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Introduction 
 
Extreme coastal total water levels (TWLs) that result in flooding are the result of the complex 
interactions between multiple oceanographic, hydrological, geological, and meteorological 
forcings that act over a wide range of scales (i.e., astronomical tide, wave set-up, wind set-up, 
large-scale storm surge, precipitation, fluvial discharges, monthly mean sea level, vertical land 
motions, etc.). Coastal flooding that occurs during extreme TWLs can significantly impact 
communities and infrastructure resulting in substantial economic losses, even threatening human 
lives. Climate change may cause an increase in extreme coastal water level events driven by 
rising sea levels and changing patterns of storminess. An improved understanding of the physical 
processes during extreme coastal water level events will ultimately lead to an improved ability to 
predict the present day and future hazards faced by coastal communities. This information, in 
turn, provides the foundation for building more resilient coastal communities. 
 
The primary objectives of this project were to 1) assess the relative contributions of the various 
processes that drive extreme coastal TWLs; 2) quantify the impact of a range of climate change 
scenarios on each of the drivers and on the resulting combined TWLs; and 3) assess the impact 
of present-day and forecasted future coastal flooding events on infrastructure in several 
communities within the Treaty of Olympia area. 
 
This report is organized as follows: Sections 1, 2, and 3 highlight the primary results of each 
project objective listed above. Section 3 ends with a specific discussion of climate change 
impacts and some possible recommendations for adaptation. The details of the original modeling 
approaches specifically developed for this study have been published in the peer-reviewed 
literature and are given in Appendices A and B. Finally, the overarching results of a completed 
outer coast vulnerability assessment (Chapter 5 of Dalton et al., 2016) are reproduced in 
Appendix C. 
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Objective 1: Assess the Relative Contributions of the Various 
Processes that Drive Extreme Coastal Total Water Levels 
 
Coastal flooding in the Pacific Northwest is often controlled by compound events, in which 
individual processes, which may or may not be extreme, combine to create extreme events 
(Zscheischler et al., 2018). For example, storms often generate large waves, heavy precipitation 
driving increased streamflow, and high storm surges, making the relative contribution of the 
actual drivers of extreme water levels difficult to interpret. Until recently, the compound nature 
of coastal flooding was not sufficiently recognized and there remains a paucity of scientific 
approaches for accurately characterizing risk under a compound flooding regime. Therefore, this 
project focused on developing new approaches for modeling and evaluating the relative 
contributions of the various processes that combine to generate high water levels in coastal rivers 
and estuaries. Due to the difference in environmental settings across the region, two new 
approaches have been developed, the methodologies of which have been published in the peer- 
reviewed literature as Parker et al. (2019) and Serafin et al. (2019) (Appendix A and Appendix 
B, respectively). 

1.1 Emulating Extreme Water Levels in Grays Harbor 
The first new approach involved developing a technique for modeling spatially variable water 
levels in the Grays Harbor, Washington area, per personal communication with Carolyn Kelly 
who encouraged a focus on this area due to the Quinault Marina and RV park, the Quinault 
Beach Resort and Casino, and other tribal assets in the area. To do this, a coupled hydrodynamic 
and spectral wave model, “Advanced Circulation Model-Simulating Waves Nearshore” 
(ADCIRC-SWAN), which has the ability to isolate the influence of processes such as wind set-
up, pressure (through the inverse barometer effect), and wave set-up, was used (modeling grid 
shown in Figure 1). ADCIRC-SWAN has been extensively validated in coastal areas across the 
world as well as specifically in the Pacific Northwest. It is one of the leading tools for modeling 
flooding and coastal circulation and thus was an ideal approach to use for this project.  
 
During model development, ADCIRC-SWAN results were first validated by confirming that the 
model accurately calculated observed water levels within the bay during past storm events (see 
Parker et al. 2019; Appendix A). In order to evaluate the contribution of processes to many 
different types of storm events, thousands of iterations of storm conditions would have to be 
simulated, which would be time consuming due to the computational expense of the model. 
Thus, this approach developed a ‘surrogate’ model (or emulator—see Parker et al., 2019 
[Appendix A] for more details) in which any possible combination of forcing conditions (e.g., 
medium waves but high winds and stream flow) can be examined much more rapidly to 
determine whether or not they may cause flooding. To this end, once the ADCIRC-SWAN 
model was validated, ~500 ADCIRC-SWAN simulations representing a range of forcing 
conditions (taking months of computer server time) were generated to replace model runs with a 
spatially variable statistical representation of water levels in the bay from specified forcing 
conditions. 
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Figure 1 ADCIRC-SWAN model grid for the Grays Harbor, WA area. 

This modeling approach provides a unique ability to examine the spatial variability of forcing 
conditions that contribute to extreme water levels in Grays Harbor. Figure 2 displays East-West 
and North-South transects of the average relative contribution of each forcing component during 
annual maxima events for the length of the record (1980s to approximately the present day). The 
diverse mix of processes that contribute to extreme water levels (WL) at each location, confirm 
that extreme WLs in Grays Harbor are compound in nature. The mean contribution of each 
forcing dimension to the extreme WL is significant, suggesting that including all forcing 
processes is necessary for the proper estimation of the magnitude of extreme WLs. The only 
exception is streamflow from the Chehalis River, which is found to be nominally important 
except near the streamflow boundary. This result is likely specific to the Grays Harbor estuary, 
which has a large estuary volume in comparison to the streamflow input and would be different 
for a more hydrologically dominated estuary system, which is further explored in Section 1.2.  
 
The relative contribution of each variable to extreme WLs spatially varies across the estuary, 
leading to both an East-West and North-South gradient in the magnitude and drivers of extreme 
WLs. For example, waves significantly contribute to annual maximum WLs but only at stations 
in the northern and eastern reaches of the bay. This is likely due to little to no wave breaking 
induced setup occurring at the bay's entrance channel. The influence of wind on extreme WLs 
increases to the north due to the mean wind direction emanating from the south during storm 
events. The contribution of streamflow to extreme WLs decreases towards the west, moving 
farther away from the estuary's streamflow inlet. Finally, the influence of pressure anomalies on 
extreme WLs is found to be uniform. This result is likely from the spatial simplification of sea 
level pressure fields during the numerical procedures. 
 
Not shown in Figure 2 is the contribution of tidal forcing to extreme WLs. This is primarily for 
scale reasons as the tidal component is an order of magnitude larger than any other forcing 
(average of 140 cm). Similar to previous results, tides also vary across the estuary (Figure 2). 
The contribution of tides to extreme WLs decreases by about 30 cm moving from the center of 
the estuary toward the North or East.  
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Figure 2 Average water level (WL) contribution from forcing components during extreme events (maximum 

annual WLs). Two transects are plotted with subplot (b) showing plotted transects, (East-West, EW) and 
(North-South, NS), with station locations marked as ticks. Tick locations are approximate (within 1 km) to 

scattered station locations. Subplot (a) is the East-West transect and subplot (c) is the North-South transect. 

 
While this analysis shows important results for Grays Harbor as a whole, three specific locations 
were chosen for additional analysis due to their specific relevance to the Quinault Indian Nation. 
Figure 3 shows the locations of the 111 emulators that were constructed from the ADCIRC-
SWAN simulations. The three locations chosen for additional analysis are plotted as a green star 
(Westport tide gage), pink star (near the Quinault Marina and RV park), and a cyan star 
(immediately offshore of the Quinault Beach Resort and Casino). 
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Figure 3 Location of emulators developed from the Grays Harbor ADCIRC model. 

 
Due to differences in open coast and sheltered coast settings, it is expected that locations within 
and outside of the estuary would have a different composition of forcing variables contributing to 
coastal flooding. Figure 4 shows pie charts of contributions to extreme events at the Casino 
location (located along the open coast) and the Marina (within the estuary). Forcing is defined in 
these plots as “Tide” (deterministic and astronomically controlled), “Stream” (streamflow from 
the Chehalis River), “Base WL” (variations to local sea level as controlled by seasonality, 
monthly mean sea level anomalies, etc.), “Wave”, “Wind”, “Press” (pressure), and “LeftOvers” 
(nonlinear interactions between processes). These plots only show the percentage contribution 
from each forcing variable, not the magnitude of those contributions 
 



!
!

6 

 
Figure 4 Contributions to extreme water levels at the Quinault Casino (left) and Marina (right) 

 
From Figure 4 we can see that drivers of extreme WLs vary between these two locations. In this 
analysis, waves are an important component of extreme WLs at the Marina location while not at 
the Casino location. This is due to the fact that the Casino location is just offshore of the open 
coast beach and not under the influence of wave runup. This result is sensitive to the specific 
location of the station offshore, and a location closer to shore would likely show the effect of 
wave setup. For this reason, a total water level approach is more applicable for understanding 
hazard risk at this location (see section 2.2). Overall, storm surge forcing is more important at the 
Marina location while tides are a larger proportional contributor at the Casino. Additionally, we 
see that streamflow is found to be a negligible contributor in both locations.  
 
The variability of the contribution of each process to extreme WLs for all events is shown in 
Figure 5 for the Marina location. Here, boxplots allow for a visual representation of how data in 
a sample (in this case, 30 years of extreme events), varies. The central line within the box 
represents the median while the bottom and top of the box represents the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme points not considered outliers.  
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Figure 5 Boxplots showing the variability of contribution to extreme water level (WL) at the Marina location. 

 
Figure 5 reveals that there is significant variability in what contributes to an extreme event at the 
Marina (shown by the height of the boxes). While one event may be wind-driven, another may 
be pressure or base WL-driven. This further reinforces the concept that extreme events at the 
study site are compound in nature. An event-based approach, like that commonly taken in 
hurricane influenced regions, is not likely applicable in the Pacific Northwest as it is very 
difficult to know a priori which events will cause coastal flooding. Furthermore, this 
interconnected nature of flooding means that significant care must be taken looking at climate 
change, which may simultaneously affect all drivers of coastal flooding as well as the 
relationships between them.  

1.2 Hybrid Modeling of Compound Flooding along the Quillayute River 
The proximity of communities like La Push and Taholah to both the ocean and river make them 
prone to flooding from high tides, coastal storms driving storm surges and large waves, and high 
streamflow events. While this is a similar situation to that explored in Grays Harbor in terms of 
compound forcing, these locations have a smaller estuary size (in terms of volume) and larger 
relative streamflow input. Furthermore, the storm surge signal measured by the tide gauge at La 
Push tends to coincide with high discharge events (Figure 6). This is likely to be similar at 
Taholah, but the limited observational data sets at this location makes it difficult to confirm. 
 
It is hypothesized that streamflow is an important contributor to flooding in La Push. To test the 
hypothesis of strong fluvial control during extreme water level events, an ADCIRC model, 
similar to that developed in Grays Harbor (section 1.1), was constructed to model the largest 
streamflow event on record. Results from this modeled storm event show that the simulation 
including only river streamflow and tides is nearly able to recreate the measured peak storm 
surge signal measured at the tide gauge. This confirms that streamflow can contribute to high 
water levels at the study site. This simulation also confirms that the use of ADCIRC for this type 
of problem is limited since model simulations were found to be very unstable. 
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Figure 6 Example storm surge and river discharge relationship at a) La Push, Washington and b) Westport, 

Washington. 

 
 
 

 
Figure 7 Simulated storm surge (a) and still water level (SWL) (b) at the La Push tide gauge. The full forcing 
simulation is plotted as a red line, a simulation using only streamflow and tides is plotted a blue line, and the 

observed storm surge or SWL is plotted as a black line. 
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While several Treaty of Olympia tribal communities experience these issues, our second 
modeling approach focused on the Quillayute River and the community of La Push (Figure 8) 
due to the availability of data for sufficient model calibration and validation. Early in the project 
we proposed to collect relevant data in the Quinault River to develop the data sets needed to 
build models at that location, but eventually it was decided that this was not feasible (personal 
communication with Carolyn Kelly). In general, some of the overall lessons learned from the 
Quillayute River analysis described below could be applied to other characteristically similar 
estuary systems, like the Quinault, Queets, and Hoh Rivers. 
 

 
Figure 8 Map of study area (left) for our second modeling approach. The La Push tide gauge is represented as 

a red square while other regional tide gauges are represented as blue squares (right). The Calawah and Sol 
Duc river gauges are represented as black triangles and USGS measurement sites from the May 2010 survey 
are depicted as yellow circles. Approximate river kilometers are denoted as black crosses on the study area 

map. 

 
To explore the influence of river and ocean forcing on extreme water levels (WLs), our second 
approach developed a hybrid modeling framework by merging the hydraulic model, Hydrologic 
Engineering Center's River Analysis System (HEC-RAS, model domain is displayed in Figure 9) 
for simulating river flow, with probabilistic simulations of co-occurring river and ocean events 
(Serafin et al. 2019; Appendix B). The HEC-RAS model was initially calibrated to successfully 
model the water surface elevation along the river during a USGS data collection effort (Czuba et 
al. 2010). Similar to emulating extreme WLs in Grays Harbor (section 1.1), this technique allows 
for insights into the extent and the relative importance of each WL component to flooding along 
a gradient from pure oceanographic forcing to pure riverine forcing. 
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The probabilistic, full simulation model of Serafin and Ruggiero (2014) was modified to 
incorporate the dependency between river discharge and the remainder of relevant WL 
components. This probabilistic model allows for the generation of multiple, synthetic WL 
records to produce numerous estimates of low-probability events not captured in the 
observational record. Modeling all of the statistically simulated boundary conditions in a 
hydraulic model to output along-river water levels would be prohibitively expensive. As an 
alternative to time consuming simulations, surrogate models are developed to approximate the 
response of a HEC-RAS simulation at each along-river location. This technique allows for the 
analysis of along-river water levels driven by a variety of boundary conditions. Long synthetic 
records allows for the direct empirical extraction of water level return levels rather than an 
extrapolation from historic observational forcing conditions. 
 
In total, seventy 500-year simulations were run, which allowed for the extraction of the water 
surface elevation at every along-river location, as well as the ocean and river forcing driving that 
elevation (see Serafin et al. 2019; Appendix B). Understanding the relative forcing of extreme 
WLs moving from open ocean boundary conditions to where river processes dominate will help 
Treaty of Olympia communities better understand the risk of compounding impacts of various 
environmental forcing, which is important for increasing resilience to future events. 

 
Figure 9 Digital Elevation Model used for the HEC-RAS simulations of the Quillayute River. HEC-RAS cross 

sections are depicted as grey lines. Approximate river kilometer and the location of the tide gauge are 
depicted as diamonds and a square, respectively. 

 
The thousands of simulated upstream and downstream boundary conditions show that variability 
in the ocean boundary conditions impact river water levels, and therefore the potential for 
flooding and erosion, as far east as river kilometer 5 (Figure 10). Note that this is east of Thunder 
Field, an area of significant concern due to the potential of river avulsion due to channel 
migration and streambank erosion. 
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Figure 10 Results from HEC-RAS modeling on the Quillayute River showing water surface elevations for 

various scenarios. Three discharges are modeled for a wide range of different still water levels showing the 
varying influence of oceanic processes moving upstream. Each grey line represents one example simulation 
for the flow in the title +/- 0.5 m3s-1 and the water surface profile extracted. Black lines represent maximum 

and minimum still water level boundary conditions.   
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Objective 2: Quantify the Impact of a Range of Climate Change 
Scenarios on Each of the Various Components and on the Resulting 
Combined Total Water Levels. 
 
A vital consideration in any attempt to quantify climate change impacts is the associated 
uncertainty in the resulting estimates. The ability to predict the future climate is limited for a 
variety of reasons ranging from the difficulty of modeling the full earth system to the inability to 
know how human impact on the climate will evolve. A typical way to characterize this 
uncertainty is to consider “scenarios” which follow various plausible trajectories of the future 
climate. This project approaches Objective 2 using state-of-the-art estimates of future sea level 
rise as the basis for four climate change impact scenarios. These climate change impact scenarios 
were applied to both modeling approaches described above to explore the impacts on hazards. 
 
An additional source of uncertainty is from the chaotic nature of the climate system. 
Consideration of a single climate time series is generally considered inadequate as this time 
series may or may not be indicative of the overall behavior of the system. For example, a single 
time series may be uncharacteristically extreme due to the stochastic nature of the climate 
system. Analysis based solely on this single time series could therefore produce biased results. 
To reduce this source of error, as well as to better characterize uncertainty in the analysis, this 
report takes the approach of considering multiple iterations (an ensemble) of climate time series.  

2.1 Climate Change Impact Scenarios 
Climate change impact scenarios were developed based on sea level rise (SLR) projections for 
the Washington coastline developed by Miller et al. (2018). At the time of the analysis for Grays 
Harbor, absolute SLR projections (i.e., sea level relative to a fixed, unmoving point) had been 
completed, and researchers were still in the process of creating relative SLR projections (i.e., sea 
level relative to land, which incorporates vertical land movement such as uplift and subsidence) 
for the Washington coast. The SLR scenarios in the Grays Harbor work use absolute sea level 
projections for RCP 8.5 from Appendix A of Miller et al. (2018) and incorporate the best 
estimates of vertical land movement specific to Grays Harbor at the time (1.5 mm/yr on 
average), as well as uncertainty around those estimates (Figure 11). SLR scenarios for the La 
Push study site (latitude of 47.9N and a longitude of 124.6W) were developed based on the 
newly completed relative SLR projections, which include vertical land movement developed by 
Miller et al. (2018) (Figure 11). 
 
In both approaches, the low impact SLR scenario uses a low-end projection that is 95% likely to 
be exceeded. The medium impact SLR scenario used a mid-range projection and has a 50% 
exceedance probability. The high impact SLR scenario uses a high-end projection that is 5% 
likely to be exceeded. Finally, a “worst case” scenario was explored which has only a 0.1% 
chance of being exceeded. 
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Figure 11 Envelope of four primary sea level rise (SLR) scenarios plotted as colors (blue for low, green for 
medium, red for high, and orange for worst case), relative to 2010 sea levels. Each SLR iteration in the top 

panel for scenarios low, medium, and high incorporates a range of vertical land movement, while the bottom 
panel SLR scenarios were developed from relative SLR scenarios. 

 
While SLR is expected to be the largest driver of long-term increasing coastal flood hazards in 
the Pacific Northwest (PNW), other controls on flooding are also expected to change. Research 
has shown that changing wave climate has recently been a major driver of intensifying coastal 
hazards in the PNW (Ruggiero 2013). This is because for PNW open coastlines, waves are one 
of the largest contributors to extreme total water levels (TWLs) (Serafin et al. 2017). For this 
reason, we also explored the possibility of changes to the PNW wave climate. Projected changes 
in wave height were estimated by shifting wave height distributions (Figure 12) based on future 
estimates of wave height change in the Northeast Pacific from global climate model projections 
(Hemer et al. 2013; Wang et al. 2014). Water levels and wave heights are also affected by major 
El Niño events, which have been associated with severe flooding and erosion in the PNW 
(Barnard et al. 2017). The frequency of major El Niño events was allowed to double and halve 
the present-day frequency, which is approximately once every 7–10 years. In our Grays Harbor 
work, thirty-three probabilistic TWL simulations for each high, medium, and low climate change 
impact scenario, resulted in 99 different 100-year projections of daily maximum TWL (Figure 
13). One TWL simulation was also completed for the “worst case” climate change impact 
scenario.  
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Figure 12 Envelope of wave climate variability in terms of shifting wave height (SWH) 

 
For the Quillayute River site, climate change-controlled modifications to streamflow were also 
incorporated within the uncertainty. The western Olympic Peninsula is projected to experience 
increased winter precipitation (Mote et al. 2013), which could subsequently increase the 
frequency or intensity of high streamflow events along the Quillayute River. However, there are 
currently no specific estimates of changes to future streamflow specific to the Quillayute 
watershed. We therefore completed a sensitivity analysis where we allow for the average winter 
streamflow to increase by 2, 5, 10, and 20%. 
 
A key strength common to both of the new approaches developed by this project is the ability to 
consider future uncertainty in projections. This allows a more robust estimation of the most 
likely future hazard as well as an understanding of how drastically the hazard could vary from 
this most likely outcome. Figure 13 gives an example of how this project has approached 
uncertainty through the perspective of TWLs. The colors show variability as a function of SLR 
scenario while the shaded regions show variability as a function of climate iteration. From this 
plot it can be seen how important consideration of uncertainty is, with future predicted TWLs in 
the year 2100 differing at the scale of meters and predicted average annual TWLs for each 
scenario varying by about half a meter.    
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Figure 13 Influence of climate change on average annual total water levels (TWLs). The solid line depicts the 
average for each climate impact scenario, while the shaded regions depict the variability due to changes in the 

wave climate, frequency of major El Niño events and vertical land movement. 

