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ABSTRACT
The blood–brain barrier plays a crucial role in regulating the passage of 98% of the
compounds that enter the central nervous system (CNS). Compounds with high
permeability must be identified to enable the synthesis of brain medications for the
treatment of various brain diseases, such as Parkinson’s, Alzheimer’s, and brain tumors.
Throughout the years, several models have been developed to solve this problem and
have achieved acceptable accuracy scores in predicting compounds that penetrate the
blood–brain barrier. However, predicting compounds with ‘‘low’’ permeability has
been a challenging task. In this study, we present a deep learning (DL) classification
model to predict blood–brain barrier permeability. The proposed model addresses the
fundamental issues presented in former models: high dimensionality, class imbalances,
and low specificity scores. We address these issues to enhance the high-dimensional,
imbalanced dataset before developing the classification model: the imbalanced dataset
is addressed using oversampling techniques and the high dimensionality using a non-
linear dimensionality reduction technique known as kernel principal component
analysis (KPCA). This technique transforms the high-dimensional dataset into a
low-dimensional Euclidean space while retaining invaluable information. For the
classification task, we developed an enhanced feed-forward deep learning model and
a convolutional neural network model. In terms of specificity scores (i.e., predicting
compounds with low permeability), the results obtained by the enhanced feed-forward
deep learningmodel outperformed those obtained by othermodels in the literature that
were developed using the same technique. In addition, the proposed convolutional
neural network model surpassed models used in other studies in multiple accuracy
measures, including overall accuracy and specificity. The proposed approach solves the
problem inevitably faced with obtaining low specificity resulting in high false positive
rate.
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INTRODUCTION
The blood-brain barrier (BBB) is a membrane that regulates solutes in circulating blood
from penetrating the central nervous system (CNS). The BBB is responsible for regulating
the transport of 98% of the compounds to the CNS (Martins et al., 2012). A fundamental
task of pharmaceutical companies is to identify which substances penetrate the BBB when
developing drugs that target the CNS (Pardridge, 1999). Identifying compounds that
can penetrate the CNS is critical to synthesizing medications for the treatment of many
neurological diseases, such as brain tumors, Parkinson’s disease, and Alzheimers (Miao et
al., 2019; Bagchi et al., 2019; Desai et al., 2007; Chevalier, 2018). A compound’s passage to
the CNS can be measured by its active or passive transport (Seddon et al., 2009).

Before the emergence of in silico approaches, quantitative structure-activity relationship
(QSAR) studies were conducted experimentally using in vivo and in vitro methods. QSAR
is a classification and regression method widely used to analyze the relationship between
a chemical structure and its activities; multiple studies have developed QSAR models
to predict BBB permeability (Li et al., 2005b; Guerra, Páez & Campillo, 2008; Martins et
al., 2012; Brito-Sánchez et al., 2015; Yuan, Zheng & Zhan, 2018). These experiments were
performed on living organs or through clinical trials. Although these methods are accurate,
they are expensive and time consuming. This inefficiency motivated the development
of in silico methods, which use computational approaches and machine learning (ML)
algorithms to find and validate new compounds from a database of molecules (Wermuth
et al., 2015). These methods generate more data and enable more automated modeling to
support drug design research.

The study of BBB permeability can be formulated into a binary classification problem
with two class labels: BBB+ and BBB−, representing compounds with high BBB
permeability and low BBB permeability, respectively. Developing a classification model
requires a complete understanding of the primary issues shared by most BBB permeability
studies. These issues are related to algorithm, dataset, and features. Algorithm issues include
overfitting and low accuracy scores when predicting compounds with low permeability
(i.e., BBB−). Features issues are caused by the high dimensionality of QSAR datasets and
include overfitting and poor generalization to unseen data (Ghaddar & Naoum-Sawaya,
2018). Dataset issues are due to imbalanced class label distribution in the BBB dataset,
which affects the classifier’s ability to predict compounds classified as BBB-.

Throughout the years, various deep learning (DL) models have been developed to
solve the problem of BBB permeability. DL variations other than feed-forward artificial
neural network (FFDNN) models have not been thoroughly investigated (Wang et al.,
2018; Miao et al., 2019; Garg & Verma, 2006; Guerra, Páez & Campillo, 2008). A common
characteristic of multiple BBB studies is the achievement of high accuracy rates when
predicting compounds with high permeability. However, it has been a constant challenge
to obtain satisfactory results when predicting compounds with low permeability (Wang et
al., 2018; Guerra, Páez & Campillo, 2008; Li et al., 2005b). Improving the specificity score
will help decrease false positive rates, which usually result from obtaining predictions of
high BBB+ and low BBB− (Yuan, Zheng & Zhan, 2018). Themain reasons for this issue are
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the unavailability of compounds with low BBB permeability (BBB−) and the inability to
handle class imbalance. Previous studies have never adequately addressed these problems
to enhance the model fitting process.

