now can be deduced from summing the following applications of the lemma,
multiplied by the appropriate factor:

1

2n

(
2

1 + an

)2n

+
1

2n

(
2

1 + 1

)2n

≥ 1

2n−1

(
2

1 + an · 1

)2n−1

1

2n−1

(
2

1 + an−1

)2n−1

+
1

2n−1

(
2

1 + an

)2n−1

≥ 1

2n−2

(
2

1 + an−1an

)2n−2

1

2n−2

(
2

1 + an−2

)2n−2

+
1

2n−2

(
2

1 + an−1an

)2n−2

≥ 1

2n−3

(
2

1 + an−2an−1an

)2n−3

· · ·

1

2k

(
2

1 + ak

)2k

+
1

2k

(
2

1 + ak+1 . . . an−1an

)2k

≥ 1

2k−1

(
2

1 + ak . . . an−2an−1an

)2k−1

· · ·
1

2

(
2

1 + a1

)2

+
1

2

(
2

1 + a2 . . . an−1an

)2

≥ 2

1 + a1 . . . an−2an−1an
.

Comment: Equality occurs if and only if a1 = a2 = · · · = an = 1.
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Comment: The main motivation for the lemma is trying to “telescope” the sum

1

2n
+

n∑
i=1

1

2i

(
2

1 + ai

)2i

,

that is,

1

2

(
2

1 + a1

)2

+ · · ·+ 1

2n−1

(
2

1 + an−1

)2n−1

+
1

2n

(
2

1 + an

)2n

+
1

2n

(
2

1 + 1

)2n

to obtain an expression larger than or equal to

2

1 + a1a2 . . . an
.

It seems reasonable to obtain a inequality that can be applied from right to left, decreases the
exponent of the factor 1/2k by 1, and multiplies the variables in the denominator. Given that,
the lemma is quite natural:

1

2k

(
2

1 + x

)2k

+
1

2k

(
2

1 + y

)2k

≥ 1

2k−1

(
2

1 + xy

)2i−1

,

or (
2

1 + x

)2k

+

(
2

1 + y

)2k

≥ 2

(
2

1 + xy

)2k−1

.
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Problem 4
Prove that for every positive integer t there is a unique permutation a0, a1, . . . , at−1 of 0, 1, . . . , t−

1 such that, for every 0 ≤ i ≤ t− 1, the binomial coefficient

(
t+ i

2ai

)
is odd and 2ai 6= t+ i.

Solution
We constantly make use of Kummer’s theorem which, in particular, implies that

(
n
k

)
is odd if

and only if k and n− k have ones in different positions in binary. In other words, if S(x) is the
set of positions of the digits 1 of x in binary (in which the digit multiplied by 2i is in position
i),
(
n
k

)
is odd if and only if S(k) ⊆ S(n). Moreover, if we set k < n, S(k) is a proper subset of

S(n), that is, |S(k)| < |S(n)|.
We start with a lemma that guides us how the permutation should be set.

Lemma 1.
t−1∑
i=0

|S(t+ i)| = t+
t−1∑
i=0

|S(2i)|.

The proof is just realizing that S(2i) = {1+x, x ∈ S(i)} and S(2i+1) = {0}∪{1+x, x ∈ S(i)},
because 2i in binary is i followed by a zero and 2i+1 in binary is i followed by a one. Therefore

t−1∑
i=0

|S(t+ i)| =
2t−1∑
i=0

|S(i)| −
t−1∑
i=0

|S(i)| =
t−1∑
i=0

|S(2i)|+
t−1∑
i=0

|S(2i+ 1)| −
t−1∑
i=0

|S(i)|

=
t−1∑
i=0

|S(i)|+
t−1∑
i=0

(1 + |S(i)|)−
t−1∑
i=0

|S(i)| = t+
t−1∑
i=0

|S(i)| = t+
t−1∑
i=0

|S(2i)|.

The lemma has an immediate corollary: since t+ i > 2ai and
(
t+i
2ai

)
is odd for all i, 0 ≤ i ≤ t−1,

S(2ai) ⊂ S(t+ i) with |S(2ai)| ≤ |S(t+ i)| − 1. Since the sum of |S(2ai)| is t less than the sum
of |S(t + i)|, and there are t values of i, equality must occur, that is, |S(2ai)| = |S(t+ i)| − 1,
which in conjunction with S(2ai) ⊂ S(t+i) means that t+i−2ai = 2ki for every i, 0 ≤ i ≤ t−1,
ki ∈ S(t+ i) (more precisely, {ki} = S(t+ i) \ S(2ai).)
In particular, for t+ i odd, this means that t+ i− 2ai = 1, because the only odd power of 2 is
1. Then ai = t+i−1

2
for t+ i odd, which takes up all the numbers greater than or equal to t−1

2
.