 

2.2 Impact of Climate Change on Emulated Grays Harbor Water Levels 
Once emulators of the Grays Harbor ADCIRC model were built, time series of forcing variables 
were passed through to estimate extreme water levels (WLs) at a variety of locations. Here we 
refer to WLs as the integrated effect of a variety of forcings/processes on the water level of a 
location. For emulating WLs within Grays Harbor, this does not include surface waves or any 
type of runup but rather can be thought of as the water level that would be measured if there 
were a tide gauge at this location. Within bays this is the water level metric that best corresponds 
to inundation. To explore the influence of climate change on WLs relevant to tribal 
infrastructure, we focused our efforts on the three emulators specified earlier (see Figure 3): the 
Westport tide gage, near the Quinault Marina and RV park, and immediately offshore of the 
Quinault Beach Resort and Casino.  
 
Using the emulators, we explored the time varying WLs at these stations for a range of sea level 
rise (SLR) scenarios. Figure 14 shows an example synthetic WL time series at the Marina station 
for the four climate change impact scenarios. 
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Figure 14 Example time series of total water levels (TWL) at the Marina for a range of sea level rise 

scenarios. 

 
Of note, Figure 14 shows only one of the more than 30 climate iterations analyzed for each 
climate change impact scenario (other than Worst-Case which only was considered with one 
iteration). Figure 14 displays the seasonal and interannual variability in WLs at the Marina 
location, as well as how these may change moving forward with possible changes to the climate. 
However, the impact of these results on flooding hazards can be better understood by viewing 
TWLs from a threshold exceedance perspective.   
 
Figure 15 illustrates the number of days per year that WLs at this location exceed an elevation of 
3.2 m (NAVD88), which is approximately the elevation associated with minor nuisance flooding 
at this location. Figure 15 (bottom) includes the worst-case climate change impact scenario and 
reveals that by the end of the 21st century nuisance flooding may start occurring every day under 
this scenario. Figure 16 displays the same plot but for the location of the Westport tide gauge, a 
proxy for flooding in and around the Westport Marina. 
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Figure 15 Exceedance days per year when total water levels at the Quinault Marina and RV Park exceed an 

elevation of 3.2 m NAVD88. 

 
Figure 16 Exceedance days per year when total water levels at the Westport Marina (tide gauge) exceed an 

elevation of 3.2 m NAVD88. 
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The final example of total water level (TWL) exceedance elevations in and around Grays Harbor 
is along the outer coast fronting the Quinault Beach Resort and Casino. Similarly to locations 
within the bay, extreme coastal TWLs along the outer coast are the result of interactions between 
multiple oceanographic, hydrological, geological, and meteorological forcings that act over a 
wide range of scales (e.g., astronomical tide, wave set-up, large-scale storm surge, monthly mean 
sea level, vertical land motions, etc.). However, the additional presence of large breaking waves 
means that, at any given time, the elevation of the TWL, relative to a fixed datum, is comprised 
of two components such that  

!"# = !"# + ! Eq. 1 
where the SWL is the still water level, or the measured water level from tide gauges, and R is a 
wave induced component, termed the wave runup (Figure 17). The wave runup calculation is 
often dependent on the wave height, wavelength, and the local beach morphology (e.g., Ruggiero 
et al. 2001), making it a highly site-specific computation. Because we are interested primarily in 
extreme events, R is parameterized using R2%, defined as the 2% exceedance percentile of 
runup maxima.  

 
Figure 17 Definition sketch of total water levels (TWL). Dune/bluff erosion or infrastructure damage occurs 

when the TWL, relative to a datum such as the land based NAVD88 datum, exceeds the elevation of the 
dune/structure toe, and overtopping/flooding occurs when the TWL exceeds the elevation of the dune or 

structure crest (figure from Serafin and Ruggiero, 2014). 

TWLs can then be compared to backshore morphology to estimate the percentage of time certain 
contours are inundated as well as the risk of coastal flooding and erosion. Figure 18 shows 
topographic beach profiles collected just in front of the Casino 
(http://nvs.nanoos.org/BeachMapping). From these data we extracted quantitative information 
such as the beach slope, the average elevation of the dune toe, and the average elevation of the 
dune crest relative to NAVD88. Figure 19 shows one example time series of forcing conditions, 
including TWLs calculated using equation 1, fronting the Casino. Similar to our analyses for 
stations within Grays Harbor, Figures 20 and 21 show days of exceedance in which TWLs are 
projected to be above the dune toe (a proxy for coastal erosion, Figure 20) and above the dune 
crest (a proxy for inland flooding, Figure 21). 
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Figure 18 Beach profile fronting the Quinault Beach Resort and Casino 

 
 
 
 

 
Figure 19 Forcing conditions for computing total water levels fronting the Quinault Beach Resort and Casino. 
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Figure 20 Exceedance days per year when total water levels at the Quinault Beach Resort and Casino exceed 
an elevation of 4.5 m NAVD88 – approximately the elevation of the dune toe and hence a proxy for possible 

erosion. 

 
Figure 21 Exceedance days per year when total water levels at the Quinault Beach Resort and Casino exceed 
an elevation of 6.0 m NAVD88 – approximately the elevation of the dune crest and hence a proxy for possible 

overtopping and inundation. 
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2.3 Impact of Climate Change on Simulated Quillayute River Total Water Levels 
Models for the Quillayute River were set up to explore the influence of climate change through 
increasing sea level and increasing winter river discharge on coastal flood probabilities. With 
increasing sea levels, flooding along the first 2.5 km of the Quillayute River shifts dramatically. 
For example, at river km 1.5, less than one day per year in present day, low, and medium impact 
climate scenarios changes to 3 and 95 days per year in high and worst case impacts scenarios, 
respectively (Figure 22). Flooding in the worst-case scenario could increase to one-third of the 
year in certain along-river locations (not shown). For all scenarios, river km 5 and upstream is 
not affected by changing ocean water levels. An increase to winter streamflow alters flooding the 
most between river km 3 and 4 (Figure 23), and minimally across other locations of the river. 
 
 
 
 

 
Figure 22 Average number of days per year of possible flooding as a function of river kilometer. For present-

day climate, low sea level rise (SLR), medium SLR, and high SLR. Both panels show similar data but at 
different scale. 
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Figure 23 Average number of days per year of possible flooding as a function of river kilometer. For present-

day climate, a 2%, 5%, 10%, and 20% increase in winter river discharge. 
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Objective 3: Assess the Impact of Present Day and Forecasted 
Future Coastal Flooding Events on Infrastructure in Several 
Communities within the Treaty of Olympia 
3.1 Impact of Flooding on Infrastructure 
One valuable application for the surrogate model approach developed in this project is the ability 
to produce more robust estimates of the 100-year flood event for Grays Harbor. The 100-year 
flood event is the most common engineering tool for determining flood risk in communities. This 
surface represents flooding that has a 1% chance of occurring in any given year. The 100-year 
flood event is often used for community development planning, flood insurance premiums, and 
many other applications. Therefore, any improvements to how this metric is computed can 
provide a wide range of benefits.  
 
An example of the 100-year flood event results from this study is shown below in Figure 24. 
This is a unique application as many extreme flood inundation studies assume a spatially 
constant 100-year water level (known as a bathtub model as the assumption that water raises 
statically like a bathtub). In contrast, this approach is able to calculate spatial variability in this 
flooding surface. This is found to be a significant factor with some locations experiencing 100-
year water elevations that are half a meter higher than other locations. Additionally, these results 
can be considered relatively more robust than traditional techniques since they are calculated 
using extreme events from 100-year simulated time series. Generally, 100-year flooding events 
are based on statistical extrapolations from short simulations or observed events. This results in 
significant uncertainty as a result of the extrapolation. This new approach therefore allows a 
significant reduction in this uncertainty, at least in terms of the present-day climate. Future 
projects could fully explore how this refined flooding estimate may affect specific infrastructure 
in and around Grays Harbor, WA.  
 
  

 
Figure 24 Example 100-year return flood surface produced from ADCIRC results. Vertical datum is relative 

to mean sea level. 
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Similarly, the 100-year (and other) return level event can be extracted along the Quillayute River 
and the drivers of these events can be assessed. The 100-year event is typically assumed to be 
driven by a specific forcing event, such as the 100-year rainfall or storm surge. However, for 
processes driven by multiple dimensions, different sizes and combinations of forcing conditions 
could potentially generate extreme flood magnitudes. The relative importance of both oceanic 
and riverine forcing to extreme water levels (WLs) emerges when averaging the magnitude of 
the drivers of the water level return levels at each transect from all seventy 500-year simulations 
(Figure 25). The magnitude of the average streamflow (Q) driving water level return levels 
gradually increases over river km 0–2 and then is consistent from river km 2 to 10. Downstream, 
between river km 0 and 0.25, the magnitude of the average still water level (SWL) driving water 
level return levels is consistent and then gradually decreases over a 1 km zone. This approach 
confirms the presence of an oceanographic-fluvial transition zone, where traditional 
methodologies for defining return level events based on a single driver are insufficient for 
defining water level return levels. Between river km 1 and 2, a range of SWL and Q conditions 
drive all return level events, and extreme water levels are driven by neither the individual SWL 
or Q return level event. 
 
 

 
Figure 25 The average forcing condition driving along-river return levels at each transect where a) displays 
the Quillayute streamflow (Q) conditions and b) displays the still water level (SWL) conditions. The dashed 
lines depict the individual forcing conditions, where the along-river return level is assumed to be driven by 

either Q or SWL. Red, orange, blue, and black lines represent the 100, 25, 10, and annual return level event. 
The grey shaded area represents a transition zone, where the water level is driven by a combination of SWL 

and Q events. 
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The approach taken for the Quillayute River also allows consideration of flooding hazards along 
the river basin. As an example, the developed modeling setup can be used to assess important 
metrics such as the number of days per year that river stage exceeds bank elevation as a proxy 
for flooding potential (shown schematically for two locations in Figure 26). Figure 27 is an 
estimate of the average number of days per year in which the river elevation exceeds its banks 
for the present-day climate. 
 
 
  
 

 
Figure 26 Example results from HEC-RAS modeling of the Quillayute River showing water surface 
elevations at model topography/bathymetry at River km 1.5 and River km 3 for low flow conditions. 
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Figure 27 Average number of days per year of possible flooding as a function of river kilometer for present-

day climate. The bottom panel displays the same results, but zoomed in. 

 
We also evaluated the change in exceedance days per year at specific locations near the tide 
gauge as well as near river km 3.5 near the Thunder Field area (Figure 28). Here, we counted the 
number of days per year water levels exceeded 4m NAVD88 and 5m NAVD88, the approximate 
elevation of the bank on the Quileute Reservation side of each transect. Under low and medium 
climate change impact scenarios, the bank near the tide gauge is exceeded every few years, but 
not consistently. For the Thunder Field area, we see that while important, sea level rise has a 
lesser influence on flooding, which means increases to discharge will matter comparatively more 
for this location. For the worst-case scenario, sea levels flood the tide gauge area more than half 
of the year by mid-21st century and then every day of the year by the end of the 21st century 
(Figure 29). For this upper end SLR scenario, sea levels influence flooding at the Thunder Field 
area as well. 
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Figure 28 Average number exceedance days per year for the tide gauge (top) and Thunder Field area 

(bottom) during low (blue), medium (green), and high (red) sea level rise scenarios. The solid lines indicate 
the average while the dashed lines indicate bounds around the average. 

 
Figure 29 Average number exceedance days per year for the tide gauge (top) and Thunder Field area 

(bottom) during low (blue), medium (green), and high (red), and worst case (orange) sea level rise scenarios. 
The solid lines indicate the average while the dashed lines indicate bounds around the average. 
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3.2 Climate Change Impacts, Recommendations for Adaptation, and Suggestions 
for Future Research 
As explored while emulating extreme water levels in Grays Harbor, analysis indicates that 
infrastructure along the bay will be exposed to significant flooding risk from climate change. 
That said, this risk will be sensitive to climate change impact scenario with characteristically 
different outcomes between the low and worst-case scenarios. Overall, the low climate change 
impact scenario is associated with modest impacts to infrastructure at the locations of interest. 
Nuisance flooding for the Quinault and Westport Marinas were projected to remain on the order 
of 10 days per year even by the year 2100. A similar result was found for extreme total water 
levels, including wave runup, at the beach fronting the Quinault Beach Resort and Casino 
(although with exceedance of the dune toe approaching 20 days per year). While this represents a 
change to the current hazard status quo, it might not be a drastic outcome. 
 
The low climate change impact scenario is 95% likely to be exceeded (see section 2.1). 
Therefore, impacts to flooding associated with climate change are likely to be greater than this 
outcome. The high climate change impact scenario, which is 5% likely to be exceeded, shows a 
very different outcome to infrastructure with nuisance flooding exceeding 150 days a year. This 
could drastically affect the functionality of these marinas with some form of adaptation being 
required. The fronting beach for the Quinault Beach Resort and Casino would likely become 
erosional with over 100 dune toe impact events a year. This said, overtopping projections remain 
low even for the high scenario at around 3 days per year by 2100. This result may change though 
as the beach profile adjusts to an erosional regime. Even this outcome is mild in comparison to 
the worst-case scenario which sees both marinas becoming continuously inundated (365 days a 
year) and overtopping/flooding of the Quinault Beach Resort and Casino approaching one-third 
of the year. While this outcome is unlikely, it is within the range of plausible future climates.    
 
As shown by the wide range of uncertainty in future outcomes, appropriate adaptation measures 
will be very dependent on which scenario comes to pass. Traditionally, responses to climate 
change can be divided into groups of general strategies or grouping of adaptation measures such 
as “realign”, “protect”, and “restore” (e.g., Mills et al. 2018; Lipiec et al. 2018). A “realign” 
scenario involves changing human activities to suit the changing environment (e.g., relocation of 
people and infrastructure). A “protect” scenario involves resisting change through the 
maintaining/strengthening of current infrastructure, mainly through engineering solutions (e.g., 
shoreline armoring, seawalls, etc.). A “restore” scenario could involve implementing natural or 
nature-based solutions to accommodate environmental change (e.g., wetland restoration or dune 
building to reduce flooding). Each of these approaches most likely would bring out a set of 
tradeoffs that are highly dependent on the specific context of the application. While a detailed 
cost/benefit analysis of various adaptation measures was not part of the scope of this study, some 
general points can be made.  
 
While our analysis suggests that overtopping of the beach fronting the Quinault Beach Resort 
and Casino will likely remain modest, this could change drastically if the fronting beach profile 
changes significantly. Projected increases in impacts to the dune toe could provide the 
mechanism for this to occur. Therefore, it is recommended that careful monitoring of the fronting 
beach be maintained (e.g., http://nvs.nanoos.org/BeachMapping). If the beach appears to be 
shifting towards an erosional regime, then further detailed research into adaptation measures may 
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be warranted. Based on the significant hard infrastructure investment in the Quinault Beach 
Resort and Casino, relocation is unlikely. Therefore, some form of hard or soft (natural) 
protection may be necessary. The current location of the Resort is well set back from the 
shoreline providing with a healthy dune system. This potentially provides the opportunity for a 
natural solution although this will have to be explored more fully as the beach system changes.   
 
With projected increases to flooding at the investigated Marina locations, likely some form of 
adaptation will be required (although the timing will be dependent on climate scenario). 
Realignment will likely be difficult due to the high cost of moving infrastructure, especially hard 
engineering structures. Rather a protective adaptation approach will likely be required through 
increasing armoring height and reinforcing the waterfront. Some infrastructure may be able to be 
moved back but a full analysis will be necessary to determine the optimal path forward.   
 
For the La Push study site, results indicate that climate change impacts may significantly change 
the frequency with which the Quillayute River floods. Changes to high water levels will impact 
river stage as far as 5 km inland, most likely significantly worsening the existing Thunder Field 
erosion/avulsion threat (Figure 30). Assuming channel morphology stays similar, higher flows 
would increase flooding along some sections of the river and may influence more flooding closer 
to the river mouth. At the same time, changes in mean sea level will likely drive the 
oceanographic influence upstream. While we have characterized the spatial variability in driving 
processes to flooding in the present day, there is a high likelihood that changes in the future 
climate will shift the importance of these interacting processes. It is important to acknowledge 
that the un-stabilized nature of the Quillayute River means that its channel bathymetry and path 
are very likely to change moving forward. This is both a source of uncertainty in the results from 
this study (which uses a combined bathymetry from multiple channel geometries) as well as for 
future projections. Channel geometry and estuary bathymetry are first order controls on flooding 
processes so any changes in the Quillayute River would likely result in corresponding change to 
flooding vulnerability. Any considerations of adaptation measures should consider this 
significant source of uncertainty in its analysis.    
 
While several Treaty of Olympia tribal communities experience compound flooding issues 
associated with both riverine and oceanographic forcing, our second modeling approach focused 
on the Quillayute River and the community of La Push due to the availability of data for 
sufficient model calibration and validation. Collecting relevant data to build similar models in 
the Quinault, Queets, and Hoh Rivers would be useful for a wide range of analyses. Installing 
tide gages, at least temporarily, at some of these streams will help to elucidate when river signals 
are influencing observed non-tidal residuals (see Serafin et al. 2019 [Appendix B] for details on 
an approach for quantifying this). Finally, developing sophisticated process-based models (e.g., 
CoSMoS, Barnard et al. 2014) for the region will allow for detailed exploration of extreme 
events in the present day as well as under climate change. Coupling models like CoSMos with 
stochastic approaches (so called hybrid modeling approaches such as those described in this 
report) is recommended. 
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Figure 30 Average number of days per year of possible flooding as a function of river kilometer. For present-

day climate, low sea level rise (SLR), medium SLR, and high SLR. 
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A B S T R A C T

Probabilistic flood hazard assessment is a promising methodology for estuarine risk assessment but currently
remains limited by prohibitively long simulation times. This study addresses this problem through the devel-
opment of an emulator, or surrogate model, which replaces the simulator (in this case the coupled
ADCIRC+SWAN model) with a statistical representation that is able to rapidly predict estuarine variables re-
levant to flooding. Emulation of water levels (WLs), non-tidal residual, and significant wave height, is explored
at Grays Harbor, Washington (WA) USA using Gaussian process regression. The effectiveness of the methodology
is validated at various model simplification levels to determine where error is being sourced. Emulated WLs are
found to be skillful when compared to over a decade of tide gauge observations (root mean square error,
RMSE,< 15 cm). The largest loss of skill in the method originates with ADCIRC+SWAN attempting to re-
produce observations, even when the majority of relevant physics are included. Subsequent simplifications to the
simulator (input reduction techniques) and the emulator itself are found to introduce a trivial amount of error
(average increase in RMSE of 1 cm). Emulated WLs are also compared to spatially varying observations and
found to be equally skillful throughout the estuary. An example emulation application is explored by decom-
posing the relative forcing contributions to extreme WLs across the study site. Results show a compound nature
of extreme estuarine WLs in that all forcing dimensions contribute to extremes, with streamflow having the least
influence and tides the largest. Overall the approach is shown to be both skillful and efficient at reproducing
critical hydrodynamic variables, suggesting that emulation may play a key role in improving our ability to
probabilistically assess flood risk in complex environments as well as being promising in a range of other ap-
plications.

1. Introduction

Modeling estuarine hydrodynamics remains both a challenge and a
goal for the scientific community. Estuaries and bays are often densely
populated with significant economic and cultural investment
(Pendleton, 2010). They are also subject to a unique flood hazard en-
vironment, with high water levels (WLs) driven by numerous con-
tributing processes including both offshore and local waves, storm
surge, and river inflows, among others. Over the past several decades,
research efforts have led to improved computational models and in-
creased physical understanding of estuarine flood dynamics (Bode and
Hardy, 1997; Kantha and Clayson, 2000; Ganju et al., 2015). However,
increasing hydrodynamic model predictive skill is generally coupled to
increasing complexity within numerical models and a correspondingly
larger computational load. This has led to computational time, rather

than a physical understanding of the problem, being a limiting control
on our ability to answer questions about estuarine flooding.