In this paper, we investigate the potential of DL approaches to solve the problem of BBB
permeability. The primary goal of this study is to improve the accuracy of BBB classification
models. We focus not only on identifying high penetration compounds but also low
penetration compounds. Convolutional neural networks (CNN) (Fukushima &Wake,
1991) are powerful DL models that have delivered remarkable results for many problems,
such as image processing and text classification (Schmidhuber, 2015), but have not been
used to predict BBB permeability. We investigate the applicability of state-of-the-art CNN
architecture to the problem of classifying BBB permeability. Because the dataset is high
dimensional, this study uses feature extraction methods to extract the most useful features.
This paper makes the following contributions. First, it presents an enhanced FFDNNmodel
to predict compounds’ BBB permeability. The model can be called enhanced because it
is based on a broad overview of network hyper-parameters that substantially affect the
classification task and improve specificity scores. Second, to the best of our knowledge,
it is the first study to investigate the use of state-of-the-art CNN architecture to model
the problem of BBB permeability. This study addresses the problem of low specificity
scores obtained by most BBB classification models without compromising other accuracy
measures. Finally, this research study applies kernel PCA (KPCA) as a feature extraction
method in the problem of BBB permeability. We investigate the influence of KPCA’s
non-linearity on the classifier’s performance and visualize the dataset’s transformation.

The rest of this paper is organized as follows. First, we summarize previous studies in the
literature that have attempted to solve the problem of BBB permeability. Second, we present
the research methodology, describing the preprocessing steps taken before developing the
DL classification model. This includes descriptors calculations, dimensionality reduction,
and oversampling of the minority class. Then, we present an empirical comparative
analysis of the proposed models and widely used machine learning models; namely,
XGboost, support vector machine (SVM), and random forest (RF).

LITERATURE REVIEW
The BBB is a complex system that regulates the transport of compounds through the
CNS. A compound’s penetration to the BBB is measured by LogBB which is defined as
the logarithmic ratio of the concentration of compounds in the brain to compounds in
the blood (Bradbury, 1993). BBB permeability can be measured with two approaches:
active or passive transport (Seddon et al., 2009). The active transport of compounds can
be determined by clinical phenotypes related to drug side effects and indications (Gao et
al., 2017; Miao et al., 2019). However, the most widely used approach relies on predicting
BBB permeability through passive diffusion based on chemical structure or physical
features (Carpenter et al., 2014).

Throughout the years, many ML and DL algorithms were developed to model this
classification task. Support Vector Machine (SVM) models have been adopted in many
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studies, because it delivered decent results in predicting the positive class (BBB+) (Martins
et al., 2012; Li et al., 2005b; Gao et al., 2017; Kortagere et al., 2008; Wang et al., 2018). One
of the early SVM models was developed by Zhang et al. (2008) who worked on a small
dataset of 150 compounds. They obtained an accuracy of 82% in predicting compounds
that can penetrate the BBB. Decision tree models were developed by Castillo-Garit et
al. (2017) and Suenderhauf, Hammann & Huwyler (2012), where the former obtained
89.29% specificity accuracy. Over the years, multiple regression and predictive models
were proposed. Brito-Sánchez et al. (2015) developed Multiple Linear Regression (MLR)
and Linear Discriminant Analysis (LDA). Their experiment showed that linear models
outperformed nonlinear ones in the classifier performance.

DL models have been used in QSAR since the 1990s (Ma et al., 2015). Early attempts
with shallow ANN were presented by Garg & Verma (2006), Guerra, Páez & Campillo
(2008) and Dorronsoro et al. (2004). These models were developed with a smaller dataset
of known chemical compounds, so their achieved accuracy was not satisfactory. A more
recent study with a larger dataset was proposed by Wang et al. (2018). To improve the
learning capability of the predictive models, they developed multiple ML and DL models
with a dataset of 2350 compounds. Their analysis found that amultilayer perceptron (MLP)
consensus model outperformed all their proposed single models. The consensus model
reached a sensitivity accuracy of 99% but failed to obtain a specificity accuracy above 83.3%.
Miao et al. (2019) attempted to create a DL classification model that depends on drugs’ side
effects and indications. Their study considered clinical side effects and indications rather
than chemical descriptors to predict a compound’s permeability.