Now we need to distribute the numbers that are smaller than t−1
2

(call these numbers small).

If t+ i is even then by Lucas’ Theorem
(
t+i
2ai

)
≡
( t+i

2
ai

)
(mod 2), so we pair numbers from dt/2e

to t− 1 (call these numbers big) with the small numbers.
Say that a set A is paired with another set B whenever |A| = |B| and there exists a bijection
π : A→ B such that S(a) ⊂ S(π(a)) and |S(a)| = |S(π(a))|−1; we also say that a and π(a) are
paired. We prove by induction in t that At = {0, 1, 2, . . . , bt/2c− 1} (the set of small numbers)
and Bt = {dt/2e, . . . , t− 2, t− 1} (the set of big numbers) can be uniquely paired.
The claim is immediate for t = 1 and t = 2. For t > 2, there is exactly one power of two in Bt,
since t/2 ≤ 2a < t ⇐⇒ a = dlog2(t/2)e. Let 2a be this power of two. Then, since 2a ≥ t/2, no
number in At has a one in position a in binary. Since for every number x, 2a ≤ x < t, a ∈ S(x)
and a /∈ S(y) for all y ∈ At, x can only be paired with x− 2a, since S(x) needs to be stripped
of exactly one position. This takes cares of x ∈ Bt, 2a ≤ x < t, and y ∈ At, 0 ≤ y < t− 2a.
Now we need to pair the numbers from A′ = {t − 2a, t − 2a + 1, . . . , bt/2c − 1} ⊂ A with the
numbers from B′ = {dt/2e, dt/2e + 1, . . . , 2a − 1} ⊂ B. In order to pair these t − 2(t − 2a) =
2a+1 − t < t numbers, we use the induction hypothesis and a bijection between A′ ∪ B′ and
B2a+1−t ∪ A2a+1−t. Let S = S(2a − 1) = {0, 1, 2, . . . , a− 1}. Then take a pair x, y, x ∈ A2a+1−t
and y ∈ B2a+1−t and biject it with 2a − 1− x ∈ B′ and 2a − 1− y ∈ A′. In fact,

0 ≤ x ≤
⌊

2a+1 − t
2

⌋
− 1 = 2a −

⌈
t

2

⌉
− 1 ⇐⇒

⌈
t

2

⌉
≤ 2a − 1− x ≤ 2a − 1
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and ⌈
2a+1 − t

2

⌉
= 2a −

⌊
t

2

⌋
≤ y ≤ 2a+1 − t− 1 ⇐⇒ t− 2a ≤ 2a − 1− y ≤

⌊
t

2

⌋
− 1.

Moreover, S(2a− 1−x) = S \S(x) and S(2a− 1− y) = S \S(y) are complements with respect
to S, and S(x) ⊂ S(y) and |S(x)| = |S(y)| − 1 implies S(2a − 1 − y) ⊂ S(2a − 1 − x) and
|S(2a − 1− y)| = |S(2a − 1− x)| − 1. Therefore a pairing between A′ and B′ corresponds to a
pairing between A2a+1−t and B2a+1−t. Since the latter pairing is unique, the former pairing is
also unique, and the result follows.
We illustrate the bijection by showing the case t = 23:

A23 = {0, 1, 2, . . . , 10}, B23 = {12, 13, 14, . . . , 22}.

The pairing is (
12 13 14 15 16 17 18 19 20 21 22
8 9 10 7 0 1 2 3 4 5 6

)
,

in which the bijection is between(
12 13 14 15
8 9 10 7

)
and

(
3 2 1 0
7 6 5 8

)
→
(

5 6 7 8
1 2 3 0

)
.
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Problem 5
Line ` intersects sides BC and AD of cyclic quadrilateral ABCD in its interior points R and
S respectively, and intersects ray DC beyond point C at Q, and ray BA beyond point A at P .
Circumcircles of the triangles QCR and QDS intersect at N 6= Q, while circumcircles of the
triangles PAS and PBR intersect at M 6= P . Let lines MP and NQ meet at point X, lines
AB and CD meet at point K and lines BC and AD meet at point L. Prove that point X lies
on line KL.

Solution 1
We start with the following lemma.

Lemma 1. Points M,N,P,Q are concyclic.