Increasing computer processing power and code parallelization has
pushed the boundary for what can be explored with complex computer
codes. However, even with these advances, many questions still cannot
be comprehensively addressed due to computational limitations. One
example is the recent focus by the scientific community on uncertainty
in model results (Mastrandrea et al., 2010; Green et al., 2011). In the
field of flood hazards, a major thrust area has been probabilistic as-
sessments, which brings the benefits of uncertainty quantification,
utility as a stakeholder-centered decision making tool, better handling
of extreme events, and more skillful flooding estimates (Cloke and
Pappenberger, 2009; Di Baldassarre et al., 2010; Dale et al., 2014).
However, the combination of multiple model iterations (required for
probabilistic modeling) and large per-run computational costs has
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remained a barrier for moving forward.
Often the solution to long simulation times is a compromise, such as

simplifying or eliminating various forcing components (Purvis et al.,
2008; Lin et al., 2010); using smaller ensemble sizes (Davis et al.,
2010); or simplifying model physics (Dawson et al., 2005; Moel et al.,
2012). A promising recent development has been to implement variable
model complexity, with a fast model determining relevant or extreme
events and a more highly-resolved, accurate model being used to si-
mulate the extremes (Lin et al., 2010, 2012; Orton et al., 2016). This
technique has been successfully demonstrated for hurricane-induced
flooding but is potentially problematic for other regions. For example,
environments not dominated by tropical cyclones often are defined by
compound events where combinations of non-extreme forcings can
combine to create extremes (Leonard et al., 2014; Wahl et al., 2015;
Moftakhari et al., 2017; Zscheischler et al., 2018). In addition, event
based techniques can still be considered computationally limited as the
full parameter space cannot usually be explored. There remains a need
for a modeling technique that can bridge the gap between time-in-
tensive, complex models and fast simulation times.

This paper investigates emulation as a technique for the efficient
prediction of estuarine hydrodynamic variables in Grays Harbor,
Washington (WA) USA. The foundational idea of emulation (also re-
ferred to as surrogate modeling, response surface modeling, and meta-
modeling, among others) is the replacement of a slower processes-based
model (a simulator) with a fast, statistical model (an emulator)
(O'Hagan, 2006; Razavi et al., 2012). In the standard modeling para-
digm, the map between simulator inputs and outputs is based on the
laws of physics as implemented within a process-based model
(Castelletti et al., 2012). In emulation, this map is approximated using a
statistical model. The benefit is that, following an upfront computa-
tional expense to create a training dataset and train the emulator, ap-
plying the emulator is nearly instantaneous. Thus, emulation represents
a tradeoff between short simulation times and errors associated with
the approximation. This tradeoff suggests that emulation may be ideal
for probabilistic flood modeling along with many other potential ap-
plications including assessments of model uncertainty, model optimi-
zation, sensitivity analysis, real time forecasting, and extreme event
analysis (Oakley, 1999; Kennedy et al., 2006; Levy and Steinberg,
2010).

The general concept of emulation originated in the 1980s through
the idea of computer experiments (Sacks et al., 1989). Since then,
emulation ideas have spread widely resulting in a rich literature of
applications, emulator formulations, and theories from numerous fields.
Razavi et al., (2012) reviews emulation in the field of water resources,
with over 30 studies revealing a wide range of applications and emu-
lation approaches. As a brief overview of coastal applications, Gouldby
et al., (2014), Malde et al., (2016b) and Rueda et al., (2016) success-
fully implemented emulators for wave prediction problems using SWAN
(Booij et al., 1997) as a simulator. The pairing of SWAN and emulation
was extended to delineating offshore conditions causing wave induced
coastal flooding by Rohmer and Idier, (2012) by using kriging and an
adaptive sampling technique. Timmermans (2015) used emulation to
explore how tuning parameters affect uncertainty in results from the
Wave Watch III (Tolman, 2009) wave model. Liu and Guillas (2017)
investigated the effect of uncertainty in bathymetry on tsunami height
predictions using a novel merging of Gaussian process regression (GPR)
emulation with dimensional reduction techniques.

In the context of flooding, emulation has been applied to river
channel flooding (Apel et al., 2008) and coastal dyke systems (Moel
et al., 2012), although from the relatively simplistic perspective of
lookup tables. Surge response functions (SRF; Resio et al., 2009; Song
et al., 2012) can be considered a specific case of emulation through
regression of dimensionless cyclone scaling terms. However, SRFs are
limited in application to tropical cyclones, and have been shown to
perform poorly in complex environments (Taylor et al., 2015). As an
alternative to SRFs, Kim et al., (2015) used an artificial neural network

to emulate coupled ADCIRC+STWAVE calculated surge from tropical
cyclones. This approach was enhanced by Bass and Bedient (2018) who
used a similar strategy but with the addition of a coupled hydrologic
model and GPR as the emulator formulation. Jia and Taflanidis (2013)
and Jia et al. (2016) used GPR emulation for predicting tropical cyclone
surges.

Overall, multiple studies have demonstrated the potential of emu-
lation in a coastal hazard setting. Surge from tropical cyclones has, in
particular, seen a variety of successful emulator implementations. This
study builds on these recent efforts but explores an estuary in the USA
Pacific Northwest (PNW) that does not experience tropical cyclone
forcing. This results in a unique challenge in terms of handling diverse
forcings and a potentially larger input parameter space, since there is
no dominant forcing dimension. Other studies focused on predicting
WLs, such as those by Jia and Taflanidis (2013), Jia et al. (2016), Kim
et al., (2015), and Bass and Bedient (2018), reduce input dimension-
ality through considering only cyclones and using discrete cyclone
characteristics as input dimensions. This study, however, considers a
general application of emulating the coupled ADCIRC+SWAN (AD-
CSWAN; Dietrich et al., 2011) simulator in which any combination of
forcings can be used to calculate WLs. This paper is intended as a rig-
orous investigation into the applicability of emulation in this new
context. Therefore, the focus here is primarily on describing the
methodology and validation and only a single application, decomposing
extreme estuarine water levels, is presented.

2. Study sites and observations

2.1. Study site

Grays Harbor, WA (Fig. 1) is an excellent candidate for testing
emulation as it exhibits many of the complexities that make estuarine
modeling difficult. Grays Harbor is predominantly shallow, dominated
by depths averaging less than 5m, but also contains a maintained
(United States Army Corps of Engineers; USACE) deep-water navigation
channel giving it significant depth variability (Fig. 1). The bay exhibits
spatial variability in WLs (Cialone and Kraus, 2001) as a result of its size
(approximately 235.3 km2, Engle et al., 2007), shape, and gradients in
forcing. Grays Harbor is located in the PNW (Fig. 1) and is therefore
subject to an energetic storm and wave climate. A Global Ocean Wave 2
(GOW2) reanalysis (Perez et al., 2017) near the study site (see Fig. 1)
reveals a mean offshore significant wave height (Hs) of 2.5m with
events exceeding 7.5 m annually. Extreme storm events are generally
associated with extratropical cyclones that can produce strong winds,
pressure differentials, and precipitation (Allan and Komar, 2002a; Mass
and Dotson, 2010). These events are often associated with significant
non-tidal residuals (NTR) (Allan and Komar, 2002a, 2006; Allan et al.,
2011; Serafin et al., 2017), although of a smaller magnitude than lo-
cations impacted by tropical cyclones or with broader continental
shelves (Zhang et al., 1999). Within this study, NTR is defined as an
observed or modeled WL with tides removed (with the specifics of how
NTR is calculated detailed in section 4.3). Grays Harbor has significant
hydrological input from the Chehalis, Humptulips, Hoquiam, Elk, and
Johns Rivers which collectively drain a watershed of over 7 000 km2 for
an average monthly runoff volume of 22 million m3/month (Engle
et al., 2007).

2.2. Observational data

This study utilizes a variety of observational datasets ranging from
instrument deployments to reanalysis products. Forcing and model
development datasets are explained in the following section (2.2.1),
while section 2.2.2 details observations specifically used for model
validation.
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2.2.1. Forcing and model development datasets
Wave forcing for the model was obtained from the GOW2 reanalysis

of Perez et al., (2017) with output selected from a node located at (Lat:
47° N, Lon: 125° W; Fig. 1). Atmospheric forcing was provided by the
North American Regional Reanalysis (NARR) (Mesinger et al., 2006).
NARR provides a wide range of gridded atmospheric variables from
which the 3-hourly 10m wind fields and 3-hourly surface pressure
fields were utilized. Streamflow was obtained from USGS river gauges
with total estuary inflow constructed as the sum of three gauged rivers,
the Chehalis, Satsop, and Wynoochee (USGS stations 12031000,
12035000, and 12037400 respectively). The Satsop and Wynoochee
rivers are tributaries to the Chehalis river which join the Chehalis below
the Chehalis gauge. Therefore, the sum of these three gauges re-
produces the majority of the Chehalis flow into the Grays Harbor es-
tuary. While Grays Harbor has other river inlets, the majority of the
input flow is concentrated at the Chehalis River which captures around
80% of the watershed area. For simplicity, as well as due to temporal
availability of gauge data, only the Chehalis input (as constructed from
the three gauged rivers) is included in the study with all other
streamflow inputs assumed to be minimal with only local influences on
variables of interest.

The bathymetry data for the simulator grid were developed by
blending two National Oceanic and Atmospheric Administration
(NOAA) digital elevation models (DEMs): the Astoria, OR tsunami DEM
(1/3 arc second) and the coastal relief model (3 arc seconds) (NOAA
National Centers for Environmental Information, 2003; Love et al.,

2012). Bay topography was sourced from Oregon Department of
Geology and Mineral Industries (DOGAMI) LiDAR (DOGAMI, 2010).

2.2.2. Validation datasets
In addition to forcing, a series of observational datasets were used to

validate simulated and emulated variables within the study site. The
first dataset is the Westport, WA tide gauge (NOAA station ID #
9441102) which provides continuous hourly WL data beginning in
2006. WL observations were decomposed into constituent components
(e.g., deterministic tide, monthly mean sea level anomalies (MMSLA),
storm surge etc.) using the approach described in Serafin and Ruggiero
(2014). The five largest NTR events on record were extracted for testing
model skill. A brief summary of these storm events is provided in
Table 1.

Water level observations at the tide gauge were supplemented by a
field campaign carried out by the USACE from September–December
1999 (Fig. 1, Cialone and Kraus, 2001, 2002). This dataset includes
seven locations near the inlet with bottom mounted tripods measuring
wave characteristics, WLs, tidal currents, and suspended sediment
concentrations. Additionally, five surface stations were distributed
throughout the bay measuring WLs, conductivity, and temperature. The
USACE field campaign was broken up into two deployments (with a
small maintenance/data collection break between the two). Instru-
ments were replaced in approximately the same location except for Hs
station 0 which was moved to location 7 for the second deployment
(Cialone et al., 2002). Fig. 1 illustrates the spatial distribution of the

Fig. 1. Grays Harbor, WA study site and locations of observational datasets. Circles and triangles represent USACE deployments with co-located instruments labeled
with a single number representing both WL and Hs stations. The main panel shows the bathymetry and topography of the estuary in the NAVD88 Datum. The inset
panel shows the larger geographical context of the estuary with the thin black line delineating the domain of the hydrodynamic model. The purple square within the
inset is the location of the utilized GOW2 node (located at 47° N, 125° W). (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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various observation stations which have been renamed in this paper for
clarity.

3. Methods

3.1. Simulator configuration

This study utilizes the coupled Advanced Circulation (ADCIRC;
Luettich et al., 1992) and unstructured Simulating Waves Nearshore
(SWAN, Zijlema, 2010) simulator (ADCSWAN; Dietrich et al., 2011).
ADCSWAN has seen extensive validation and success in predicting WLs
and NTR at various estuaries around the world (Dietrich et al., 2012;
Bhaskaran et al., 2013; Krien et al., 2015). Recently, ADCSWAN has
been successfully implemented in the PNW with good agreement be-
tween simulator output and observations of WLs, NTR, and currents
(Cialone et al., 2002; Cheng et al., 2015b). ADCSWAN is implemented
in the 2D depth-integrated barotropic mode which has been shown to
perform with acceptable error for computing WLs and depth integrated
currents in estuaries (Resio and Westerink, 2008; Weaver and Luettich,
2010). ADCIRC is run in the fully 2-way coupled implementation with
SWAN, which has been shown to be critical for resolving interactions
between waves and nearshore hydrodynamics (Cialone et al., 2002;
Funakoshi et al., 2008; Dietrich et al., 2010, 2011; ). ADCSWAN is run
on an unstructured mesh that extends beyond the continental shelf
(approximately 115 km offshore; Fig. 1). Unstructured meshes provide
flexibility in simulator resolution with the utilized model grid having
element sizes ranging from around 7 000m offshore to under 20m
within the inner Grays Harbor channel.

3.2. Dimensional reduction and levels of simplification

Emulator construction requires sampling the full input parameter
space. This constraint dictates that the number of times the simulator
must be run to create the training dataset is proportional to the number
of dimensions included as inputs. In general, process-based hydro-
dynamic simulators are based on many inputs making some form of
dimensional reduction necessary. Emulator construction thus requires
finding a balance between minimizing the number of inputs and
maintaining sufficient complexity to acceptably resolve output vari-
ables of interest.

Fig. 2 provides a conceptual model of the dimensional reduction
approach taken in this study (through simplifications), transforming the
full process-based simulator (ADCSWAN) into an emulator. Each of the
simplifications, noted on the right side of Fig. 2, theoretically in-
troduces some level of error into the output, noted on the left side of
Fig. 2. These errors are discussed in this paper both as individual
contributions, and in the cumulative (sum of all errors up to a given

level) sense. When discussed explicitly in this paper, simplification le-
vels will be capitalized. For example, a comparison of model output
from the level 3 simplification (Stationary Simulator) to Observations
(no simplification) quantifies the cumulative level 3 error. The fol-
lowing sections (3.2.1–3.2.3) explain each simplification in this hier-
archy while corresponding error is quantified in the Results section.

3.2.1. Simulator simplifications
The first level of simplification is simply that of using a process-

based simulator. Simulators are unable to exactly reproduce observa-
tions for a variety of reasons ranging from incorrect or unresolved
physics (e.g., assumptions, parameterizations, etc.) to numerical ap-
proximations (truncation errors, etc.) to incorrect or biased input for-
cing. The x induced by this simplification is primarily a function of the
chosen model, model tuning, and the quality of forcing/bathymetric
information. Research has shown that errors in model inputs such as
bathymetry and mesh resolution (Bunya et al., 2010; Weaver and Slinn,
2010) and forcing fields (Madsen and Jakobsen, 2004; Lewis et al.,
2013; Lakshmi et al., 2017) are significant sources of model error.
Therefore, the specific configuration and choice of ADCSWAN (section
3.1) and the quality of observational data (section 2.2.1) are the pri-
mary controls on the impact of this simplification.

This study considers emulation of a specific implementation of the
ADCSWAN model and therefore the model grid (bathymetry, resolu-
tion, etc.) is held constant. Additionally, ADCSWAN contains a large
number of input switches, tuning parameters, forcing options, numer-
ical configurations, and other choices (Westerink et al., 1992). This
study holds all general model configuration parameters constant
leaving the various forcing components of WL variability as the sole
driver of input dimensionality within the emulator.

3.2.2. Forcing simplifications
Even with the simplification of holding the model configuration

fixed, the input dimensionality remains high, due to the numerous
physical forcing mechanisms. Below we describe simplifications that
reduce the model dimensionality to 16. This reduction is desirable since
it requires a smaller training dataset and therefore produces a more
efficient emulator construction.

3.2.2.1. Wave simplification. It is well known that offshore wave energy
can impact water levels within bays such as Grays Harbor (Olabarrieta
et al., 2011; Cheng et al., 2015b). Wave forcing is implemented in the
simulator using a JONSWAP spectrum fitted to peak wave period (Tp),
Hs, mean wave direction (MWD), and directional spread parameters.
While research has shown the importance of forcing with full
directional spectra for reproducing wave observations (Rogers et al.,
2007; Montoya et al., 2013), most studies accounting for wave
influence on WLs use simpler bulk parameter-based formulations.
Therefore, a fitted JONSWAP spectrum is used for both the Full (level
1) and Simplified Simulator (level 2) comparisons. Based on previous
research in the PNW (Cheng et al., 2015a), directional spread is held
constant at 20°, and wave forcing is applied uniformly along the Full
Simulator open boundary (Fig. 1). With these simplifications, wave
forcing is included in the emulator as three dimensions: Hs, Tp, and
MWD.

3.2.2.2. Atmospheric simplification. Atmospheric forcing represents a
unique challenge for emulation due to the spatial variability of wind
and pressure fields. Gridded inputs represent a high degree of
dimensionality, with every node potentially representing an input
dimension. For this reason, a sensitivity study was undertaken to see
if spatially constant atmospheric forcing could be used as an
approximation of the full forcing fields. WL output from simulator
runs with full gridded forcing were compared to runs with spatially
constant forcing. Results indicated (not shown) that the error
introduced in predicted WLs by the spatially constant assumption was

Table 1
Summary of forcing for the five largest NTR events at Grays Harbor, WA.
Forcing values are reported at the occurrence of maximum NTR.

Date
Storm 1 Storm 2 Storm 3 Storm 4 Storm 5

12/15/06 12/3/07 01/12/14 12/12/14 12/11/15

Non-Tidal Residual
(m)

0.73 0.93 0.66 0.58 1.11

Significant Wave
Height (m)

8.0 11.1 8.5 6.2 11.1

Peak Wave Period
(sec)

12.7 15.4 14.3 12.2 18.2

Wave Direction (deg.) 243 195 259 229 248
Surface Pressure

(HPa.)
977 989 989 986 984

Wind Speed (m/s) 17.5 19.2 14.9 9.1 12.3
Wind Direction (deg.) 217 201 238 218 198
Streamflow (m3/s) 1270 2020 860 670 1510
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acceptable in comparison to the corresponding reduction in
dimensionality. This error is quantified in the Results section (along
with other simulator simplifications) as level 2 error. Adopting the
spatially constant assumption, atmospheric forcing is reduced in the
emulator framework to three dimensions: wind speed, wind direction,
and sea level atmospheric pressure.

3.2.2.3. Tidal simplification. Tidal forcing is generally represented in
hydrodynamic models through harmonic constituents. Many studies
using ADCIRC are forced with eight or fewer constituents, mainly
because global databases of tidal constituents (e.g., TPXO (Dushaw
et al., 1997), or LeProvost (Le Provost et al., 1994)) are typically limited
to that number. Despite this, simulations using this small number of
constituents are typically found to agree well with both harmonic
analysis derived and observed tidal elevations (Westerink et al., 1992;
Blain and Rogers, 1998; Blain et al., 2001). ADCIRC simulates tidal
forcing as a boundary elevation time series (Luettich et al., 1992)
determined by a spatially variable, temporally constant phase and
amplitude and a temporally variable, spatially constant equilibrium
argument and nodal factor. Amplitudes and phases are determined by
the simulator boundary location and are therefore not an emulator
input dimension when considering a fixed study site. The nodal factor
represents adjustments of the amplitude/phase of each constituent that
results from the nodal tide cycle. The equilibrium argument
(deterministic based on date and time) controls the timing of the
harmonic.

While tides are deterministic, they are included within the emulator
as forcing for a variety of reasons which will be described in section
3.2.3. In approaching simplifications, a sensitivity test was performed
to determine the tidal dimensionality required for accurately reprodu-
cing maximum WLs during storm events (Table 1). It was found that
removing the nodal factor did not significantly change simulated WLs.
After this simplification, results showed that eight harmonics (without
nodal factors) were sufficient for accurately producing WLs. This allows
tides to be included in the emulator as eight input dimensions: 8 har-
monic equilibrium arguments, each ranging from 0 to 360°.

3.2.2.4. Streamflow simplification. Streamflow is represented in ADCIRC
as a flux of water into the domain (specified as a normal flow per unit
width of boundary). This allows the simulation of large rivers that have
significant cross-channel velocity profiles and for calibration where
data on these cross-channel profiles are available. For this study, we

instead specify a laterally constant velocity profile across each river
boundary. This simplification is common (Bunya et al., 2010; Mckay
and Blain, 2010), especially if the boundary is far enough away from
the area of interest that a natural flow profile can develop. This allows
streamflow to be represented as a single input dimension (the total
volumetric flow rate) for each river inlet.

3.2.2.5. Base water level simplifications. A final input dimension is
considered within the emulator framework as a “Base WL” parameter.
This is included to account for large scale changes to estuary sea level,
as is experienced through MMSLAs, seasonal variability, and sea level
rise (SLR) (Serafin and Ruggiero, 2014). These forcing dimensions are
defined in the simulator simply as a static change to mean sea level and
are therefore included in the emulator as a single input dimension.