Researchers have established that only 2% of compounds can actually penetrate the
CNS (Martins et al., 2012), making it a challenging task to predict compounds with
low permeability. Yuan, Zheng & Zhan (2018) and Wang et al. (2018) emphasized the
importance of improving the classifier’s specificity scores to avoid the occurrence of high
numbers of false positives. Yuan et al. focused on the importance of a larger dataset for
better generalization to unseen data. In their experience, a dataset of 1593 produced a
near-perfect overall score and lower BBB−. The same experiment has been repeated on a
larger dataset of 1990 compounds, for which the classifier accuracy dropped from 98.7%
to 95.7%.

Shen et al. (2010) and Wang et al. have achieved high sensitivity scores of 99.6%, and
99.0%, respectively. Both studies failed to greatly improve the specificity, obtaining 85.7%
and 83.3%, respectively. The results of these studies show the importance of improving
the classifier training process, so that it performs just as well on unseen data. They also
demonstrate that more attention should be focused on obtaining consistent predictions
for both class labels.

Martins et al. (2012) presented a comparative study of SVM and random forest (RF) on
a larger dataset of 1970 compounds, achieving a high specificity score of 96%. However,
the high specificity score came at the expense of sensitivity accuracy, which reached only
58%. Recently, oversampling techniques been applied to improve the model training
process (Wang et al., 2018; Zhu, Lin & Liu, 2017;Wang et al., 2019; Nakamura et al., 2013).
Wang et al. (2018) tested multiple resampling methods to improve the prediction of the
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BBB−class. They presented an empirical comparative analysis of different oversampling
methods for the problem of BBB permeability, including random undersampling
(RUS) (Blagus & Lusa, 2013), the adaptive synthetic sampling approach(ADASYN) (He et
al., 2008), weight loss function (WLF), and the synthetic minority oversampling technique
(SMOTE) (Chawla et al., 2002). Their best model achieved only 83.3% when predicting
compounds with low permeability. A comparison of the performance of a selection of
studies from the literature is presented in Table 1.

A QSAR dataset is characterized by high dimensionality. One of the first attempts to
reduce the high dimensionality of the BBB dataset was performed by Li et al. (2005b). They
applied feature selection using a technique known as recursive feature elimination (RFE).
They developed an SVM classification model and emphasized the positive effect of feature
extraction for the model’s accuracy. One of few studies focused on generating a large set
of molecular descriptors and fingerprints to improve classifier accuracy was conducted by
Yuan, Zheng & Zhan (2018). They proposed an SVM model trained with 1875 (1D, 2D,
and 3D) descriptors and five types of fingerprints, and obtained an overall accuracy of
93.96% and a specificity score of 91%. Their model was the first to achieve such a good
score in both class labels. They reported that a subset featuring fingerprints outperformed
the set containing molecular descriptors. Alsenan, Al-Turaiki & Hafez (2020) explored the
effect of applying a non-linear feature extraction method to reduce the high dimensionality
of a BBB dataset. A high-dimensional dataset composed of 6,394 molecular descriptors
and fingerprints was generated to accomplish this task. Their study was based on a neural
network technique known as an autoencoder. They compared their proposed approach to
PCA and concluded that non-linear techniques outperformed linear extraction methods
in overall accuracy and in separating class labels in a binary classification QSAR problem.

Various ligand-based BBB studies have contributed tremendously to the prediction
of compounds with high BBB permeability. However, predicting compounds with low
permeability has become a consistently challenging task for researchers. More investigation
is encouraged to identifying means of improving the minority class to achieve better
classification. A recent shift in QSAR studies has been directed toward developing DL
methods to solve various QSAR problems (Lo et al., 2018; Thomas et al., 2020). Research
in BBB permeability with DL approaches is still in its infancy, and many variations of DL
models have yet to be investigated.

RESEARCH METHODOLOGY
To solve the three issues identified in the BBB permeability problem, related to dataset,
algorithm and features, we present an enhanced FFDNN model and a CNN model that
address each of these shortcomings.

The proposed model is composed of three main phases, illustrated in Fig. 1. In the
first phase, we generate a full set of molecular descriptors and fingerprints. The output of
this step is an imbalanced high-dimensional BBB dataset composed of 6,394 descriptors
and 2,500 records. The second phase involves all the data preprocessing tasks required
to produce a clean, balanced dataset. This includes handling empty records, dealing with
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Table 1 Classification accuracy measures of the studies reported from the literature.