Point M is the Miquel point of lines AP = AB, PS = `, AS = AD, and BR = BC, and point
N is the Miquel point of lines CQ = CD, RC = BC, QR = `, and DS = AD. Both points
M and N are on the circumcircle of the triangle determined by the common lines AD, `, and
BC, which is LRS.
Then, since quadrilaterals QNRC, PMAS, and ABCD are all cyclic, using directed angles
(modulo 180◦)

]NMP = ]NMS + ]SMP = ]NRS + ]SAP = ]NRQ+ ]DAB = ]NRQ+ ]DCB

= ]NRQ+ ]QCR = ]NRQ+ ]QNR = ]NQR = ]NQP,

which implies that MNQP is a cyclic quadrilateral.

A

B

C DQ

P

R

S

L

N

M

`

T = V
E

Let E be the Miquel point of ABCD (that is, of lines AB, BC, CD, DA). It is well known
that E lies in the line t connecting the intersections of the opposite lines of ABCD. Let lines
NQ and t meet at T . If T 6= E, using directed angles, looking at the circumcircles of LAB
(which contains, by definition, E and M), APS (which also contains M), and MNQP ,

]TEM = ]LEM = ]LAM = ]SAM = ]SPM = ]QPM = ]QNM = ]TNM,

that is, T lies in the circumcircle ω of EMN . If T = E, the same computation shows that
]LEM = ]ENM , which means that t is tangent to ω.
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Now let lines MP and t meet at V . An analogous computation shows, by looking at the
circumcircles of LCD (which contains E and N), CQR, and MNQP , that V lies in ω as well,
and that if V = E then t is tangent to ω.
Therefore, since ω meet t at T , V , and E, either T = V if both T 6= E and V 6= E or
T = V = E. At any rate, the intersection of lines MP and NQ lies in t.

Solution 2
Barycentric coordinates are a viable way to solve the problem, but even the solution we have
found had some clever computations. Here is an outline of this solution.

Lemma 2. Denote by powωX the power of point X with respect to circle ω. Let Γ1 and
Γ2 be circles with different centers. Considering ABC as the reference triangle in barycentric
coordinates, the radical axis of Γ1 and Γ2 is given by

(powΓ1
A− powΓ2

A)x+ (powΓ1
B − powΓ2

B)y + (powΓ1
C − powΓ2

C)z = 0.

Proof: Let Γi have the equation Γi(x, y, z) = −a2yz− b2zx− c2xy+ (x+ y+ z)(rix+ siy+ tiz).
Then powΓi

P = Γi(P ). In particular, powΓi
A = Γi(1, 0, 0) = ri and, similarly, powΓi

B = si
and powΓi

C = ti.
Finally, the radical axis is

powΓ1
P = powΓ2

P

⇐⇒ Γ1(x, y, z) = Γ2(x, y, z)

⇐⇒ r1x+ s1y + t1z = r2x+ s2y + t2z

⇐⇒ (powΓ1
A− powΓ2

A)x+ (powΓ1
B − powΓ2

B)y + (powΓ1
C − powΓ2

C)z = 0.

We still use the Miquel point E of ABCD. Notice that the problem is equivalent to proving
that lines MP , NQ, and EK are concurrent. The main idea is writing these three lines as
radical axes. In fact, by definition of points M , N , and E:

� MP is the radical axis of the circumcircles of PAS and PBR;

� NQ is the radical axis of the circumcircles of QCR and QDS;

� EK is the radical axis of the circumcircles of KBC and KAD.

Looking at these facts and the diagram, it makes sense to take triangle KQP the reference
triangle. Because of that, we do not really need to draw circles nor even points M and N , as
all powers can be computed directly from points in lines KP , KQ, and PQ.

P A B K

C

D

E

Q
R

S

Associate P with the x-coordinate, Q with the y-coordinate, and K with the z-coordinate.
Applying the lemma, the equations of lines PM , QN , and EK are
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� MP : (KA ·KP −KB ·KP )x+ (QS ·QP −QR ·QP )y = 0

� NQ: (KC ·KQ−KD ·KQ)x+ (PR · PQ− PS · PQ)z = 0

� MP : (−QC ·QK +QD ·QK)y + (PB · PK − PA · PK)z = 0

These equations simplify to

� MP : (AB ·KP )x+ (PQ ·RS)y = 0

� NQ: (−CD ·KQ)x+ (PQ ·RS)z = 0

� MP : (CD ·KQ)y + (AB ·KP )z = 0

Now, if u = AB ·KP , v = PQ ·RS, and w = CD ·KQ, it suffices to show that∣∣∣∣∣∣
u v 0
−w 0 v
0 w u

∣∣∣∣∣∣ = 0,

which is a straightforward computation.
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