3.2.3. Simulator stationarity simplification
ADCSWAN and other process-based hydrodynamic simulators are

dynamic in that both inputs and outputs are functions of time and the
simulator state is determined, in part, by previous states. Seeking
simplicity, this study makes the assumption that the dynamic system
can be approximated using a series of stationary simulations.
Precedents for such an assumption exist for coastal systems, including
spectral evolution in wave modeling (SWAN) approximated using a
series of steady-state simulations (Rogers et al., 2007; Rusu and Pilar,
2008).

Simplifying tidal forcing with stationary simulations is difficult
since there is no tidal equilibrium in WLs. One approach would be to
consider tides as a series of horizontal water surfaces of different ele-
vations (corresponding to tidal phases). This would reduce tidal forcing
dimensionality to a single value (tidal WL), but at the cost of losing
spatial variability. Testing showed that, for the Grays Harbor study site,
tidal wave evolution and propagation across the estuary results in sig-
nificant spatial variability in tidally forced WLs. A second approach
would be to decouple NTR and tidal WLs and add the two as a linear
summation. However, further testing confirmed that this simplification
results in significant error. Therefore, a hybrid solution was developed
in which all non-tidal forcing is stationary, but tides are computed
dynamically with model output recorded only at the specific moment of
interest. This approach is appropriate since tides are deterministic and,
for a specific set of equilibrium arguments, the previous state of tide
induced WLs will always be the same. This approach allows tidal for-
cing to be simplified but retains the spatial variability in tidal WLs and

Fig. 2. Hierarchy of model simplifications between observations (top) and emulator output (bottom). Each simplification is associated with a level (right side of the
figure) and some amount of error (defined on the left side of the figure).
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the nonlinear interactions with other processes.
Fig. 3 illustrates how stationary runs compare to the Full Simulator

(dynamic). Fig. 3a compares NTR from the fully forced ADCSWAN
(simplification level 1; black line) and seven stationary ADCSWAN runs
(simplification level 3; black dots) during storm 2 (Table 1). NTRs are
computed for both cases by subtracting a ‘tides only’ simulation from
the fully forced model. Fig. 3b demonstrates how the stationary NTR is
computed for the peak of storm 2. This NTR value is plotted in Fig. 3a as
a red outlined dot. The agreement between the fully dynamic run and
the seven stationary runs was found to be sufficient, with an RMSE
error for storm 2 of 11 cm.

3.3. Experimental design

A conceptual overview of the process used for constructing an
emulator, in the context of this study, is provided in Fig. 4.

The first step in building an emulator is the selection of design
points (experimental design) to create the training dataset. This study
implements a design from the commonly utilized Latin Hypercube
sampling (LHS) family of schemes first explored by McKay et al.,
(1979). LHS is one of the oldest and most popular experimental designs
and has been found to perform well for complex simulators (Jones and
Johnson, 2009). The specific experimental design for this study was
created using a “maximin” LHS design (Johnson et al., 1990; Morris and
Mitchel, 1995) from the LHS package in R (Carnell, 2017).

Parameters required for a LHS design are the number of dimensions
to be included, the range of each dimension, and the number of design
points. As detailed in section 3.2, this study used an input parameter
dimensionality of 16, including wind speed and direction, sea surface
pressure, Hs, Tp, MWD, streamflow, base WL, and eight tidal equili-
brium arguments. LHS considers only the maximum and minimum
values of each dimension with design points spaced approximately
uniformly across dimensions. Ranges were chosen for each parameter in
an attempt to span all plausible forcing scenarios. This was determined
by looking at 100-year return level events as calculated from the ob-
servational records. The size of the training dataset is typically con-
trolled by the cost of running the simulator, but Loeppky et al., (2009)
provide the general guidance that the training dataset should be ap-
proximately 10 times the number of dimensions of the input space.
Given the 16 input dimensions of this study, this suggests a theoretical

training dataset size of 160 runs. To explore the relationship between
training dataset size and emulator skill and to validate the emulator's
overall effectiveness, this study conservatively developed a larger
training dataset consisting of 480 ADCSWAN runs.

3.4. Emulator configuration

A variety of formulations have previously been used in an emulation
context, including support vector machines, artificial neural networks,
radial basis functions, and many others (Jin et al., 2001; Gano et al.,
2006; Razavi et al., 2012). This study uses GPR, (also referred to as
Kriging), a Bayesian statistical non-parametric regression model well
suited to this particular application as it scales well to high-dimensional
input and intrinsically considers model uncertainty (O'Hagan, 2006;
Levy and Steinberg, 2010). Furthermore, GPR is a general and flexible
framework that can be optimized for a variety of modeling problems
(Rasmussen and Williams, 2006). For example, many other common
emulator formulations, such as neural networks (Rasmussen and
Williams, 2006) and radial basis functions (Anjyo and Lewis, 2011), can
be shown to be equivalent to GPR under specific conditions.

The foundational definition of a Gaussian process is that of an in-
finite collection of variables for which any finite subset is described by a
multivariate Gaussian distribution. Every point in the input space can
be modeled as a random variable (due to uncertainty about the func-
tional response to inputs). A Gaussian process governs how these
variables are related. A common way of thinking about GPR is as a
distribution over functions (Rasmussen and Williams, 2006). This is
mathematically tractable as a GPR can be completely defined by a mean
and covariance function (due to being modeled as a multivariate
Gaussian distribution). From a Bayesian perspective, this means a GPR
is specified using a prior mean and covariance function. The data then
updates this prior, using Bayesian inference, with information about the
true form of the function to develop the posterior. The mean posterior
function is then the most probable function (considering all possible
functions) given the data that has been observed.

This process is conceptualized for a one-dimensional case in Fig. 5.
The effect of the Bayesian conditioning on the emulator can be seen as
“anchoring” the posterior sample functions (and uncertainty) at loca-
tions of observations. This limits the possible functions to those that go
through these observed points. Uncertainty is quantified by considering

Fig. 3. Panel (a): Comparison of NTR during storm 2
from a fully dynamic simulation (black line) and
simplified stationary simulations (black dots). Panel
(b): Example stationary run (at the peak of the storm)
showing how the stationary NTR is calculated. The
horizontal bold dotted line represents the time of the
stationary run. At this time, NTR is calculated by
subtracting the value of a tide only run from the
value of the stationary run (Bold red line). This NTR
value is plotted as a red outlined dot in panel (a).
(For interpretation of the references to colour in this
figure legend, the reader is referred to the Web ver-
sion of this article.)

Fig. 4. Conceptual framework for developing an estuarine hydrodynamic emulator.
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the possible functions that pass through these training points.
The first component of a Gaussian process is the mean function,

which defines the mean of the infinite set of functions that are being
considered. A common choice is to set the prior mean to zero, which
can be thought of as a non-informative prior where the form of the
function between inputs and outputs is unknown. This is demonstrated
in Fig. 5, as shown by the approximate mean of the sample prior
functions being zero. As an alternative, this study follows the metho-
dology of Timmermans (2015) who used a simple linear regression to
obtain information about the mean function's form. Residual analysis of
our data showed a cubic relationship for the tidal equilibrium argument
terms, a somewhat expected result due to the cyclic nature of tides.
Based on this result, the prior mean function was defined with a cubic
term for all tidal equilibrium argument inputs and a linear term for all
other inputs. A k-fold cross-validation (see section 4.2) was performed
to evaluate emulator skill with and without the modified mean func-
tion. Results showed a significant gain in skill (both in terms of RMSE
and Determination, R2) by using the modified mean function.

The covariance function of a Gaussian process is the second neces-
sary component for defining the emulator. The covariance function
(often called the kernel) can be thought of as describing the relationship
between points in the process. Practically this describes the smoothness
of the resulting GPR. In general, the covariance function contains
hyper-parameters describing the details of the relationship between
points (e.g., parameters such as length-scale, signal variance, etc.).
These parameters can be inferred from the data, which is commonly
done through maximizing the marginal likelihood rather than full
Bayesian inference (Schulz et al., 2018). This was the approach used for
this study.

A comparison of model performance was performed using 3 com-
monly used covariance functions: the Gaussian, squared exponential,
and Matern (Rasmussen and Williams, 2006). The Matern covariance
function was tested with ν (a parameter controlling smoothing) equal to
1.5 and 2.5. The best performing model was evaluated using k-fold
cross-validation and comparing model RMSE values (Kohavi, 1995;
Arlot and Celisse, 2010). K-fold cross-validation breaks the total
training dataset into k segments and cycles through every possible
combination of withholding one segment for validation and training the
emulator with the remaining segments. This results in an ensemble of
skill metrics for which the mean is less biased and more robust to the
training period than a standard validation methodology (Arlot and
Celisse, 2010). It was found that the Matern (ν=2.5) performed the
best and therefore was utilized for all results found in the following
section. The training of the emulator was performed using the Mana-
ging Uncertainty in Complex Models (MUCM) package in R (Malde
et al., 2016a).

4. Results

4.1. Error introduced by model simplifications

With the construction of the emulator being hierarchical (Fig. 2), it
becomes important to assess the skill of the emulator at multiple sim-
plification levels to determine where errors are being introduced. This
was investigated for simulator simplifications by looking at the 5 largest
storms, in terms of NTR, on record (Table 1). Storm events were chosen
for this analysis as it is expected that the strong forcing gradients and
rapidly changing dynamics of these events would provide the most
robust test of simulator simplifications. For each storm, WLs were cal-
culated using the Full Simulator (dynamic, non-simplified) and the
Stationary Simulator (all simplifications except for emulation) to
quantify the sum of level 2 and level 3 errors. This comparison was
performed at six or seven (seven except for storm 2) temporally random
points distributed across each storm. Fig. 6 shows the difference be-
tween calculated WLs (level 1 simplification minus level 3 simplifica-
tion) at two locations: the tide gauge (Fig. 6a) and WL station 7
(Fig. 6b). This difference is denoted here as the “error” resulting from
simplifying the simulator. Two locations are plotted to visually sample
how error is affected by location within the estuary.

The error computed via this test was found to have a max of 25 cm

Fig. 5. Example 1-D application of GPR for
determining f(x) from observations. Panel
(a) shows three random sample functions
drawn from the prior distribution. A non-
informative prior is specified so the average
over functions has a zero mean. Panel (b)
shows 3 random sample functions drawn
from the posterior distribution after 4
training observations (dark black points).
The effect of training is to constrain possible
functions to only those that go through ob-
servation points. In panel (b), the shaded
region represents plus and minus 2 standard
deviations from the mean posterior predic-
tion. Figure after Rasmussen and Williams
(2006).

Fig. 6. Error between Full and Stationary (Level 1 and Level 3) Simulator
calculated WLs. The histogram includes comparisons for storms 1–5 (Table 1).
The bold line represents zero error while the dotted line is the mean error of the
ensemble. Subplot (a) is computed at the tide gauge location while subplot (b)
is at WL station 7 (located deeper within in the estuary; Fig. 1).
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with a RMSE of 6 cm at the gauge location. The maximum RMSE for
approximately 100 test stations randomly scattered across the estuary
domain was found to be 9 cm. The Simplified Simulator was found to be
only slightly biased with a mean approximately 2 cm lower than the
Full Simulator (represented as a positive mean error in Fig. 6). Addi-
tional snapshot runs were performed to examine the model's error for
non-storm conditions (not shown). Results confirmed that the Simpli-
fied Simulator, on average, performs better for non-storm conditions,
suggesting that the results in Fig. 6 are likely conservative.

4.2. Emulator validation

The ability of the emulator to replicate the Stationary Simulator
(level 4 error) was quantified using a k-fold cross-validation. Fig. 7
shows the results of the cross-validation with 5 segments comparing
emulated WLs and simplified simulator WLs.

Overall the emulator was found to perform well at this comparison
level with a high level of skill. The emulator shows little bias (mean of
the residuals is less than 1 cm), and relatively even variance in residuals

across WL magnitude (Fig. 7a). However, the width of the histogram in
Fig. 7b suggests that this step introduces more error than simulator
simplifications. The RMSE was found to be around 13 cm (level 4 error)
which is significantly larger than the calculated simulator simplification
error (Fig. 6, sum of level 2 and level 3 error) of approximately 6 cm.
However, this comparison of RMSEs is imperfect as the level 4 error
assessment is based on a larger sample size and more rigorous k-fold
validation and the level 2 and level 3 error assessment only examined
performance during storm events.

4.3. Emulator performance: Westport, WA tide gauge

The next stage of quantifying the skill of the emulator is to compare
emulated WLs to observations at the tide gauge. This test provides a
measure of the cumulative level 4 error, or the total integrated error
from predicting observed WLs using emulation. This analysis was per-
formed by using the emulator to hindcast hourly WLs at the location of
the tide gauge for the entire period of record (2006–2016). Comparison
between tide gauge observations and hourly emulated WLs for a ran-
domly chosen month long segment are shown in Fig. 8. Overall, hourly
emulated WLs (for the over 10-year long record) compare favorably to
the tide gauge with an R2 value of greater than 0.96, RMSE of ap-
proximately 15 cm, and a bias of less than 1 cm.

As with tide gauge records, WL output from an emulator can be
considered as the sum between two components: tides and NTRs. In the
PNW, tides are the dominant source of WL variability (Allan and
Komar, 2002b) and so the skill of the emulator in predicting WLs is
primarily controlled by its ability to reproduce the deterministic tides.
However, coastal hazard research often considers NTR individually as
the driver of extreme WLs on top of regular, and well predicted, tidal
cycles. Therefore, it is additionally important to test the emulator's skill
at reproducing NTR signals. Furthermore, this provides a more robust
test of emulator performance as NTR is not explicitly modeled as an
output by the emulator.

NTRs are often calculated at tide gauges by subtracting the pre-
dicted tide (determined through harmonic analysis) from the measured
WL. This procedure can be problematic since NTR may affect tidal
phase, resulting in a false NTR signal from out of phase tidal signals
(Pugh, 1996; Haigh et al., 2014; Serafin and Ruggiero, 2014). There-
fore, for this study NTRs were calculated from tide gauge data using the
procedure of Serafin and Ruggiero (2014) (modeled after Bromirski
et al., 2003), which uses spectral filtering to remove energy from tidal
bands.

The Bromirski et al., (2003) methodology is not used to determine
NTRs from the ADCSWAN simulations. Storm simulations are on the
scale of weeks which is too short temporally to recover energy across all
tide bands of interest in the frequency domain. Instead, NTRs from the
ADCSWAN simulations (at all simplification levels) and emulator si-
mulations were calculated as a full forcing run minus a tidal only run.

Fig. 7. Panel (a): Simplified Simulator vs. emulator WLs for the full training
dataset. The comparison was performed using a 5-fold validation procedure.
Panel (b): histogram of the error between Simplified Simulator and emulator
WLs.

Fig. 8. Comparison of emulated (red dashed line)
and observed (black line) hourly WLs at the Grays
Harbor tide gauge for January 2010. Coefficient of
determination is calculated using the entire tidal
record (2006–2016). WLs are plotted in reference to
mean sea level. (For interpretation of the references
to colour in this figure legend, the reader is referred
to the Web version of this article.)
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Emulated NTRs were then subsequently smoothed with a loess filter to
reduce noise associated with tidal phase mismatches between the tide-
only and full forcing emulated time series.

Comparison of observed and hindcasted NTRs for storms 1–5
(Fig. 9) show a good overall performance of the emulator. To con-
textualize this comparison, the Full, Simplified, and Stationary Simu-
lator calculated NTR time series are all plotted. A quantitative com-
parison of error between observed and modeled NTRs found that all
simplification levels (from full ADCSWAN to emulator) have an RMSE
of approximately 14 cm plus or minus 1 cm. The similar error across all
simplification levels suggest that the largest source of error for NTR is in
Full Simulator itself (level 1). For example, in Fig. 9b it is clear that the
Full Simulator (red line) is unable to reproduce the peak NTR signal in
storm 2.

4.4. Emulator performance: USACE field campaign

The tide gauge provides a rich dataset for validating the emulator
due to its record length but is spatially limited to a single comparison
point within the study area. One key strength of emulation, in

comparison to a fully data driven methodology, is the ability to provide
WL information across study sites where observational information may
not be available. An emulator can be constructed at any location within
the ADCSWAN model domain where output is provided. Fig. 10 eval-
uates the spatial performance of emulation through a comparison of
emulated and observed WL time series for a 1999 field campaign led by
the USACE in Grays Harbor (Fig. 1, Cialone and Kraus, 2001, 2002).

Fig. 10 shows good performance between observed and modeled
WLs across most locations. The main exception to this is WL station 6
which displays comparatively poor agreement between the observed
and emulated WLs. This lack of skill is equally shown by the Full Si-
mulator and is therefore not a result of the emulation procedure.
Table 2 gives RMSE values for a comparison between observations and
modeled output at various levels of simplification (level 1 simulations
and level 4 emulations are shown in Fig. 10). The levels described in the
column headers are cumulative error, or a comparison of the model at
that simplification level (Fig. 2) to observations. No level 3 skill esti-
mate was developed due to the computational constraints of simulating
sufficient stationary point runs to accurately quantify model skill.

Fig. 9. Tide Gauge comparison of observed and modeled NTR at various sim-
plification levels. Each subpanel (a through e) is one of the top 5 storms of
record (see Table 1). Due to windowing for spectral filtering, storm 5's observed
NTR is calculated using the subtraction method rather than the Bromirski
method. All panels have the same y-axis scaling. The specific dates on the x axes
vary by storm, but each tick represents a day.

Fig. 10. Comparison of observations (USACE deployments, Fig. 1), Full Simu-
lator and emulated WLs. All panels have the same y-axis and x-axis scaling.
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Table 2 indicates that the largest drop in skill is at the level 1 si-
mulator simplification. This corresponds to the full ADCSWAN model's
inability to perfectly reproduce observations. Level 2 simplifications are
found to only nominally impact modeled WLs with a small (1 cm) in-
crease in RMSE for some stations. Level 4 simplifications additionally
produce very little loss of skill.

5. Discussion

5.1. Effect of simulator simplifications

The hierarchical validation used in this study provides a unique
approach to quantifying the error budget as sourced from multiple
simplification levels. A comparison of model performance at various
simplification levels (Table 2) found that the primary source of lost skill
is from the Full Simulator rather than from simulator simplifications or
from emulation. Averaging across stations and deployment periods, all
simplifications and emulation only increased RMSE by 1 cm relative to
the level 1 error.

This result is of particular interest when compared to the quantifi-
cation of discrete error from only emulation (see the histogram in
Fig. 7) which shows that emulation introduces comparatively sig-
nificant error into WL estimates. A cumulative level 4 comparison at the
tide gauge (Fig. 8) found a RMSE of 15 cm while Level 4 itself (Fig. 7)
had a RMSE of 13 cm. This result suggests that the error from each
simplification during emulator construction is not independent. In
other words, the cumulative error variance is not the sum of the discrete
error variances. Practically, the dominance of level 1 error is found to
mask that of the other levels. This may not be true if level 1 error was
able to be significantly reduced by improvements in process-based
modeling at which point other simplifications may become relevant to
the error budget.

In terms of quantifying model skill, the RMSE for comparisons to the
1999 USACE field data is overall larger than the RMSE in comparison to
the tide gauge. A close examination of the USACE WL time series shows
significant high frequency noise that is likely the cause of the overall
larger RMSE values. The USACE data exhibits more high frequency
variability due to a shorter averaging period (6min for the tide gauge
and 3min for the USACE data).

This study suggests that the most effective action to improve emu-
lated WL predictions is to reduce level 1 error. One option would be
optimized tuning, a process which can be accomplished by including
tuning parameters within the emulator framework (Kennedy et al.,
2006; Hall et al., 2011; ). ADCSWAN could also be replaced with a
different simulator or physics implementation, for example ADCSWAN
in 3D baroclinic mode. This would come at the cost of drastically in-
creasing computation time and requiring additional input dimension-
ality in the form of density, temperature, and salinity fields.

A level 1 error reduction could also be accomplished through im-
proving the quality of model input data, both in terms of bathymetry

and forcing. Incorrect bathymetry is likely the source of errors for WL
station 6. Fig. 10 shows WLs at this station having an asymmetric tidal
signal indicative of shallow water while the observations have less
asymmetry. This suggests that the water depth at the time of deploy-
ment was greater than the depth in the compiled bathymetric dataset
used to generate the ADCSWAN grid. Therefore, investment in more
accurate or more recent bathymetry is another viable step for de-
creasing level 1 error. Similarly, level 1 error integrates error as a
function of poor-quality forcing, making improvements to forcing an-
other promising avenue for error reduction.