Model Test set

Evaluation ACC Sens. Spec. AUC MCC

SVM (Wang et al., 2018) 10-fold 91.2 92.5 89.9 90.8 –
Consensus MLP (Wang et al., 2018) 10-fold 96.6 99 83.3 91.9 –
DT (Martins et al., 2012) 5-fold 92.22 0.58 0.96 – 0.55
SVM (Li et al., 2005a; Li et al., 2005b) 5-fold 83.7 88.6 75.0 – 0.65
ANN (Guerra, Páez & Campillo, 2008) LGO 73.0 68.0 80.0 – 0.79
DT (Castillo-Garit et al., 2017) 10-fold 87.93 86.67 89.29 – –
SVM (Yuan, Zheng & Zhan, 2018) 70/30+ 5-fold 93.96 94.3 91.0 94.3 91.0 – 0.84

Notes.
ACC, Overall accuracy; Sens, Sensitivity scores; Spec, Specificity scores; MCC, Matheow correlation coefficient; AUC, Area under the curves.

outliers, data scaling, and oversampling. Additionally, this phase uses KPCA to transform
the dataset from a high- to a low-dimensional Euclidean space. The third phase involves
the comparative empirical development of an FFDNN model and a CNN model. The
models are tested individually with the dataset produced in phase 2. Each model’s output
is the predicted class labels, representing compounds classified as either BBB+ or BBB−.
The proposed models are assessed based on five accuracy measures; accuracy, specificity,
sensitivity, area under the curve (AUC), and Matthew Correlation Coefficient (MCC), to
identify the best DL approach to predict BBB permeability.

Data description
Developing a model based on a benchmark dataset enables the comparison of the model’s
performance to other studies from the literature. Wang et al. (2018) gathered a dataset of
2,350 compounds obtained from previous line of BBB permeability studies, which focused
on the compounds’ penetration into the BBB through passive diffusion. The dataset
comprised 1,803 compounds representing the positive class (BBB+) and 547 compounds
representing the negative class (BBB−). In QSAR modelling, compounds in the form of
1D, 2D, and 3D structures are transformed into canonical simple linear notations, such
as Simplified Molecular Input Line Entry Specifications (SMILES) (Xu & Hagler, 2002).
All compounds in the dataset were encoded into SMILES representations. The criteria for
dividing compounds into the BBB+ class or BBB- class were taken from previous studies
and the benchmark study by Wang et al. (2018). Compounds are classified as BBB+ or
BBB−when Log BB value is >= −1 and when the Log BB value is <−1, respectively.

Data analysis
To ensure a reliable prediction of a QSAR model, applicability domain (AD) should
be defined by specifying the model’s limitation. The AD accounts the prediction of
external compounds as reliable if they fall within the defined domain’s scope. Hence, AD
determines howwell the proposedmodels can generalize to unseen data outside the training
set (Sheridan et al., 2004). AD can be determined by many statistics-based approaches to
analyze the descriptors space.We used distance-basedmethod to ensure testing compounds
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Figure 1 The four phases of developing the BBB permeability model.
Full-size DOI: 10.7717/peerjcs.515/fig-1

are structurally similar to those in the training set. The molecular weight (MW), TPSA,
and ALogP descriptors were considered for the applicability domain analysis.

The average Euclidean distance distance between each compound in the dataset is 745.08
for the aforementioned descriptors. The mean of MW is 338.22, ALogP is 1.412, and TPSA
is 114.96. The standard deviation for MW is 135.96, for ALogP is 2.028, and for TPSA
is 83.18. If the new query point average distance vary from the value defined above for
these features its prediction will be unreliable. Figure 2 is a scatter plot demonstrating
the chemical space distribution of the training, testing and external datsaet with respect
to descriptors MW and ALogP. Despite the high range, the three datasets are positioned
within the same chemical space.

Descriptors calculation
To produce the best classifier performance with respect to molecular descriptors
and fingerprints, a high-dimensional dataset was created with 6,394 descriptors and
fingerprints calculated using the alvaDesc application (Alvascience Srl, 2019) and Ochem
platform (Sushko et al., 2011). The molecular descriptors included 0D descriptors, such as
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Figure 2 Dataset analysis.
Full-size DOI: 10.7717/peerjcs.515/fig-2

constitutional indices, bond counts, weight, and atom counts; 2D descriptors based on
molecular topology, such as topological indices and fragment counts; and 3D descriptors,
such as gravitational index, charged partial surface area (CPSA), and weighted holistic
invariant molecular (WHIM). For each SMILES record, 6,394 descriptors and fingerprints
were calculated.