Level 2 error could be reduced by making less aggressive simplifi-
cations of forcing inputs. It is conceptually straight forward to include
other input dimensionality such as spatially variable atmospheric for-
cing or full spectral wave forcing. A promising strategy for including
field variables as input dimensions is through decomposing the field
into principal components (Higdon et al., 2008; Liu and Guillas, 2017).

There are additionally a range of options for avoiding the statio-
narity assumption made in this study, which would eliminate or reduce
level 3 error. The incorporation of temporal variability in emulators is
reviewed by Reichert et al., (2011) who suggest the following strate-
gies:

1) Apply a standard emulation methodology but with time as an ad-
ditional degree of dimensionality (Conti et al., 2005).

2) Describe the time series using basis functions and then apply emu-
lation to the basis function coefficients (Bayarri et al., 2007; Higdon
et al., 2008).

3) Emulate the difference from one time point to the next
(Bhattacharya, 2007; Conti et al., 2009).

4) Use a Gaussian stochastic process as a Bayesian prior (Liu and West,
2009).

5) Develop a hybrid dynamic/emulated model, or a “Mechanistic dy-
namic emulator.” (Reichert et al., 2011; Albert, 2012)

In the context of this study, strategy 1 is conceptually the simplest
but it is not clear a priori how far into the past the system's memory
extends and each included time step multiplies the dimensionality of
the input space. Strategy 2 is complicated by identifying basis functions
that adequately capture the various contributing signals. For example, a
Fourier transformation is a natural solution except that storm surge is
non-periodic and an important contributor to estuarine WLs. Strategies
3–5 all have potential advantages but bring additional complexity to an
already complex methodology so were not explored further.

For reducing level 4 error, GPR is a flexible framework and there are
likely gains to be made through a more exhaustive approach for emu-
lator specification. In particular, handling of the periodic nature of tides
within the covariance function (Roberts et al., 2013) is a promising
research direction.

5.2. Computational cost considerations

Emulation is an approach to dramatically reduce simulation times
and is therefore most valuable in situations where the simulator must
be run for very long periods or for multiple iterations (e.g., probabilistic
risk assessment). Emulation requires an upfront cost, through the run-
ning of multiple simulations to construct a training dataset, but is
comparatively instantaneous after this initial investment. As the nature
of the trade-off is computation time, it is useful to review the costs of
building the training dataset.

The first control on computational cost for the training set is the
number of input dimensions. The simplifications implemented in this
study managed to reduce the input space to 16 dimensions. Each design
point took approximately 66 core hours to run in parallel on a server
with Intel Xeon E52450 CPUs (2.1 GHz). With this setup, a full ex-
perimental design of 160 points would require over 10.5 thousand core
hours (although with parallelization the actual time was much less).

Table 2
RMSE values comparing WL model output to observations at various simplifi-
cation levels. Rows are locations/variables while the two column groupings
represent instrument deployments. The length of the time series comparison
varies depending on station deployment length.

Station Deployment 1: RMSE (cm) Deployment 2: RMSE (cm)

Level 1 Level 2 Level 4 Level 1 Level 2 Level 4

WL 1 24 24 25 21 21 22
WL 2 19 20 22 16 17 19
WL 3 26 26 27 37 37 29
WL 4 19 19 21 22 23 20
WL 5 21 22 22 19 19 20
WL 6 44 44 41 36 36 39
WL 7 21 22 28 23 21 27
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This study developed a larger experimental design (over 400 points) but
this was primarily for validation rather than emulator skill (see dis-
cussion below). Full ADCSWAN required approximately 18 core hours
per day of simulation time. Based off these computational costs, emu-
lation becomes an efficient option if approximately one and a half years
of simulation are required. This limit is highly situationally dependent
and is controlled by processor speed, simulator, emulator, etc. and is
intended only as an order of magnitude reference. Furthermore, emu-
lation is primarily targeted at probabilistic methodologies, rather than
hindcasting, for which multiple iterations of time series quickly sum to
very large total simulation times.

The above analysis is based on a LHS design and the Loeppky et al.,
(2009) guideline that a training dataset should be around 10 times the
number of input dimensions. However, LHS is one of many possible
experimental designs (Levy and Steinberg, 2010). Significant research
has focused on optimizing experimental designs beyond LHS and it is
possible that a more complex design could reduce the size of the
training dataset. For example, LHS does not consider the probability
that a particular combination of input parameters may occur. There-
fore, some design points are likely poorly utilized exploring space that
is physically impossible or highly improbable (for example, high wave
heights associated with low wave periods).

Finally, the above analysis did not consider the effect of training
dataset size on skill. This relationship was tested by quantifying emu-
lator performance at a variety of training dataset sizes. For this analysis,
the total body of simulations (480) was partitioned into smaller dataset
sizes ranging from 50 to 450 simulations for testing. For each smaller
dataset, a k-fold validation with 5 segments was performed (Fig. 11) to
quantify emulator skill at this smaller training dataset size. This ana-
lysis is identical to that described in section 4.2 but with an artificially
decreased training dataset size.

Results from this analysis are in good agreement with the guidance
of Loeppky et al., (2009) in that ten times the number of input di-
mensions is sufficient for building a skillful emulator (Fig. 11). Beyond
this limit, only very small gains in skill are realized, suggesting that it is
not efficient to over build the training dataset.

It is worth considering the cumulative computational cost of de-
veloping multiple emulators. This study takes the approach of building
individual emulators at each location of interest. While emulator
training and simulation is rapid for individual emulators, the sum
computational cost of constructing many emulators can be significant.
This is especially true considering that large estuarine hydrodynamic
models can be of very high output dimensionality (the utilized Grays
Harbor ADCSWAN grid has over 29,000 nodes). A common solution is
to dimensionally reduce model outputs via approaches such as principal
component analysis (Chen et al., 2011; Jia and Taflanidis, 2013; Jia
et al., 2016; Bass and Bedient, 2018). An alternative option uses the
multivariate Gaussian process to generalize the standard GPR case to a
“multi-output emulator” (Conti and O'Hagan, 2010; Fricker et al.,

2010). While not considered in this study, which is primarily concerned
with point assessments, these approaches could result in significant
computational savings for a larger output dimensionality. Further,
considering emulators individually implicitly assumes independence of
output variables and ignores the inherent correlation between output
variables (Rasmussen and Williams, 2006).

5.3. Emulation beyond water levels

While this study has focused primarily on emulating WLs, emulation
can easily be extended to other variables in a coastal hazards frame-
work. To explore this possibility, Hs was emulated at the observational
Hs stations from the 1999 USACE field campaign (Fig. 1) (Cialone and
Kraus, 2001, 2002). Hs emulators were developed using an identical
approach to that of WLs except that Hs emulation was found to not need
cubic terms for the prior mean function. A comparison to observations
(Fig. 12) shows that GPR emulators perform well for Hs with the
highest Hs (around September 26, 1999) being well reproduced by the

Fig. 11. Impact of training dataset size on emulator skill. RMSE is calculated
with a 5-fold cross-validation and represented by a standard boxplot. The
dotted vertical line represents the theoretical training dataset size from Loeppky
et al., (2009).

Fig. 12. Comparison of observations (USACE deployments), Full Simulator and
emulated Hs time series. Symbols are used for the observations for the sake of
visual clarity. All panels have the same y-axis scaling.
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emulator at stations 0, 1, 2, 3, and 4 (Fig. 12). Performance is com-
paratively poor at stations 5 and 6, which are further within the estuary
and less influenced by offshore waves. These results are further quan-
tified in Table 3 which shows poor skill for interior Hs stations. It
should be noted, however, that the Hs signals at these two stations have
low variance and are barely above the noise floor.

Results show that, similarly to WLs, the largest loss of skill is at
simplification level 1. Simplified Simulator and emulator results are
found to closely track the Full Simulator. This is most evident at the bay
interior stations where the Full Simulator and emulator are both found
to over-predict Hs. Table 3 reveals that level 2, 3 and 4 simplifications
produce little loss of skill for calculated Hs (average increase in RMSE of
2 cm). An exception to this is Hs station 5 which shows a significant
increase in RMSE at the emulation level. The cause of poor emulator
performance at this one location is unclear but it is likely due to a poor
emulator model fit.

Overall these results suggest that emulation could be integrated into
many parts of an estuary modeling system. However, a key assumption
of emulation with GPR is smoothness in response characteristics, sug-
gesting that GPR may be sub-optimal for “jumpy” variables. Not shown
are similar results for Tp which can exhibit discontinuities within es-
tuaries as Tp switches from one wave spectrum component to another.
The emulator is qualitatively able to capture Tp characteristics but
cannot resolve these instantaneous jumps. For this reason, it is im-
portant to carefully consider the form of the output variable being
emulated and its relation to the input parameters.

5.4. Example emulator application: extreme water level decomposition

Outside of validation, it is illustrative to explore an example ap-
plication of emulation. For this purpose, a decomposition of the relative
forcing contributions responsible for extreme WLs within Grays Harbor
was performed. Seven versions of a 31-year time series (1984–2015)
were emulated under different forcing scenarios. As a baseline, a “full
forcing” case time series was emulated with the observed forcing at
Grays Harbor (comparable to the hindcasts in Figs. 8 and 10). Each
additional forcing scenario was emulated with one forcing contribution
excluded (waves, wind, pressure, base WL, streamflow, and tides) to
isolate the relative contribution of individual forcings to WLs. A parti-
cular forcing contribution was calculated as the emulator output WL
with full forcing minus the emulator output WL with all forcing except
the component of interest. The exception to this is tides (which cannot
be turned off due to how they are included in the emulator) which were
calculated simply as emulator output with no other forcing but tides.
WL contributions were calculated at the time of the 31 annual max-
imum WL events as determined by the full forcing time series. The
average relative contribution of each forcing component over the 31
annual maxima are plotted along East-West and North-South transects
in Fig. 13.

The diverse mix of contributions for each bar in Fig. 13 shows that
extreme WL events are compound in nature. This conclusion is further
supported by the variance in emulated extreme WL contributions (not
shown) which reveals that the composition of each individual annual
maximum event varies widely across the timeseries. The mean con-
tribution of each forcing is found to be significant providing evidence
that all included forcing processes are important for properly quanti-
fying extreme water levels. The only exception is streamflow which is
found to be nominally important except near the streamflow boundary.
This result is likely specific to the Grays Harbor estuary and would be
different for a more hydrologically dominated estuary system (Svensson
and Jones, 2004; Lavery and Donovan, 2005; Chen et al., 2014).

The mix of contributions is found to be spatially variable across the
estuary domain, leading to both an East-West and North-South gradient
in contributions to WLs. For example, the streamflow contribution is
found to increase moving west towards the estuary's streamflow inlet.
Wave influence is found to have a significant contribution to the annual
maxima but only at stations in the northern and eastern reaches of the
bay. This result is likely due to breaking induced setup not occurring at
the bay's entrance channel. The influence of wind increases to the
north, due to the mean wind direction emanating from the south during
storm events. The influence of pressure anomalies on extreme WLs is
found to be uniform but this result is likely from the spatial simplifi-
cation of sea level pressure fields.

Not shown in Fig. 13 is the contribution from tidal forcing. This is
primarily for scale reasons as the tidal component is an order of mag-
nitude larger than that from other forcing (average of 140 cm). Tides
also show a gradient across the estuary although with the opposite
pattern as that shown in Fig. 13. The tidal component of annual maxima
WLs decreases by about 30 cm moving from the center of the estuary
moving North or East. As WLs are the sum of these two components
(tides and forcing driven NTR), the calculated gradient in total WLs is
less than that shown in Fig. 13 (under 20 cm across the two transects).

6. Conclusions

This paper has presented an application of emulation, or surrogate
modeling, to the problem of rapidly simulating hydrodynamic variables
within the Grays Harbor, WA estuary. This methodology is targeted
towards a variety of computationally constrained problems including
probabilistic modeling, uncertainty quantification, model optimization,
and non-parametric extreme event analysis. To facilitate efficiently
achieving these goals, this study has focused on validating and quan-
tifying the error induced by emulation. Additionally, a variety of sim-
plifications to the simulator have been suggested for reducing input
dimensionality, and therefore the size of the emulator training dataset.

The results from this study suggest that the Gaussian Process re-
gression (GPR) derived emulator is skillful for calculating a variety of
model output variables (WL, NTR, and Hs). A decadal-scale comparison
of emulated WLs to tide gauge data showed the emulator having a
RMSE of 15 cm. Emulator performance is evaluated at multiple ob-
servation points across the estuary domain providing confidence that
emulation is skillful across spatial extents. Decomposing the error from
different emulator construction simplification levels shows that the
largest source of unexplained variance in emulator hindcasts is from
ADCSWAN itself. Of particular interest, strong simulator simplifications
(including that of stationarity) are a relatively low contributor to losses
in emulator performance (average increase in RMSE of 1 cm).
Therefore, future efforts to improve emulator performance should focus
on improving the Full Simulator before reducing simplifications or
optimizing the emulator.

Emulation is additionally found to be very efficient after the con-
struction of the training dataset. Using an LHS experimental design,
analysis shows that the training dataset size guidance of 10 times the
number of input dimensions (Loeppky et al., 2009) is optimal in the
case examined here. Overall emulation is found to have the same order

Table 3
RMSE values comparing Hs model output to observations at various simplifi-
cation levels. Rows represent station locations while the two column groupings
represent instrument deployments. Hs station 0/7 was relocated so deployment
1 values represent the Hs station 0 location and deployment 2 values re-
presenting the station 7 location.

Station Deployment 1: RMSE (cm) Deployment 2: RMSE (cm)

Level 1 Level 2 Level 4 Level 1 Level 2 Level 4

Hs 0/7 32 32 37 73 73 75
Hs 1 38 39 37 61 61 69
Hs 2 45 46 51 48 49 61
Hs 3 45 45 35 52 52 50
Hs 4 49 50 40 148 148 42
Hs 5 47 47 104 136 136 209
Hs 6 35 35 28 40 40 38
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of magnitude skill as process-based models as well as showing sig-
nificant gains in computational efficiency. Therefore, emulation is
shown to be a viable path for exploring estuarine hydrodynamic mod-
eling problems.

Finally, the emulator was applied to investigate the relative con-
tributions of different forcing variables to annual maxima WLs and NTR
at the study site. Results show a diverse mix of forcing contributing to
annual extreme WLs, indicating the importance of considering com-
pound events for flood hazard assessments in the PNW. All forcing
components, along with WL itself, were found to exhibit significant
spatial variability hinting at important information for flood vulner-
ability assessment. Tides were found to be the largest contributor to
extreme WLs with other components being of the same order of mag-
nitude. The exception to this is streamflow which was found to be, on
average, a relatively minor contributor to extremes except near the
river's mouth. Additionally, waves were found to only contribute to WLs
at stations near the edge of the estuary domain, a result that is likely
tied to wave penetration into the estuary. While only a single example
application of emulation to estuary hydrodynamics questions was ex-
plored, results signal the significant potential of emulation to a broad
range of applications.
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Abstract. Extreme water levels generating flooding in estuarine and coastal environments are often driven by compound events,

where many individual processes such as waves, storm surge, streamflow, and tides coincide. Despite this, extreme water levels

are typically modeled in isolated open coast or estuarine environments, potentially mischaracterizing the true risk of flooding

facing coastal communities. This manuscript explores the variability of extreme water levels near the tribal community of La

Push, within the Quileute Indian Reservation on the Washington state coast where a river signal is apparent in tide gauge5

measurements during high discharge events. To estimate the influence of multiple forcings on high water levels a hybrid

modeling framework is developed, where probabilistic simulations of joint still water level and river discharge occurrences are

merged with a hydraulic model that simulates along-river water levels. This methodology produces along-river water levels

from thousands of combinations of events not necessarily captured in the observational records. We show that the 100-yr still

water level event and the 100-yr discharge event do not always produce the 100-yr along-river water level. Furthermore, along10

specific sections of river, both still water level and discharge are necessary for producing the 100-yr along-river water level.

Understanding the relative forcing driving extreme water levels along an ocean-to-river gradient will help communities within

inlets better understand their risk to the compounding impacts of various environmental forcing, important for increasing their

resilience to future flooding events.

1 Introduction15

Coincident or compound events are a combination of physical processes in which the individual variables may or may not be

extreme, however the result is an extreme event with a significant impact (Zscheischler et al., 2018; Bevacqua et al., 2017;

Wahl et al., 2015; Leonard et al., 2014). Flooding is often caused by compound events, where multiple factors impact both

open coast and estuarine environments. Storm events, for example, often generate concurrently large waves, heavy precipitation

driving increased streamflow, and high storm surges, making the relative contribution of the actual drivers of extreme water20

levels difficult to interpret. Studies at the global (e.g., Ward et al. (2018)), national (e.g., Wahl et al. (2015); Svensson and Jones

(2002); Zheng et al. (2013)) and regional scale (e.g., Odigie and Warrick (2017); Moftakhari et al. (2017)) have evaluated the
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likelihood for variables such as high river flow and precipitation to occur during high coastal water levels, demonstrating that

dependencies often exist between these individual processes.

Around river mouths, the elevation of the water level measured by tide gauges, or the still water level (SWL), varies depend-

ing on the mean sea level, tidal stage, and the non-tidal residual contributors which may include the following forcings; storm

surge, seasonally-induced thermal expansion (Tsimplis and Woodworth, 1994), the geostrophic effects of currents (Chelton5

and Enfield, 1986), wave setup (Sweet et al., 2015; Vetter et al., 2010), and river discharge. Most commonly, estimates of non-

tidal residuals are determined by subtracting predicted tides from the measured water levels. However, residuals computed in

this way often contain artifacts of the subtraction process from phase shifts in the tidal signal and/or timing errors (Horsburgh

and Wilson, 2007). Another approach for extracting the non-tidal residual is through the skew surge, which is the absolute

difference between the maximum observed water level and the predicted tidal high water (de Vries et al., 1995; Williams et al.,10

2016; Mawdsley and Haigh, 2016). While this methodology removes the influence of tide-surge interaction from the non-tidal

residual magnitude, it does not differentiate between the many factors contributing to the water level, an important step for

distinguishing when and why high water, and thus flooding, is likely to occur.

Hydrodynamic and hydraulic models have recently been used in attempts to quantify the relative importance of river and

ocean-forced water levels to flooding. The nonlinear coupling of wind and pressure driven storm surge, tides, wave-driven setup,15

and riverine flows has been found to be a vital contributor to overall water level elevation (Bunya et al., 2010). Furthermore,

river discharge is often found to interact nonlinearly with storm surge (Bilskie and Hagen, 2018), exacerbating the impacts

of coastal flooding (Olbert et al., 2017), which suggests that the extent or magnitude of flooding is often underpredicted

when both river and oceanic processes are not modeled (Bilskie and Hagen, 2018; Kumbier et al., 2018; Chen and Liu,

2014). The computational demand of two and three-dimensional hydrodynamic models, however, typically precludes a large20

amount of events to be examined. Therefore, while accurately modeling the physics of the combined forcings, researchers

taking this approach are often limited to modeling only a select number of boundary conditions. On the other hand, statistical

models allow for the investigation of compound water levels through the simulation of combinations of dependent events

which may not have been physically realized in observational records (Bevacqua et al., 2017; van den Hurk et al., 2015). In

addition, researchers have recently begun to generate hybrid models that link statistical and physical modeling approaches25

for understanding compound flood events (Moftakhari et al., 2019; Couasnon et al., 2018). Similar to the results solely from

hydrodynamic and hydraulic models, statistical and hybrid modeling strategies show that simplifications of the dependence

between multiple forcings may lead to an underestimation of flood risk.

This study explores the influence of oceanographic and riverine processes on extreme water levels along a coastal river where

there is a substantial river signal recorded in the tide gauge. In order to better understand the river- and ocean-forced water levels30

at this location, a hybrid methodology is developed for linking statistical simulations of ocean and river boundary conditions

with a hydraulic model that simulates along-river water levels. First, river-influenced water levels are defined and removed

from SWLs. Then, both river discharge and river-influenced water levels are incorporated into a non-stationary, probabilistic

total water level model, which allows for multiple synthetic representations of joint ocean and riverine processes that may not

have occurred in the relatively short observational records. Next, a 1-dimensional hydraulic model is used to simulate water35
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surface elevations along a 10 km stretch of river. Surrogate models are generated from the hydraulic model simulations and

used to extract along-river water levels for each probabilistic joint-occurrence of SWL and river discharge in a computational

efficient manner. Rather than determining the along-river return level from an equivalent return level forcing (e.g., the 100-

yr discharge event drives the 100-yr water level), spatially-varying along-river return levels are extracted and matched to the

driving boundary conditions. This technique allows for a spatially explicit analysis of the ocean and river conditions generating5

extreme water levels.