Ultimately, the generated descriptors made up a high-dimensional space, which was
inputted to the KPCA technique to extract the descriptors with the most value for the
classification task. To load SMILES onto the program, the CSV file was converted to
SMIformat. For the purposes of our study, all descriptor types were selected and 3,874 1D
and 2D descriptors were calculated. The Ochem platform used the Chemistry Development
Kit (CDK) (Steinbeck et al., 2003), and the partial charge and atom coordinates of 3D
descriptors were obtained with a BALLOONoptimizer. Of the 2,350 records, 2,342 were
successfully calculated for the 1D, 2D, and 3D descriptors. AlvaDesc was used to calculate
two types of fingerprints: Hashed and MACCS 166. MACCS are fixed-size 2D fingerprints
consisting of 166 bits, and they represent the most important features of a molecule. The
appearance or absence of each of the 166 bit represents specific, well-defined features.
Hashed fingerprints are Boolean vectors that describe the molecule structure in every
possible pattern (also called exhaustive patterns). Hashed fingerprints are processed with
a hashing function to reduce them to a fixed, specific size.

Because hashed fingerprints describe every possible pattern of a molecule structure,
they have the advantage of being able to provide a larger range of descriptions of
the molecule’s structure. There are two main types of hashed fingerprints: extended
connectivity fingerprints (ECFP) and path fingerprints (Danishuddin & Khan, 2016). In a
Python environment, the dataset was saved and read as comma-separated values, known
as a CSV file. Panda library reads CSV files as dataframes, which can easily manipulate
and process data by selecting columns, replacing values, retrieving rows, etc. Once 1D,
2D, and 3D descriptors were calculated, all columns in the dataframe were concatenated
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using Panda library so that each SMILES record in the dataset contained 1D, 2D, and 3D
descriptors and fingerprints. The final number of attributes (descriptors) in the dataset
was 6,394. The supporting file provides a summary of the total number of descriptors, their
dimensions, and the tool used.

Data preprocessing
Once all descriptors and fingerprints were calculated for each SMILES record in the dataset,
preprocessing was performed on the dataset. Proper preprocessing results in clean, correct,
and complete data while improper preprocessing may lead to poor results and affect the
accuracy and efficiency of the algorithm (Li et al., 2005a).

Data cleaning
During the descriptors calculation process, 2,342 of 2,350 compounds were successfully
calculated. Eight compound descriptors were not obtained by Ochem because their atom
coordinates and atomic partial charges were not calculated. Those records had null values
for all descriptors. Using Panda library in Python, these SMILES records were located and
dropped. In addition, some SMILES records had some successfully calculated descriptors
but somemissing values. There aremultiple ways to handlemissing values, such as replacing
them by zero, replacing them by a mean value, or imputation. We computed the mean
value of each column and replaced all missing values by the calculated mean value of their
respective columns.

Scaling (data transformation)
After data cleaning was performed, the dataset was ready for normalizing as it had a varying
range of values. MinMax scaler was needed to normalize the descriptors’ range (Juszczak,
Tax & Duin, 2002). The values of 1D, 2D, and 3D descriptors were transformed using the
MinMax scaler to a range between 0 and 1. To apply the scaler, we first fit the MinMax
scaler on the training data and transformed the external validation dataset using the trained
scaler.

Handling class imbalance
The dataset obtained fromWang et al. (2018)was imbalanced in terms of class distribution.
As shown in the literature, previous BBB studies have struggled to obtain high classification
scores with respect to the negative class because class imbalance was not properly addressed.
Based on Wang et al. and a comparative analysis of several oversampling techniques
reported in the literature, we adopted an oversampling technique proposed by Chawla
et al. (2002) known as the synthetic minority oversampling technique (SMOTE), which
delivers consistent, adequate classification accuracy. Several studies have proven the positive
effect of oversampling techniques on the classifiers ability to learn, including Wang et al.
(2018), Chawla et al. (2002), López, Fernández & Herrera (2014), and Nguyen, Cooper &
Kamei (2011). Synthesizing new instances by proximity through oversampling does not
necessarilymean that the new instances are real, but rather allows the classifier to generalize.

SMOTE focuses on improving the minority class by means of oversampling or on
improving the majority class by undersampling, depending on the dataset (Chawla et al.,
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2002). It uses a k-nearest neighbors approach, which increases the number of data points
(instances) in the minority class by creating new ones. The original data points remain
unchanged, but they are used as input to synthesize (produce) new ones along with their
respective features. The features’ values are estimated by generating new samples with
features from data points in the target class (in our case, BBB−) and their neighbors.