The following sections describe the study area, present the hybrid modeling framework linking oceanographic and riverine

systems, and evaluate the compounding drivers of along-river extreme water levels.

2 Study Area

The Quillayute River is located in Washington state along the US West coast and drains approximately 1630 km2 of the north-10

western Olympic Peninsula into the Pacific Ocean (Czuba et al., 2010). The Quillayute River is approximately 10 km long,

is formed by the confluence of the Bogachiel and Sol Duc Rivers (Figure 1), and enters the Pacific Ocean at La Push, Wash-

ington, home to the Quileute Tribe. The Quileute Indian Reservation is approximately 4 km2 and the majority of community

infrastructure sits at the river mouth, bordering the river and open coast. The Quileute Harbor Marina is also situated just inside

the river mouth, and is the only port between Neah Bay and Westport, Washington. Rialto spit, which connects Rialto Beach15

to Little James Island, contains a rocky revetment which protects the marina and the community from ocean and storm wave

impact.

The Quillayute River is a natural, unstablized river that is relatively straight at the confluence of the Bogachiel and Sol Duc

rivers and increases in sinuosity moving towards the river mouth. Channel-bed materials are coarse (gravel and cobble) in

the free-flowing channels and dominated by sand in the small estuary (Czuba et al., 2010). Upstream of river km 3 there are20

numerous point bars and bends in the river. Between river km 1.5 and 3, the Quillayute is braided with several side channels,

usually containing woody debris (Czuba et al., 2010). The channel is straight near the river mouth and is confined by the Rialto

spit revetment before draining into the Pacific Ocean.

The oceanic climate of the coastal Pacific Northwest (PNW) is cool and wet with a small range in temperature variation and

the majority of rainfall between October and May. Four river basins, the Sol Duc, Bogachiel, Calawah, and Dickey rivers, feed25

into the Quillayute River and comprise the majority of the watershed. Streamflow in the region is primarily from storm-derived

rainfall in the winter and snowmelt during the spring and summer (WRCC, 2017).

Oceanographically-driven SWLs are generally comprised of mean sea level, tides, and non-tidal residuals, which include

storm surge. Regional variations in shelf bathymetry, shoreline orientation, storm tracks (Graham and Diaz, 2001), seasonality

(Komar et al., 2011), and winds drive differences in storm surge along the US West coast. However, the US West coast’s narrow30

continental shelf, in relation to broad-shelved systems, controls the magnitude of storm surge, whcih is rarely larger than 1 m

(Bromirski et al., 2017; Allan et al., 2011). The PNW is also influenced by a unique interannual climate variability due to the

El Niño Southern Oscillation. During El Niño years, the PNW experiences increased water levels for months at a time, along
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with changes in the frequency and intensity of storm systems (Komar et al., 2011; Allan and Komar, 2002). In the PNW, tides

are micro- and mesotidal, and at La Push the tidal range is mixed, predominantly semidiurnal, with a mean range of 1.95 m

and a great diurnal range of 2.58 m (https://tidesandcurrents.noaa.gov/datums.html?id=9442396).

Global rise in sea level and local changes in vertical land motions result in significant longshore variations of relative sea

level along the Washington coastline. The northern Washington coast is experiencing relative sea level rates of -1.85 ± 0.425

mm/yr due to a rising coastline, while relative sea level in Willapa Bay in southern Washington is 0.94 ± 2.14 mm/yr (Komar

et al., 2011). Tide gauge records at La Push are too short to calculate robust trends in sea level, however, sea level is likely

rising in this location, rather than falling, partly due to local land subsidence (Miller et al., 2018).

3 Data

Observational records in the region are generally sparse; one tide gauge exists in the marina near the river mouth and only10

two of the four rivers which feed into the Quillayute watershed are gauged (Figure 1). The Sol Duc River gauge (WA Dept of

Ecology 12A070) is located 7 miles upriver from the Quillayute River and measures hourly discharge and stage observations

from 2005-2014. The second river gauge is located on the Calawah River (USGS 12043000), approximately 15 miles upriver

from the Quillayute River. The Calawah River flows into the Bogachiel River, and has hourly discharge and stage measurements

from 1989 - 2016. The hourly record of discharge measurements from the Sol Duc River is 100% complete, while the Calawah15

River is 99% complete. An area scaling watershed analysis (Gianfagna et al., 2015) is undertaken to rectify the discharge by

the amount of ungauged watershed. The watershed delineation shows that the Bogachiel, Calawah, Sol Duc, and Dickey rivers

account for 24%, 22%, 37%, and 17% of the total Quillayute River watershed area, respectively. Noting the similar watershed

characteristics and proportional watershed areas, the contribution of the Bogachiel River is estimated by scaling the Calawah

River discharge measurements by a factor of 2.09. This scaling factor for estimating Bogachiel River discharge is validated by20

comparing to 8 discharge point measurements taken during a U.S. Geological Survey (USGS) survey in 2010 (see supplemental

information). Discharge for the Quillayute River is estimated by adding together discharge from the Sol Duc and Boagachiel

rivers.

Hourly measured SWLs at the La Push tide gauge (NOAA station 9442396, 2004 - 2016) relative to Mean Lower Low Water

(MLLW) are downloaded, transformed into NAVD88, and decomposed into mean sea level (⌘MSL), tide (⌘A), and non-tidal25

residual (⌘NTR). The ⌘NTR is further decomposed into monthly mean sea level anomalies (⌘MMSLA), seasonality (⌘SE), and

storm surge (⌘SS), using methods described in Serafin et al. (2017). Peak ⌘SS events at La Push are found to be the highest on

record compared to all US West coast tide gauge stations (Serafin et al., 2017). Upon further investigation of the ⌘SS record,

a large portion of extreme ⌘SS events occur during low wave events (Figure 2a) and high river discharge events (Figure 2b).

This is inconsistent with ⌘SS in Westport, Washington (Figure 2a and Figure 2c), just south of La Push, and with other tide30

gauges along the US West coast (not shown). It is therefore hypothesized that the anomalously large signal seen in the ⌘SS is

river-induced.

5

https://tidesandcurrents.noaa.gov/datums.html?id=9442396


Figure 2. a) The joint relationship between storm surge and wave height for La Push, Washington (black) and Westport, Washington (pink).

Example storm surge and discharge relationship at b) La Push and c) Westport, Washington.

To further investigate the anomalously large ⌘SS at the La Push tide gauge, the hydrodynamic model ADvanced CIRCcu-

lation (ADCIRC, Luettich Jr et al. (1992)) and Simulating Waves nearshore (SWAN, Zijlema (2010)) model (ADCSWAN;

Dietrich et al. (2011)) is used to simulate water levels at the tide gauge during a storm event corresponding with the peak river

discharge on record occurring on January 8, 2009. ADCIRC is run in 2D depth-integrated barotropic mode which performs

well for calculating water surface elevations during storm events (Weaver and Luettich, 2010). SWAN is run in non-stationary5

mode on an unstructured grid, allowing for tight coupling to ADCIRC. The model is run with two forcing implementations:

one including a full forcing of waves, wind, pressure, streamflow, sea level anomalies, seasonality, and tides and one including

only streamflow and tides. Once the river-influenced water level is validated, it is removed from the ⌘SS signal and saved as a

6th geophysical variable (⌘Ri, see supplemental information for removal technique).

Because of the short length of the La Push tide gauge record, decomposed water levels from the La Push tide gauge are10

merged with decomposed water levels from the Toke Point tide gauge (NOAA station 9440910) to create a combined water

level record with a length of 36 years. Details of this methodology are explained in the corresponding supplemental information,

as well as in Serafin et al. (2019). Once the two tide gauges are merged, the combined hourly tide gauge record extends from

1980 - 2016 and is 97% complete.

6



Figure 3. Schematic of hybrid statistical-physical modeling technique. Models are portrayed as squares, while circles portray model outputs.
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4 Methods

Return level flood magnitudes, such as the 100-yr event, are typically assumed to be driven by a specific forcing event, such as

the 100-yr rainfall or storm surge. However, for processes driven by multiple dimensions, different sizes and combinations of

forcing conditions could potentially generate extreme flood magnitudes. To explore the role of compounding forcings in gener-

ating extreme water levels, a hybrid modeling framework is developed by merging a hydraulic model simulating river flow with5

probabilistic simulations of jointly occurring boundary conditions, in this case SWL and river discharge (Figure 3). Statistical

simulations allow for long, synthetic records of joint forcings that may not have occurred in the short observational records but

are physically capable of co-occurring. Modeling all of the statistically simulated boundary conditions in a hydraulic model to

output along-river water levels would be prohibitively expensive. As an alternative to time consuming simulations, surrogate

models (Razavi et al., 2012) are developed to approximate the response of a hydraulic model simulation at each along-river10

location. This technique allows for the analysis of along-river water levels driven by a variety of boundary conditions. Long

synthetic records on the order of 500 years allows for the direct empirical extraction of water level return levels rather than an

extrapolation from historic observational forcing conditions. In addition, the large sample space of simulated variables permits

a comparison of event-based return levels, where the 100-yr water level is determined by the 100-yr forcing, to response-based

return levels, where the 100-yr water level is derived and then mapped to its respective forcing conditions. This novel frame-15

work is flexible for input of any statistical or hydraulic model. In this application, we use the Serafin and Ruggiero (2014) full

simulation total water level model and the US Army Corps of Engineers’ (USACE) Hydrologic Engineering Center’s River

Analysis System (HEC-RAS; Brunner (2016)), which are described in more detail below.

4.1 Probabilistic simulations of boundary conditions

The non-stationary, probabilistic simulation model of Serafin and Ruggiero (2014) (hereinafter SR14) was developed to pro-20

duce synthetic time series of daily maximum total water levels (TWLs), the combination of waves, tides, and non-tidal resid-

uals, on open-coast sandy beaches. SR14 simulates the individual components of the TWL in a Monte Carlo sense, while

appropriately accounting for any dependencies existing between the variables. This modeling technique is able to include non-

stationary processes influencing extreme and non-extreme events, such as seasonality, climate variability, and trends in wave

heights and water levels. SR14 outputs a number of synthetic records of all variables driving TWLs that produce alternate, but25

physically plausible, combinations of waves and water levels along an identified stretch of coastline. This technique is flexible

to allow for both the simulation of the present-day climate for computing robust statistics on extreme TWL events, as well

as the simulation of future climates and their impact on extreme TWLs. Because SR14 was developed for use in open-coast

environments, it does not include a procedure for simulating estimates of river discharge, which is present in the local tide

gauge at the La Push study site. SR14 is therefore modified to produce synthetic time series of river discharge as well as a30

river-induced water level.

High discharge events on the two gauged rivers in the watershed, the Sol Duc and Calawah rivers, tend to occur within hours

of peak wave events recorded in offshore wave buoy records and water level events recorded in the tide gauge data. Due to the

8



Figure 4. a) Joint relationship between wave height (Hs) and discharge (Q) for the observational record (black) and one example 500 year

simulation (red). b) Seasonal model fit for the probabilistic simulation of the Sol Duc River Q in relation to the Bogachiel River Q. The inset

displays the model fits for discharge less than 100 m3s�1.

interrelated nature of these forcings, daily maximum estimates of Calawah River discharge (QC) are compared to all variables

simulated in the SR14 model (e.g., wave height, ⌘SS , ⌘NTR, ⌘MMSLA) to capture any dependencies between these processes.

The variable with the highest monthly correlation to QC is wave height (Hs). Extreme QC events are simulated using a bivariate

logistic model, which is the same technique used to simulate ⌘SS . The bivariate logistic model preserves the dependency and

frequency of occurrence of joint Hs-Q events in extreme and non-extreme space. This technique generates a synthetic record of5

QC that is seasonally varying, related to larger-scale climate variability through wave height (essentially as a proxy for storms),

and carries the same dependency between variables as the observational record (Figure 4a). QC is then multiplied by 2.09 to

represent inflow from both the Bogachiel and Calawah rivers.

Discharge measurements at the Sol Duc River are highly correlated with the discharge measurements at the Calawah River

(⇢ = 0.9, ⌧ = 0.83), thus Sol Duc River discharge (QSD) is modeled based on a relationship with the scaled QC , representing the10

Bogachiel River (QB). Estimates of QSD are related to QB during the summer and winter seasons. First, daily maximum Q is

split into summer (May, June, July, August, September, and October) and winter (January, February, March, April, November,

9



December) seasons. Next, models are fit to the joint relationship between the QSD and QB each season, such that for the

summer season,

QSD = 1.186QB +0.226. (1)

is used when QB falls between 0-10 m3s�1, and

QSD =�1.0⇥ 10�4Q2
B +0.38QB +14.07. (2)5

is used when QB falls between 10 - 700 m3s�1 (Figure 4b). When QB is greater than 700 m3s�1, QSD is determined using

QSD = 0.216QB +61.25. (3)

For the winter season,

QSD = 0.816QB +1.168. (4)

is used when QB falls between 0-25 m3s�1, and10

QSD =�1.0⇥ 10�4Q2
B +0.46QB +16.11. (5)

when QB falls between 25 - 2300 m3s�1 (Figure 4b). When QB is greater than 2300 m3s�1, QSD is determined using

QSD = 0.075QB +500.42. (6)

Summer and winter QB is binned and residuals of QSD from the above model fits are generated. Normal distributions are fit to

QSD residuals in each bin, except for low bins (less than 25 m3s�1) where residuals are fit to exponential distributions. QSD is15

then directly related to simulated estimates of QB ; QSD is first determined by fitting the prescribed model to each estimate of

QB , and then a random sample is taken from the residuals per binned QB and added to the model. This technique captures the

joint-peaks of the river systems visible in the observed dataset, while allowing for variability between the simulated estimates

(Figure 4b).

4.1.1 Modeling the river-induced water level20

At tide gauges along the US West coast, the maximum daily SWL generally occurs during, or close to, the daily high tide

(Serafin and Ruggiero, 2014; Serafin et al., 2017). Modeling peaks in ⌘Ri that occur during low tide would therefore erroneously

increase simulated estimates of the SWL occurring during high tide. Thus, instances of ⌘Ri occurring approximately during

high tide are retained and all other ⌘Ri peaks are discarded, resulting in 155 ⌘Ri events.

10



Figure 5. a) The relationship between the river-influenced water level (⌘Ri) and Bogachiel River discharge on a log-linear scale. The solid

black line represents the model fit to the observational records (black dots). b) The percentage of time ⌘Ri occurs in the record during a

specific QB . In both panels, black represents the observational record and red represents one example 500 year simulation.

Synthetic estimates of ⌘Ri are developed by relating QB and ⌘Ri. This relationship is modeled using

⌘Ri = 0.039QB +0.854⇥ 10�3. (7)

when QB is below 190 m3s�1 and

⌘Ri = 0.093QB +0.284⇥ 10�3. (8)

when QB is above 190 m3s�1 (Figure 5a). Next, coarse bins ranging from 100 to 4000 m3s�1 are created and the standard5

deviation (�) of ⌘Ri within each bin is saved. For bins that contain less than 10 observations, observations from the previous

bins are included until there are more than 10 observations per bin for � calculations. Finally, a 2-point running average is used

to smooth � from each bin to ensure continuous transitions and to avoid the edge-effects from binning a sparse dataset.

There are times of high QB without a distinguishable ⌘Ri in the tide gauge record, thus a model is also developed to

simulate the frequency of occurrence of ⌘Ri during daily maximum SWLs. The frequency of occurrence of ⌘Ri is defined as10

the percentage of time ⌘Ri occurs in the observational record, which is less than 10% of the time when QB is less than 210

m3/s, and 15 - 25% of the time when QB is between 840 and 2090 m3s�1 (Figure 5b). For QB greater than 2090 m3s�1,

11



⌘Ri occurs approximately 50% of the time. The frequency of occurrence of ⌘Ri is modeled using a best-fit cubic function,

where the frequency of occurrence is a function of QB based on the percentage of time the values have occurred in the record.

Because there are no events greater than 2500 m3s�1 on record, we represent the percentage of occurrence over this value as

100% (Figure 5b).

Once QB is simulated using SR14, ⌘Ri is simulated for every day in time by selecting the synthetic daily estimate of QB5

and randomly sampling from a normal distribution for each QB bin, where µ is the regression model and � is the standard

deviation from each bin (Figure 5a). The frequency of occurrence model is then used to select the correct proportion of ⌘Ri

events to retain for each synthetic simulation. These techniques capture both the spread of ⌘Ri related to QB as well as the

percentage of time of occurrence (Figure 5).

4.2 Hydraulic model for along-river water levels10

While a variety of hydraulic models can be used for determining the elevation of along-river water levels, we employ the

Hydraulic Engineering Center’s River Analysis System (HEC-RAS; Brunner (2016)). HEC-RAS is used to estimate water

surface elevations in rivers and streams in both steady and unsteady flow and under subcritical, supercritical, and mixed flow

regimes (Goodell, 2014). HEC-RAS has been previously used to model water surfaces for a range of applications including,

but not limited to, floodplain mapping (Yang et al., 2006), flood forecasting (Saleh et al., 2017), dam breaching (Butt et al.,15

2013), and flood inundation (Horritt and Bates, 2002). HEC-RAS computes water levels by solving the 1D energy equation

with an iterative procedure, termed the step method, from one cross-section to the next (Brunner, 2016). For subcritical flows,

the step procedure is carried out moving upstream; computations begin at the downstream boundary of the river and the water

surface elevation at an upstream cross-section is iteratively estimated until a balanced water surface is obtained. Energy losses

between cross-sections are comprised of a frictional loss via the Manning’s Equation and a contraction/expansion loss via a20

coefficient multiplied by the change in velocity head (see Brunner (2016) for more details).

In this application, HEC-RAS is used to model 1D water levels under gradually varied, steady flow conditions at transects

along the Quillayute River. While a simplification of flood processes, the 1D application is commonly used to create flood

hazard maps. A detailed Digital Elevation Model (DEM) is developed for the river network, including bathymetry and topog-

raphy for the floodplains of interest (Figure 6). Model domain boundary conditions are chosen as the SWL at the tide gauge25

(m; downstream boundary) and river discharge from the Sol Duc and Bogachiel rivers (m3s�1; upstream boundary). The HEC-

RAS model is validated using water surface measurements from a 2010 survey. Details of the HEC-RAS model validation and

calibration procedures are documented in supplemental information.

4.3 Hybrid statistical-physical modeling

The modified simulation technique of SR14 is used to produce 70 500 year long synthetic records representing present-day30

climate for the time period of 1980-2016 of daily maximum SWL and Q for both the Sol Duc and Bogachiel rivers. Rather

than run the ⇠13 million conditions simulated through a numerical model, a limited set of joint boundary conditions of SWL

and Q (at the Bogachiel and Sol Duc rivers) are run through HEC-RAS, outputting the elevation of the along-river water

12
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Figure 7. Resulting storm surge (a) and still water level (b) at the La Push tide gauge modeled using ADCIRC for a simulation including

full forcing (red) and a simulation including only discharge and tides (blue) compared to the observed storm surge (black). The ADCIRC

simulation was run for the maximum discharge event on record occurring on January 8, 2009.

level at each HEC-RAS transect. Surrogate models are generated from the HEC-RAS runs for each transect using a scattered

linear interpolation of the 3D surface of boundary conditions. The number of combinations of SWL and Q used to develop the

surrogate models are chosen to minimize interpolation errors during validation runs. A daily estimate of water level elevation at

each transect is produced by inputting all daily maximum SWL and Q conditions into the surrogate models, which efficiently

extract along-river water levels for any set of SWL and Q inputs. Using the countback method, where for example, the 5th5

largest event for each synthetic record would by the 100-yr event, water level return levels are extracted for all 70 500 year

synthetic records for the 1) along-river water levels at each transect, 2) SWLs, and 3) Q. This methodology provides both

an estimate of the return level magnitude (e.g., the average of the 70 100-yr events), as well as the uncertainty around that

magnitude (e.g., the distribution of the 70, 100-yr events). It also provides a technique to compare the response-based return

level (e.g., the 100-yr water level) to the event-based return level (e.g., water level driven by the 100-yr SWL or 100-yr Q10

event).