Dimensionality reduction
Once the data was cleaned, scaled, and integrated into one file, it was ready for
dimensionality reduction. This step is critical to developing a classification model. High-
dimensional data causes noise and redundancy and increases computational complexity
(Danishuddin & Khan, 2016). It was apparent from the literature that feature selection
methods were widely used with QSAR modeling because they are effective at removing
redundant features prior to applying feature extraction techniques (Khalid, Khalil &
Nasreen, 2014; Meng et al., 2018). The most-used feature extraction technique was linear
principal component analysis (PCA) (Goodarzi, Heyden & Funar-Timofei, 2013). However,
multiple studies argued that non-linear extraction methods are superior to selection
methods in extracting complex structures and hidden patterns (Pirhadi, Shiri & Ghasemi,
2015). KPCA is a variation of linear PCA capable of learning nonlinear representations of
data.

Suppose we have D dimensional vectors that we want to project to a dimension space
M. Given a dataset xi, where i= 1,2,3,...,N , and xi is the D dimensional vector, the data
points xi can be transformed to a nonlinear representation denoted as 8(x).

There are multiple parameters for the PCA kernel, linear, sigmoid, cosine, polynomial,
and radial basis functions (Mushtaq et al., 2019). The choice of kernel function for feature
extraction purposes is based on the data itself. Experimenting with multiple kernels can
provide insight on which kernel to use (Ustun, 2009). Linear kernel was not tested due to
its slow processing; it might be more suitable for linear data (Ezukwoke, 2019).

The number of components returned by KPCA can be specified, but our model allowed
KPCA to return the best set of descriptors with non-zero values in the reduced dimension
space. This was been accomplished by not passing any value to KPCA for the parameter
on the number of components ‘‘n_components’’, which means that all non-zero values
were returned. This allowed our model to retain all valuable information. After passing the
complete high-dimensional dataset to KPCA, 3,603 descriptors were returned.

Based on the performance of kernels, we used polynomial kernel for the FFDNN model
and Cosine kernel for the CNN model. For fast computation, the number of jobs running
in parallel was set to 10 jobs. The number of descriptors was transformed from 6,394 to
3,603 descriptors. The processed, balanced, cleaned and lower dimensional data was then
used as an input to the deep learning models. In addition, both models used the same set
of descriptors generated from KPCA.

Performance measures
Five accuracy measures are generally used across BBB permeability studies and QSAR
research: accuracy, specificity, sensitivity, area under the curve (AUC), and the Matthews
correlation coefficient (MCC). Accuracy indicates the overall performance of themodel, but
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it is not regarded as a good indicator of the model’s performance due to the class imbalance
in BBB permeability datasets. Specificity is the percentage of compounds correctly classified
as BBB−by the model, and sensitivity is the percentage of compounds correctly classified
as BBB+ by the model.

Accuracy =
TP+TN

TP+TN +FP+FN
(1)

Specificity =
TN

TN +FP
(2)

Sensitivity =
TP

TP+FN
(3)

MCC =
(TP×TN )−(FP×FN )

√
(FP+TN )(FP+TP)(FN +TN )(FN +TP)

(4)

Anothermeans of comparing the performance of the proposed classifiers is using AUC to
assess how well the classifier separates classes by calculating the area under the ROC curve.
MCC is a measure commonly used in QSAR, especially in imbalanced binary classification.
Both measures are used to measures the proposed models’ performance (Fawcett, 2006).

To validate the model and measure its predictive ability, we followed the best practices
for QSAR predictive modeling (Tropsha, 2010) by validating the model with independent
external validation. In addition, the model was validated with K -fold cross-validation. As
for K -fold cross-validation, the K value was 10, and the original dataset was portioned
into 10 subsets (folds). Of the 10 subsets, one was retained for testing while the remaining
subsets were used for the training task. This process was repeated until each subset was
used for testing once. An advantage of this technique is that it works on small datasets and
can reveal the occurrence of overfitting. According to Arlot & Celisse (2010), the estimate
bias with 10-fold cross-validation is minimal in classification tasks. To minimize bias, the
session was cleared after each fold to avoid overfitting caused by retaining neurons weights.
This was accomplished by invoking a clear_session() command after each fold. Once all
the training and testing with K-fold validation was finished, we tested the model with an
external dataset obtained from Drugbank (http://www.drugbank.ca/) (Drugbank, 2005)
comprising 86 CNS+. We excluded 8 (BBB−) instances from the original dataset to be
tested as part of the external dataset.