5 Results

The following section first validates the presence of a river-induced water level within the tide gauge signal, then demonstrates

the effectiveness of the surrogate models in representing along-river water levels for unmodeled HEC-RAS boundary condi-
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tions. Next, the spatial and temporal variability of the magnitude of along-river water levels and their driving conditions are

examined. Finally, low probability water levels, like the 100-yr event, are extracted from the simulated records of along-river

water levels and the dominant drivers are evaluated.

5.1 River-induced water level validation

Results from ADCSWAN modeling of the January 8, 2009 storm event show that the simulation including only river discharge5

and tides is nearly able to recreate the measured peak ⌘SS signal at the tide gauge (Figure 7a). The addition of wind, pressure,

waves, sea level anomalies, and seasonality is found to have minimal impact on the peak observed ⌘SS . Furthermore, the

maximum ⌘SS occurs during low tide (Figure 7b), which indicates a potential relationship between water surface elevation,

tidal level, and river discharge. While the ADCSWAN runs only explore one instance of this phenomenon, it provides physics-

based evidence that anomalously high ⌘SS at the La Push tide gauge is likely being driven by large discharge events.10

5.2 Surrogate model validation

A number of validation scenarios are modeled in HEC-RAS to determine whether the combinations of Q and SWL boundary

conditions used to develop the surrogate models represent a large enough sample space of forcing conditions for the interpola-

tion of along-river water levels. The validation scenarios are chosen to cross through both HEC-RAS modeled and unmodeled

conditions (Figure 8a). Across all validation scenarios, the average root mean square error (RMSE) between the HEC-RAS15

directly-modeled and the surrogate model-interpolated water levels is 1 cm. Only 1.5% of the validation scenarios have a bias

greater than 10 cm, and the largest RMSE at any transect is 20 cm across all scenarios (Figure 9). The validation scenario

with the worst performance occurs during high QB and low QSD paired with low SWL events. However, even during this

case, the differences between the HEC-RAS directly-modeled the surrogate model-interpolated water level is small (Figure

8b). The main research focus here is extreme water levels, and the conditions driving low probability return level events rarely20

fall around the scenarios with the highest bias.

5.3 Hybrid modeling of along-river water levels

5.3.1 Temporal variability

Seasonal variability exists in the elevation of along-river water levels. The highest elevation water level occurs during the winter

(here defined as December, January, February), while the lowest elevation water level occurs during the spring (March, April,25

May) (Figure 10a). The spring along-river water level is on average 0.50 m lower than the winter along-river water level, 0.33

m lower than the fall (September, October, November) along-river water level, and 0.03 m lower than the summer (June, July,

August) along-river water level (Figure 10b). The difference between seasonal along-river water levels is nonlinear upstream,

and certain sections of the river have larger changes in elevation between months (Figure 10b). However, this variation becomes

relatively linear downstream of river km 3.30
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Figure 8. a) Modeled HEC-RAS Q boundary conditions used to generate the surrogate models (red-dotted lines) compared to the simulated

conditions used for surrogate model validation (green dots). The black dots represent the observational daily max conditions, while the

colored circles represent the worst-performing of the validation tests. The red and blue colored circles represent the scenarios where the

interpolated water surface had a bias of over 10 cm lower than the model. b) Example along-river water level for the worst performing

condition in the validation tests.

The seasonal variability of the along-river water level is driven by the seasonality of the forcings, which are well represented

in the simulations compared to the observations (Figure 11). The monthly median SWLs and ⌘NTRs are higher in the winter

than in the summer (Figure 11a and Figure 11b). This cyclical variability is also depicted in the monthly median river discharge

from the Quillayute River (combined Sol Duc and Bogachiel Q), and is approximately 200 m3s�1 higher in winter months

than summer months (Figure 11c). The 98th percentile of SWL, ⌘NTR, and Q have a similar seasonal variability as the median5

conditions (Figure 11d, Figure 11e, and Figure 11f).

5.3.2 Spatial variability

The large number of joint SWL and Q conditions allows for the direct extraction of water level return levels and the cor-

responding univariate or multivariate drivers along each HEC-RAS transect. The magnitude of the 100, 25, 10, and annual

16



Figure 9. a) Average root mean square error (RMSE) and b) bias for all 197 discharge validation scenarios across 4 out of the 15 SWL

scenarios. The worst-performing model is discharge scenario 153.

return level water levels is between 3 and 17 m (NAVD88, Figure 12a). While the peaks in return level events occur at similar

locations, the difference between return level events varies spatially moving upriver. For example, at river km 1, the difference

between the average (of all simulations) annual and 100-yr event is approximately 0.9 m, whereas at river km 8 and upstream,

the difference between these two events is closer to 2 m (Figure 12b).

The dominant forcing conditions driving water level return levels varies along-river. At the river mouth, the annual water5

level event (e.g., the event that is expected every year) in each simulation occurs during Q ranging from 40 - 2600 m3s�1 and

SWLs around 3.3 m, which corresponds with the annual SWL event (Figure 13a). Moving upstream to river km 1 and 2, the

annual water level event is driven by both high SWL occurring during low Q and low SWL occurring during high Q. At river

km 4, the annual water level event occurs during the annual Q event coincident with SWLs that range from 1.8 - 3.9 m (Figure

13a). These results are similar, albeit events are larger magnitude, for the 100-yr water level event. Downstream 100-yr water10

levels are driven by SWLs, upstream 100-yr water levels are driven by Q, and the 100-yr water level between km 1 and 2 is

driven by different combinations of high and low SWL and Q events (Figure 13b).
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Figure 11. Left) Observational (black) and simulated (red) monthly median still water level (SWL), discharge (Q), and non-tidal residual

(⌘NTR). Right) Observational (black) and simulated (red) monthly 98th percentile of the SWL, and ⌘NTR Q. Red shading indicates the

bounds value from each simulation.

The relative importance of both oceanic and riverine forcing to extreme water levels emerges when averaging the magnitude

of the drivers of the water level return levels at each transect from all 70 500 year long simulations (Figure 14). The magnitude

of the average Q driving water level return levels gradually increases by approximately 1000 m3s�1 over river km 0 - 2 and

then is consistent from river km 2 to 10 (Figure 14a). Downstream, between river km 0 and 0.25, the magnitude of the average

SWL driving water level return levels is consistent and then gradually decreases over a 1 km zone (Figure 14b).5

When comparing to water level return levels driven by a univariate forcing or event return level (e.g., along-river water levels

modeled from the 100-yr Q or SWL event), we find that the stretches of river driven by a consistent SWL or Q forcing ap-

proximates the univariate return level event. Therefore, the 100-yr SWL does indeed cause the 100-yr water level downstream,

between river km 0 and 0.25, while the 100-yr Q event drives the 100-yr water level upstream, between river km 2 - 10 (dashed

lines, Figure 14). However, between river km 0.25 - 1.75 a flood transition zone is present, where neither the SWL return level10

or the Q return level events drive the water level return level. This is consistent across all return level events.
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Figure 12. a) The water level return level at each transect for all 70 probabilistic simulations. Each return level event displays the average of

the simulations (solid line) as well as the range around the average (shaded). b) The along-river difference between the annual and 100-yr

event, averaged over 70 simulations.

6 Discussion

The hybrid model developed in this study, which combines statistical simulations with a physics-based model, provides an

approach for probabilistically evaluating the conditions that drive extreme water levels, not only in an open-coast setting, but

also miles upriver. The ability to simulate millions of combinations of Q and SWL events allows for a robust estimate of result-

ing along-river water levels, which numerical models alone are unable to consider due to large computational expenses. While5

some of our modeling techniques are specific to this location, the overall framework for combining statistical and physics-based

models is general enough for use in coastal locations throughout the globe where flooding arises from compounding processes.

The decomposition of the SWL into low and high frequency signals, including a river-influenced component, helps iden-

tify the importance of physical processes for generating high water levels across various regional settings. This is especially

important in locations like the US West coast, where the steep, narrow continental shelf prevents wind and pressure driven10

storm surge from being overwhelmingly large (Allan et al., 2011). The influence of the river signal in the tide gauge is directly

related to the setting of our study site. The estuary is relatively small and narrow with the river discharging directly into the

ocean. This is dissimilar to other tide gauges in the region which are located in larger estuaries, situated away from river input.

Estuaries typically exhibit wave, tide, or river-dominant morphology, based on the relative energy of each process (Dalrymple

et al., 1992). The Quillayute River outlets directly to a high wave energy environment and has a small estuary volume com-15

pared to its river input volume. The steep catchment of the mountainous environment means a short response time for rainfall,

20



Figure 13. The individual Q or SWL condition driving the a) annual and b) 100-yr water level event at specific along-river locations for each

70 500 year simulation. In both figures, the black lines represent the annual and 100-yr return level magnitude for Q and SWL.

therefore producing peak discharges temporally similar to peak storm-induced still water levels, allowing for interaction be-

tween the two. In contrast, water level elevations with large estuary volume compared to river discharge are less influenced by

fluvial processes. Furthermore, a larger estuary may experience variability in the water surface elevation due to wave-induced

setup and/or other local storm-induced processes (Cheng et al., 2014; Olabarrieta et al., 2011), which may further dampen the

influence of a river signal.5

This research confirms the presence of an oceanographic-fluvial transition zone, where traditional, univariate methodologies

for defining return level events are insufficient for defining water level return levels. Between river km 1 and 2, we find that a

range of SWL and Q conditions drive all return level events, and water levels are driven by neither the univariate SWL or Q

return level event. A similar flood zone transition was recently modeled numerically, and albeit for a single event, physically

demonstrates the importance of including multiple variables to reproduce accurate flooding (Bilskie and Hagen, 2018). Thus,10

flood hazard assessments on systems with multivariate forcings may misrepresent water level elevations for low probability

events if only univariate variables are modeled. This has large implications for characterizing the risk to flooding, especially

in the context of mapping flooding hazards. Furthermore, we show that return level water levels can occur over a range of
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Figure 14. The average forcing condition driving along-river return levels at each transect where a) displays the Quillayute Q conditions and

b) displays the SWL conditions. The dashed lines depict the univariate forcing conditions, where the along-river return level is assumed to

be driven by either Q or SWL. Red, orange, blue, and black lines represent the 100, 25, 10, and annual return level event. The grey shaded

area represents a transition zone, where the water level is driven by a combination of SWL and Q events.

combined extreme and non-extreme forcing in the flood transition zone. This illustrates that in order to properly understand

the impacts of compounding flooding, more than just design scenarios need to be considered for the proper assessment of risk.

Many of our results can be explained by dynamics that occur during interacting ocean and river flows. For example, a

coincidence of high SWL and peak river discharge may induce blocking, where river-induced water levels are trapped upstream

and either flood overbank or outlet to the ocean as the tide recedes (Kumbier et al., 2018; Chen and Liu, 2014). The outletting5

to the ocean as the tide recedes artificially inflates SWLs at the tide gauge, increasing water levels for days at a time and

prolonging exposure to flooding. When subtracting a tide time series from this signal, storm surge would appear to be elevated

at low tide. While the ADCSWAN simulation confirms the presence of this effect by matching the peak storm surge at low tide,

our hybrid methodology only models steady flow scenarios. Thus, with co-occurring daily maximum SWL and discharge, our

model may miss certain dynamics important for flooding over unsteady conditions. Furthermore, interactions between storm10
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surge and river discharge may increase the overall elevation of the residual (Maskell et al., 2013). While beyond the scope of

our present study, this unsteady characteristics are important to consider in future research.

Because sea level rise, along with other changes to the climate, will exacerbate the compounding effects of flood drivers

(Moftakhari et al., 2017; Wahl et al., 2015), it is also important to consider the impact of changes to processes driving flooding

events in the future (Zscheischler et al., 2018). By 2100, the likely range of relative sea level rise in the La Push area is5

projected to be between 18 and 80 cm, considering vertical land motion and various emissions scenarios (Miller et al., 2018).

The western Olympic Peninsula is projected to experience increased winter precipitation (Mote et al., 2013; Halofsky et al.,

2011) which could subsequently increase either the frequency or intensity of high Q events along the Quillayute River. While

we have characterized the spatial variability in extreme water levels in the present-day, there is a high likelihood changes in the

future climate will shift the importance of these interacting processes.10

7 Conclusions

This research illustrates the importance of considering a large number of forcing conditions to model compounding processes

when evaluating extreme water levels. Here we find that in coastal settings, river discharge can be an important driver of high

water levels measured in a tide gauge. We also find that the univariate, event-based return level event, like the 100-yr discharge,

does not always match the response-based return level, like the 100-yr water level. Furthermore, when processes compound,15

along-river return levels may be driven by events that are not considered extreme themselves. Probabilistic techniques allow-

ing for the analysis of thousands to millions of combinations of events not captured in the observational record provides a

characterization of where river, ocean, or the combination of the two, may be important for generating extreme events.

Overall, the hybrid merging of a statistical and numerical model provides a methodology for better understanding the drivers

of flooding along the length of a river. While our model does not actively resolve the physical interaction of river and oceano-20

graphic flow, it develops an approach for characterizing and extracting river-influenced water levels measured at tide gauges

while robustly modeling the drivers of extreme along-river water levels. Understanding the dominant, spatially variable drivers

of flooding events will help coastal communities better understand their risks, which is important for increasing resilience to

future events.

8 Data availability25

Data can be made available by the authors upon request.

9 Author contribution

The study and methodology were conceived by KAS and PR. KAS carried out the analyses, produced the results, and wrote the

manuscript under the supervision of PR. KAP carried out the analyses and produced the results of the ADCIRC simulations.

23



KAP also developed the topography/bathymetry DEM as well as the geometric files for use in HEC-RAS. KAS, PR, KAP, and

DFH all contributed by generating ideas, discussing results, and manuscript editing.

10 Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements. Tide gauge records are available through the National Oceanic and Atmospheric Administration (NOAA) National5

Ocean Service (NOS) website and river discharge is available through the U.S Geological Survey (USGS) National Water Information

System (https://waterdata.usgs.gov/wa/nwis/rt). Bathymetric and topographic data for DEM creation were obtained from NOAA’s Elevation

Data viewer. Thank you to Michael Rossotto and Garrett Rasmussen for providing updated shapefiles of the Quileute Reservation boundaries.

Thank you also to two anonymous reviewers whose comments improved the quality of this manuscript. This work was funded by the NOAA

Regional Integrated Sciences and Assessments Program (NA15OAR4310145) and a contracted grant with the Quinault Treaty Area (QTA)10

tribal governments (Quinault Indian Nation, Hoh Indian Tribe, and Quileute Tribe).

24

https://waterdata.usgs.gov/wa/nwis/rt


References

Allan, J. C. and Komar, P. D.: Extreme storms on the Pacific Northwest coast during the 1997-98 El Niño and 1998-99 La Niña, Journal of

Coastal Research, pp. 175–193, 2002.

Allan, J. C., Komar, P. D., and Ruggiero, P.: Storm Surge Magnitudes and Frequency on the Central Oregon Coast, in: Proc. Solutions to

Coastal Disasters Conf, 2011.5

Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula

constructions: analysis of floods in Ravenna (Italy), Hydrology and Earth System Sciences, 21, 2701–2723, 2017.

Bilskie, M. and Hagen, S.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions, Geophysical Research Letters, 45, 2761–2770,

2018.

Bromirski, P. D., Flick, R. E., and Miller, A. J.: Storm surge along the Pacific coast of North America, Journal of Geophysical Research:10

Oceans, 122, 441–457, 2017.

Brunner, G. W.: HEC-RAS River Analysis System Hydraulic Reference Manual, Version 5.0, Tech. rep., 2016.

Bunya, S., Dietrich, J. C., Westerink, J., Ebersole, B., Smith, J., Atkinson, J., Jensen, R., Resio, D., Luettich, R., Dawson, C., et al.: A

high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model

development and validation, Monthly Weather Review, 138, 345–377, 2010.15

Butt, M. J., Umar, M., and Qamar, R.: Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern

Pakistan, Natural Hazards, 65, 241–254, 2013.

Chelton, D. B. and Enfield, D. B.: Ocean signals in tide gauge records, Journal of Geophysical Research: Solid Earth, 91, 9081–9098, 1986.

Chen, W.-B. and Liu, W.-C.: Modeling flood inundation induced by river flow and storm surges over a river basin, Water, 6, 3182–3199,

2014.20

Cheng, T., Hill, D., and Read, W.: The Contributions to Storm Tides in Pacific Northwest Estuaries: Tillamook Bay, Oregon, and the

December 2007 Storm, Journal of Coastal Research, 31, 723–734, 2014.

Couasnon, A., Sebastian, A., and Morales-Nápoles, O.: A Copula-Based Bayesian Network for Modeling Compound Flood Hazard from

Riverine and Coastal Interactions at the Catchment Scale: An Application to the Houston Ship Channel, Texas, Water, 10, 1190, 2018.

Czuba, J. A., Barnas, C. R., McKenna, T. E., Justin, G. B., and Payne, K. L.: Bathymetric and streamflow data for the Quillayute, Dickey, and25

Bogachiel Rivers, Clallam County, Washington, April–May 2010, vol. 537, US Department of the Interior, US Geological Survey, 2010.

Dalrymple, R. W., Zaitlin, B. A., and Boyd, R.: Estuarine facies models: conceptual basis and stratigraphic implications: perspective, Journal

of Sedimentary Research, 62, 1992.

de Vries, H., Breton, M., de Mulder, T., Krestenitis, Y., Proctor, R., Ruddick, K., Salomon, J. C., Voorrips, A., et al.: A comparison of 2D

storm surge models applied to three shallow European seas, Environmental Software, 10, 23–42, 1995.30

Dietrich, J., Zijlema, M., Westerink, J., Holthuijsen, L., Dawson, C., Luettich Jr, R., Jensen, R., Smith, J., Stelling, G., and Stone, G.:

Modeling hurricane waves and storm surge using integrally-coupled, scalable computations, Coastal Engineering, 58, 45–65, 2011.

Gianfagna, C. C., Johnson, C. E., Chandler, D. G., and Hofmann, C.: Watershed area ratio accurately predicts daily streamflow in nested

catchments in the Catskills, New York, Journal of Hydrology: Regional Studies, 4, 583–594, 2015.

Goodell, C.: Breaking the HEC-RAS Code: A User’s Guide to Automating HEC-RAS, h2ls, Portland, OR, 2014.35

Graham, N. E. and Diaz, H. F.: Evidence for intensification of North Pacific winter cyclones since 1948, Bulletin of the American Meteoro-

logical Society, 82, 1869–1893, 2001.

25



Halofsky, J. E., Peterson, D. L., O’Halloran, K. A., and Hoffman, C. H.: Adapting to climate change at Olympic National Forest and Olympic

National Park, Gen. Tech. Rep. PNW-GTR-844. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research

Station. 130 p, 844, 2011.

Horritt, M. and Bates, P.: Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of Hydrology, 268, 87–99,

2002.5

Horsburgh, K. and Wilson, C.: Tide-surge interaction and its role in the distribution of surge residuals in the North Sea, Journal of Geophysical

Research: Oceans, 112, 2007.

Komar, P. D., Allan, J. C., and Ruggiero, P.: Sea level variations along the US Pacific Northwest coast: Tectonic and climate controls, Journal

of Coastal Research, 27, 808–823, 2011.

Kumbier, K., Cabral Carvalho, R., Vafeidis, A. T., and Woodroffe, C. D.: Investigating compound flooding in an estuary using hydrodynamic10

modelling: a case study from the Shoalhaven River, Australia, Natural Hazards and Earth System Sciences, 18, 463–477, 2018.

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.:

A compound event framework for understanding extreme impacts, Wiley Interdisciplinary Reviews: Climate Change, 5, 113–128, 2014.

Luettich Jr, R. A., Westerink, J. J., and Scheffner, N. W.: ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts,

and Estuaries. Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL., Tech. rep., Coastal Engineering Research15

Center, Vicksburg MS, 1992.

Maskell, J., Horsburgh, K., Lewis, M., and Bates, P.: Investigating River–Surge Interaction in Idealised Estuaries, Journal of Coastal Research,

30, 248–259, 2013.

Mawdsley, R. J. and Haigh, I. D.: Spatial and temporal variability and long-term trends in skew surges globally, Frontiers in Marine Science,

3, 29, 2016.20

Miller, I., Morgan, H., Mauger, G., T., N., R., W., D., S., M., W., and E., G.: Projected sea level rise for Washington state: A 2018 assess-

ment, Tech. rep., A colloboration of Washington Sea Grant, University of Washington Climate Impacts Group, Oregon State University,

University of Washington, and US Geological Survey. Prepared for the Washington Coastal Resilience Project, 2018.

Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R., and Sanders, B. F.: Linking Statistical and Hydrodynamic Modeling for

Compound Flood Hazard Assessment in Tidal Channels and Estuaries, Advances in Water Resources, 2019.25

Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Compounding effects of sea level rise and fluvial

flooding, Proceedings of the National Academy of Sciences, 114, 9785–9790, 2017.

Mote, P. et al.: Climate: Variability and Change in the Past and the Future. Chapter 2, 25-40, 2013.

Odigie, K. O. and Warrick, J. A.: Coherence between Coastal and River Flooding along the California Coast, Journal of Coastal Research,

2017.30

Olabarrieta, M., Warner, J. C., and Kumar, N.: Wave-current interaction in Willapa Bay, Journal of Geophysical Research: Oceans, 116,

2011.

Olbert, A. I., Comer, J., Nash, S., and Hartnett, M.: High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and

rivers inflows. A Cork City example, Coastal Engineering, 121, 278–296, 2017.

Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in water resources, Water Resources Research, 48, 2012.35

Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., and Pullen, J.: A Multi-Scale Ensemble-based Framework for Forecasting

Compound Coastal-Riverine Flooding: The Hackensack-Passaic Watershed and Newark Bay, Advances in Water Resources, 2017.

26



Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using a time-dependent, extreme value approach, Journal of Geophys-

ical Research: Oceans, 119, 6305–6329, 2014.

Serafin, K. A., Ruggiero, P., and Stockdon, H. F.: The relative contribution of waves, tides, and nontidal residuals to extreme total water

levels on US West Coast sandy beaches, Geophysical Research Letters, 44, 1839–1847, 2017.

Serafin, K. A., Ruggiero, P., Barnard, P., and Stockdon, H. F.: The influence of shelf bathymetry and beach topography on extreme total water5

levels: Linking large-scale changes of the wave climate to local coastal hazard, Coastal Engineering, 2019.

Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation in eastern Britain, International Journal

of Climatology, 22, 1149–1168, 2002.

Sweet, W. V., Park, J., Gill, S., and Marra, J.: New ways to measure waves and their effects at NOAA tide gauges: A Hawaiian-network

perspective, Geophysical Research Letters, 42, 9355–9361, 2015.10

Tsimplis, M. and Woodworth, P.: The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, Journal of

Geophysical Research: Oceans, 99, 16 031–16 039, 1994.

van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K.-J., and Gooijer, J.: Analysis of a compounding surge and precipitation

event in the Netherlands, Environmental Research Letters, 10, 035 001, 2015.

Vetter, O., Becker, J. M., Merrifield, M. A., Pequignet, A.-C., Aucan, J., Boc, S. J., and Pollock, C. E.: Wave setup over a Pacific Island15

fringing reef, Journal of Geophysical Research: Oceans, 115, 2010.

Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding from storm surge and rainfall for major

US cities, Nature Climate Change, 5, 1093–1097, 2015.

Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I., Winsemius, H. C., and Wahl, T.: Dependence

between high sea-level and high river discharge increases flood hazard in global deltas and estuaries, Environmental Research Letters, 13,20

084 012, 2018.

Weaver, R. and Luettich, Jr, R.: 2D vs. 3D storm surge sensitivity in ADCIRC: Case study of hurricane isabel, in: Estuarine and Coastal

Modeling (2009), pp. 762–779, ASCE, 2010.

Williams, J., Horsburgh, K. J., Williams, J. A., and Proctor, R. N.: Tide and skew surge independence: New insights for flood risk, Geophysical

Research Letters, 43, 6410–6417, 2016.25

WRCC: Climate of Washington: Western Regional Climate Center website, https://wrcc.dri.edu/Climate/narrativewa.php,2017.

Yang, J., Townsend, R. D., and Daneshfar, B.: Applying the HEC-RAS model and GIS techniques in river network floodplain delineation,

Canadian Journal of Civil Engineering, 33, 19–28, 2006.

Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and storm surge in the coastal zone, Journal of

Hydrology, 505, 172–187, 2013.

Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, Coastal Engineering, 57, 267–277, 2010.30

Zscheischler, J., Westra, S., Hurk, B. J., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T.,

et al.: Future climate risk from compound events, Nature Climate Change, p. 1, 2018.

27



Supplemental Information
Katherine A. Serafin1,2, Peter Ruggiero1, Kai A. Parker3, and David F. Hill3

1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
2Department of Geophysics, Stanford University, Stanford, CA, USA
3College of Engineering, Oregon State University, Corvallis, OR, USA

Correspondence: Katherine A. Serafin (kserafin@stanford.edu)

1 Hydraulic model domain and setup

HEC-RAS model runs require detailed terrain information for the river network, including bathymetry and topography for the

floodplains of interest. Topography data is sourced from a 2014 U.S Army Corps of Engineers (USACE) lidar survey (USACE,

2014). Bathymetry data is developed by blending two NOAA digital elevation models (DEM): National Geophysical Data

Center’s (NGDC) La Push, WA tsunami DEM (1/3 arc second; NGDC (2007)) and the coastal relief model (3 arc seconds;5

NGDC (2003)). These datasets, however, do not accurately resolve the channel depths of the Quillayute River inland of the

coast, so a 2010 US Geological Survey (USGS)-conducted bathymetric survey of the river is also blended into the DEM (Czuba

et al., 2010).

In 2010, depths of along-river cross sections and an 11 km long longitudinal profile from the Bogachiel River to the mouth of

the Quillayute River were surveyed (Czuba et al., 2010). The survey of the longitudinal river profile also recorded the elevation10

of the water surface. Ideally, the collected bathymetry dataset would be merged directly into the existing DEM. The Quillayute

River, however, is uncontrolled and meanders over time, producing a variation in the location of the main river channel between

the DEM and the high-resolution USGS-collected bathymetric data. Therefore, the USGS bathymetric profiles are adjusted to

match the location of the DEM channel. While a product of multiple datasets and processing steps, the final DEM provides

bathymetric/topographic data with the most up-to-date channel depths for the Quillayute River (Figure 6, main text).15

A series of 58 transects are extracted from the DEM using HEC-GeoRas (Ackerman, 2009) and written into a geometric

data file for input into HEC-RAS. Each river transect extends across the floodplain to the 10 m contour, where applicable.

Otherwise, each transect terminates at the highest point landward of the river. Because HEC-RAS computes energy loss at

each transect via a frictional loss based on the Manning’s equation, Manning’s coefficients, an empirically derived coefficient

representing resistance of flow through roughness and river sinuosity, are selected for the river channel and the floodbanks. In-20

channel Manning’s coefficients are tuned to calibrate the model’s resulting water surface elevations with that of the observed

water surface data. Manning’s coefficients for the rest of the computational domain (e.g., anything overbank) are estimated

using 2011 Land Cover data from the Western Washington Land Cover Change Analysis project (NOAA, 2012) and visual

inspection of aerial imagery and range from 0.04 (cleared land with tree stumps) - 0.1 (heavy stands of timber/medium to

dense brush). These values are extracted from the HEC-RAS Hydraulic Reference Manual, Table 3-1 (Brunner, 2016). Model25
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domain boundary conditions are chosen as the water surface elevation at the tide gauge (m; downstream boundary) and river

discharge from a combination of records representing the Quillayute River watershed (m3s�1; upstream boundary).

1.1 HEC-RAS model validation

In order to determine the dominant inputs to Quillayute River discharge, combined estimates of the Sol Duc and Calawah

Rivers are compared to measurements taken on the Quillayute River in May 2010 (Czuba et al., 2010). Combined discharge5

estimates from the Sol Duc and Calawah rivers underpredict streamflow in the Quillayute River by approximately 33%. An area

scaling watershed analysis (Gianfagna et al., 2015), described in the main text, found that the Bogachiel and Calawah Rivers

had similar contributions. Thus the Calawah river is scaled by a factor of 2.09 to represent the Bogachiel River. Combined

discharge estimates from the Sol Duc River and Bogachiel River, representing the Quillayute River, are also compared to

the Quillayute discharge measurements taken during the 2010 survey. Using this methodology, the discharge estimates of the10

Quillayute River fall within the uncertainty of the discrete USGS measurements in most cases (Table 1).

The longitudinal measured water surface profile allows for the verification and calibration of HEC-RAS modeled water

surface elevations on the day of the survey (Figure 1). HEC-RAS is run using discharge of the watershed-scaled Bogachiel

River as the upstream boundary condition during the hour of the field survey and this discharge is combined with a lateral

inflow from the Sol Duc River around river km 8.5. Manning’s coefficients within the main channel of the Quillayute River are15

calibrated to best represent the water surface elevation on the day of the USGS longitudinal survey. Final Manning’s coefficients

range from to 0.005 to 0.1, and are on average 0.025.

The final calibrated HEC-RAS model produces a water surface elevation with an average bias less than 1% (less than 1 cm)

and an average standard deviation of approximately 5% (7.5 cm). The maximum difference between the two water surfaces is

approximately 14 cm (20%). The percent difference between the depth of the observed and modeled water surface is almost20

always less than 10% (Figure 1).

2 Tide gauge processing

The continuous La Push tide gauge record begins in 2004, recording 12 years of water levels. This record, however, does not

capture the extreme water levels occurring during the 1982/83 and 1997/98 El Niños. Therefore, water levels from the La

Push tide gauge are merged with water levels from the Toke Point tide gauge (beginning in 1980, NOAA station 9440910) to25

create a combined water level record representing a larger range of extreme conditions. ⌘A and ⌘SE , water level components

deterministic to the La Push tide gauge, are extended to 1980. Water level components influenced by regional or local forcings

like ⌘MMSLA and ⌘SS , are compared before combining. ⌘MMSLA between the Toke Point and La Push tide gauges are

similar, so Toke Point ⌘MMSLA are appended to the beginning of the La Push ⌘MMSLA. Toke Point, however, has slightly

higher magnitude ⌘SS than La Push and there is a noticeable offset in the highest ⌘SS peaks. A correction is thus applied to30

the Toke Point ⌘SS before appending it to the beginning of the La Push ⌘SS . ⌘MSL is extended back to 1980 using relative

sea level rise trends for the region. Once the two tide gauges are merged, the combined hourly tide gauge record extends from
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Figure 1. a) Bathymetry and longitudinal profile from the Bogachiel River to the mouth of the Quillayute River surveyed by the USGS in

May of 2010 (black). The longitudinal water level for the calibrated HEC-RAS model is depicted in blue. b) Percent difference between the

measured (black) and HEC-RAS modeled (blue) water level. c) Actual difference between the measured (black) and HEC-RAS modeled

(blue) water level.

1980 - 2016 and is 97% complete. Discharge measurements sampled at 15 minute intervals for the Calawah and Sol Duc rivers

are interpolated to hourly increments to match the timing of the SWL measurements.

2.1 Removal of river-influence from the oceanographic signal

Storms tend to influence large stretches of coastline at once, and while site-specific variations in the coastline or distance

from storm can drive local variations in the amplitude of ⌘SS , the overall ⌘SS signal is fairly coherent across regional tide5

gauges across the PNW. The river-influenced water levels are therefore isolated and removed from the La Push ⌘SS record by

developing a relationship between the La Push ⌘SS and a regionally-averaged ⌘SS .

⌘SS decomposed from the Neah Bay, Westport, Astoria, Garibaldi, and South Beach tide gauges are averaged each hour to

create a regional ⌘SS record (black line; Figure 2). The standard deviation (�) of the available ⌘SS records at each hour is used

4



to represent the variability of ⌘SS due to local effects at each station. ⌘SS at La Push that are larger than the regional average +

2.5� are considered anomalous to the region, and defined as river-influenced water levels (⌘Ri). Observations flagged as larger

than the regional average + 2.5� (dashed line; Figure 2) were replaced with the regional average + �. A value of + � was

chosen to minimize jumps in time series when substituting in a smoother dataset. While this methodology does not remove all

the effects of ⌘Ri in the ⌘SS signal, it captures the majority of anomalous water levels driven by high discharge events.5

⌘Ri is produced from the difference between the original La Push ⌘SS and the ⌘SS modified described above which removes

⌘SS anomalous events. ⌘Ri occurring during low discharge events (here low is defined as less than 10 m3s�1, the approximate

summer average discharge) is added back into the La Push ⌘SS , as it is likely not driven by river forcing. After ⌘Ri was removed

from the ⌘SS signal, it is saved as a time series of river-forced water level events.

Extreme Hs and Q events at the Calawah River are determined using the Peak Over Threshold approach, where all inde-10

pendent daily maximum events over a defined threshold are selected. Threshold excesses are fit to non-stationary Generalized

Pareto distributions, which include seasonality as a covariate. Both variables are transformed to approximately Fréchet mar-

gins. A bivariate logistic model is then used to model the dependency between the variables. To simulate, random numbers

are sampled from a uniform distribution and mapped to each variable’s prescribed Fréchet cumulative probability distribution

function. Based on the probability of occurrence of the transformed value, the estimate is transformed back to the physical15

scale using the Generalized Pareto distribution if extreme, dependent on the variable’s threshold. If not extreme, the estimate

is transformed back to the physical scale using monthly-varying Gaussian copulas. This technique generates a synthetic record

of Q at the Calawah River gauge that is seasonally varying, related to larger-scale climate variability through wave height

(essentially as a proxy for storms), and carries the same dependency between variables as the observational record. Q is then

multiplied by 2.09 to represent inflow from both the Bogachiel and Calawah rivers.20

5
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Appendix C 
 
The following is a reproduction of the Executive Summary for Chapter 5: Coastal Hazards in 
“Climate Change Vulnerability Assessment for the Treaty of Olympia Tribes” (Dalton et al., 
2016). 
 
Coastal ecosystems and communities along the outer coast of the western Olympic Peninsula 
are currently at risk of erosion and flooding hazards driven by extreme total water levels 
(TWLs)—mean sea level combined with storm surge, high tide, seasonal and interannual 
variability in sea level, and ocean wave characteristics. Understanding the magnitude and 
frequency of these extreme water level events will better prepare coastal communities for dealing 
with both present day and future coastal hazards which effect critical shoreline habitats and 
infrastructure. TWLs along the shoreline of the Treaty of Olympia area are modeled for both 
present day conditions and future conditions under rising sea levels and increasing wave heights. 
 
Along the Pacific Northwest coast, sea level is projected to rise by 4-56” by 2100, but local 
projections vary depending on the local tectonic setting. The central and southern Washington 
coast is uplifting at a slower rate than the northwest Olympic Peninsula, even subsiding in some 
areas, and thus is poised to experience the effects of sea level rise sooner than the northwest 
coast. In this analysis, sea level projections for 2050 range from -0.10 to 0.5 meters (-3.9” to 
19.7”) and the observed increasing wave height trend is allowed to continue to mid-century. Two 
types of high water events are analyzed: nuisance events (everyday hazards characterized by the 
average amount of days per year that the coastline experiences either overtopping or collision) 
and extreme events (such as the annual maximum event or the 100-year return level event). 
 
The type of backshore1 is important for characterizing TWLs and their impacts. By comparing 
elevations of TWLs to the elevation of the foremost backshore feature, we can estimate the risk 
of overtopping and inundating the backshore area and the risk of colliding with and eroding the 
backshore feature be it a bluff, cliff, dune, or engineered structure. The Hoh, Quileute, and 
Quinault coastlines, and surrounding beaches, consist of highly variable morphology including 
both low-sloping and steep beaches comprised of either sand or gravel and are backed by dune, 
bluffs, or cliffs. In general, however, the most characteristic morphology includes steep cliffs and 
bluffs, occasionally fronted by ephemeral beach berms. The number of days per year that these 
smaller fronting features experience impact (erosion) and overtopping (flooding) varies along the 
coastline (Table C1), as do extreme TWL return level events. These ephemeral features most 
likely act as a buffer to backing cliff or bluff erosion and critical habitat. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The backshore is the region of the beach extending from the high water line to the landward extent of the beach. 
The most foremost backshore feature is therefore the first feature (dune, cliff, bluff, etc.) in which high water levels 
may impact. 
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The beach segments from south of Ozette Lake to Rialto Beach, along the Quileute reservation, 
and Ruby Beach to the Queets River experience impact (erosion) regime on the leading 
backshore feature for at least half the year largely due to steep beach slopes and low dune toes. 
Most other areas along the Treaty of Olympia coastline experience impact days about a third of 
the year. In general, overtopping occurs much less often than the collision regime, but is most 
common near Kalaloch and some parts of the Taholah area where it occurs about 100 days per 
year. Under all sea level rise scenarios water levels increase along the coast, driving increases in 
number of impact or overtopping days per year (Table C1). The largest increases in impact days 
per year occur along the beach segment from Ruby Beach to the Queets River (Figure C1) and 
areas within the Cape Alava to Rialto Beach segment. The overtopping regime remains 
infrequent, due to the large amount of cliffs and bluffs backing the majority of the coastlines, but 
increases by a few more weeks per year along the Cape Alava to Rialto Beach segment and the 
Hoh Reservation coastline. 
 
Figure C1 Impact days per year (IDPY; middle) and overtopping days per year (ODPY; right) 
for Ruby Beach to the Queets River. Bolded black lines indicate the average (across 35 
simulations) IDPY/ODPY computed using the present-day simulations while blue, green, and red 
lines indicate future simulations for low, medium, and high sea level rise, respectively. 

 
 
 
The annual maximum TWL event increases under all SLR scenarios for the Hoh, Quileute, and 
Quinault coastlines, but the Hoh coastline may receive the largest changes (Figure C2) likely due 
to the overall steeper beaches. Likewise, the steeper beaches from Ozette South may result in 
larger increases in the annual maximum TWL event compared with First Beach (Table C1). The 
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southern Quinault coast segment experiences the smallest increase in the annual maximum event. 
However, even slight increases in water levels may matter more in locations with critical habitat 
or infrastructure (e.g., the Taholah area) rather than locations where little infrastructure or high 
backing cliff morphology exists. 
 
 
Figure C2 The annual maximum TWL for the Hoh reservation. Bolded black lines indicate the 
average (across 35 simulations) annual maximum TWL computed using the present-day 
simulations while blue, green, and red lines indicate the average annual maxima of future 
simulations (12 each scenario) for low, medium, and high sea level rise, respectively. 

 
 
Certain species with economic and cultural significance to the Treaty of Olympia tribes (e.g., 
surf smelt, razor clams, shorebirds) may be impacted by the projected future changes in extreme 
total water levels. While the projected changes in TWLs by 2050 are likely not severe enough to 
significantly threaten coastal habitat, some intertidal species may shift landward. For example, 
across all of the locations, the 3 m contour is inundated every day of the year during the 
maximum daily TWL under a high SLR scenario. The largest amount of change, on average, is 
in the southern extent of the Quinault area. While intertidal species, like razor clams and surf 
smelt, may have the ability to move vertically up the beach, snowy plovers and other back-
barrier nesting species may face habitat loss as sea levels continue to rise. 
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Table C1 Percent change (and standard deviation) in impact (erosion) and overtopping 
(inundation) days per year for present conditions and mid-21st century high sea level rise 
projections and increase in the average annual maximum TWL event for segments of the Treaty 
of Olympia coastline. The coastline segment is ranked by the average amount of Impact Days 
Per Year (e.g., on average, Quileute presently experiences the most IDPY and Southern Quinault 
experiences the least IDPY).  

Coastline Segment % Change in 
IDPY 

% Change in 
ODPY 

Average Increase 
in Annual 

Maximum TWL 
Event  

Quileute 
(Rialto Beach and First Beach) +18% (±11%) +35% (±31%) +50 cm 

Kalaloch 
(Ruby Beach to the Queets River) 

+30% (±25%) +55% (±34%) +50 cm 

Ozette 
 (Cape Alava to Rialto Beach) +25% (±36%) +50% (±45%) +60 cm 

North Quinault 
(Northern Taholah to Queets River) 

+18% (±15%) +35% (±60%) +50 cm 

Middle Quinault 
(Point Grenville to Northern 

Taholah) 
+17% (±40%) +25% (±55%) +50 cm 

Second Beach +54% (±10%) +90%1 +43 cm 

Hoh +16% (±13%) +27% (±12%) +77 cm 

Third Beach +47% (±6%) +43%1 +63 cm 

Southern Quinault 
(Moclips to Point Grenville) 

+65% (±33%) +95% (±30%) +30 cm 

1 Only one point was included in the analysis, so no standard deviation could be calculated. 

 
 
 