DEEP LEARNING CLASSIFICATION MODELS
This research aims to develop a classification model to predict BBB permeability. We
investigated and conducted a comparative experiment with two deep learning models to
tackle the problem of BBB permeability. Previous BBBmodels were developed with shallow
ANN or FFDNN models. Collectively, they either achieved low accuracy in predicting
compounds’ permeability (Guerra, Páez & Campillo, 2008; Li et al., 2005b) or achieved a
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Table 2 Details of the training, testing, and external datasets used in this study.

Sample size Training
set

Testing
set

External
set

Descriptors Descriptors

Before SMOTE After SMOTE before KPCA after KPCA

1803 BBB+ 1803 BBB+
547 BBB− 1803 BBB−

1,874 468 86 6,394 3,603

higher accuracy score for one measure than the other (Wang et al., 2018; Martins et al.,
2012). We first presented an enhanced FFDNN to overcome the difficutly of predicting
compounds with low permeability, classified as BBB−. Then, we explored a CNN model
to investigate its capabilities in handling the complexity of a BBB dataset. The enhanced
FFDNN and CNN models were developed using a Python PyCharm environment. The
models were developed with an imported dataset retrieved by SMOTE, consisting of 3,606
compounds. The number of epochs was set to 100, and the batch size was set to 200. A
fixed training/testing validation, a 10-fold cross-validation, and an external validation were
performed to test the models’ performance. The sample information for the experiments
is presented in Table 2.

Enhanced FFDNN model
Building a DL model can be challenging. The FFDNN model was enhanced by three
main contributions: applying a resampling method to improve the class distribution of
the imbalanced dataset, transforming the dataset with a KPCA technique to improve the
predictive power of themodel, and experimentally optimizing the FFDNNmodel by tuning
the hyper-parameters.

To optimize and tune a network,multiple hyper-parameter choices ought to be explored.
Deep learning hyper-parameters is tuning the network parameters, such as learning rate,
weights, and number of neurons and layers, to reach the optimal learning potential (Snoek
et al., 2015). We experimentally considered multiple activation functions, optimizers, and
validation techniques. The final list of hyper-parameters to optimize the FFDNN model is
summarized in the Supporting Information.

For the enhanced FFDNN model, we present a five-layer DL network. These layers
include an input layer, three hidden layers, and an output layer. In addition, two batch
normalization layers are used. Batch normalization is a technique that separates neural
networks’ layers to help stabilize the layers’ distribution and adjust the activation functions.
This is accomplished by taking the output of each layer and normalizing it before it is
inputted to the next layer and by calculating the mean and the variance of the input
(Santurkar et al., 2018).

To choose the activation functions, we experimented with a combination of rectified
linear units (ReLU) and Tanh. By applying ReLU in the first input layer and Tanh on the
remaining layers, we achieved better model learning and less computational cost. Three
optimizers were tested for the model: adaptive moment estimation (Adam), stochastic
gradient descent (SGD), and rectified adaptive Moment estimation (RAadm). Because
of its adaptive rate, Adam showed the best performance when fitting the model. The
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Figure 3 Block diagram of FFDNNmodel.
Full-size DOI: 10.7717/peerjcs.515/fig-3

proposed model contained three hidden layers (also called dense layers). The number of
neurons in each layer is Dense(512), Dense(256), Dense(128), Dense(64), Dense(32), and
Dense(1). Batch normalization was applied after two layers, as shown in Fig. 3. Because
BBB classification is a binary problem, a sigmoid function was applied to the last layer to
predict the class label, assigned as 1 or 0 for BBB+ or BBB−, respectively.

Convolutional Neural Network (CNN) model
Convolutional Neural Networks (CNN) share similar characteristics as feed-forward neural
networks in the aspects of being constructed from neurons, weights, and biases. They are
also similar in the process of calculating weights and activation functions. CNN is a special
type of feed forward neural networks that are known for their state of the art results in
visual representations and images processing (Schmidhuber, 2015). CNN differs from a
typical DNN in the structure of the hidden layers. CNN architecture is typically composed
of three layers; convolutional layers, pooling layers and fully connected layers. These layers
are formed in 3 dimensions: height, width, and depth. The convolution is a mathematical
algorithm that takes an input (such as an image) and extract features using the kernel to
produce an output. CNN works in ‘‘windows’’ known as ‘‘kernels’’. Kernels use shared
parameters or filters in a form of a 3 by 3 matrix. It works by sliding these parameters
over an input to calculate features. The extracted features are known as a ‘‘feature map’’ or
‘‘convolved feature’’, as shown in Fig. 4.
The pooling layers reduce the dimensionality of a feature map by picking up the

features with highest value, or the most important features. The pooling layer has multiple
advantages. First, it makes any input, whether visual or textual representation, smaller.
Second, it reduces the number of features (dimensionality). The convolution and pooling
layers are the fundamental base of CNNs. The convolution and pooling processes are
repeated because the input to a second convolution layer is the output of the first pooling
layer. Finally, the output is fed to the fully connected layer, which is a normal multilayer
perceptron (FFDNN) with an output layer that uses softmax (Chen et al., 2018).

Two common types of convolutions are usedwith CNNmodels, Conv2D functionwhich
is employed mostly with images, and Conv1D which is used with sequences and textual
problems. Because the problem in hand is textual Conv1D is used. To input the dataset
to the CNN model several steps were taken. The current dataset is in a 2D shape that is
processed with two parameters (batch_size,input_dim) where the batch_size represents the
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Figure 4 Convolutional layer.
Full-size DOI: 10.7717/peerjcs.515/fig-4

Figure 5 Transforming network shape from 2D to 3D.
Full-size DOI: 10.7717/peerjcs.515/fig-5

number of samples in one iteration and the input_dim refers to the number of descriptors
(features) in the dataset. The CNN layers implemented in this model is from tensorflow
(keras) library that requires a 3D tensor data in the form: (batch_size,steps,input_dim),
where the steps are needed to add another dimension to represent the depth of the array.
The process of converting the data from 2D to 3D shape is illustrated in Fig. 5 where the
matrix on the left denote the original dataset. The array element X[0][0] represents the first
instance encoded in (SMILES) representation and the first descriptor, X[0][1] represents
the array position of the same instance with the second descriptor in the array and so on.
When the array is inputted to the CNN a ‘‘steps’’ parameter was added to represent the
third dimension of the CNN architecture

The dataset comprises 2,350 chemical compounds encoded into SMILES representation
along with their descriptors and fingerprints. To construct the CNN model, our dataset
had to be modified to a 3D shape. Each convolution layer uses filters to calculate feature
maps. Filters are the parameters in which the CNN learns. For the CNN architecture, we
used four convolution layers, four batch normalization layers, one flattened layer, and one
dense layer, as shown in Fig. 6. We set the activation function to ReLU and the optimizer
to Adam. The number of neurons for each hidden unit was set to (1024, 512, 512, 256, 1).
The model was fitted for training and then for generating the class prediction.
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Figure 6 CNN architecture.
Full-size DOI: 10.7717/peerjcs.515/fig-6

RESULTS
Measuring how well a model performs with respect to real data is an essential task when
building a QSAR classification model. In this section, we present the performance analysis
of the proposed models. First, we present the experimental results of the proposed DL
models. We report the results of the enhanced FFDNNmodel and the CNN model. Model
progression in response to different hyperparameters’ tuning is presented in the Supporting
Information. To further investigate the ability of the FFDNN model and CNN model in
identifying the class labels, they are compared with some of the most widely used ML
models, namely SVM, random forest, and XGboost. In addition, the data transformation
after employing KPCA and SMOTE is demonstrated.

Deep learning models results
We experimented the aforementioned activation functions, optimizers, and other hyper-
parameters. The Supporting File list the results of different hyper-parameters on the
network performance. Initially, both ReLU and Leaky ReLU failed to identify the negative
class. In the first run, ReLU suffered from the dying ReLU problem and failed to classify
any compound with low penetration (BBB−). The second experiment was conducted with
a combination of ‘‘Tanh and ReLU’’, which resulted in a enhanced performance of the
FFDNN compared with just ReLU on the FFDNN. Batch normalization and the MinMax
scaler contributed to normalizing the layers and regularizing the range of descriptors’
values. As for the Adam optimizer, the adaptive learning rate of weights showed an
apparent improvement, as the overall accuracy increased from 75.95% to 91.06% with
SGD. However, the specificity scores still showed varying results between training and
testing, as shown in the first row of Table 3, prior to employing SMOTE. The training set in
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Table 3 SMOTE effect on the enhanced FFDNNmodel.

Resampling
(SMOTE)

Training set Test set

ACC Sens. Spec. ACC Sens. Spec. AUC MCC CI(95%)

No SMOTE 99.78 99.93 99.33 91.06 93.04 83.35 92.00 73.68 .057–.125
SMOTE K = 9 99.86 99.88 99.77 96.17 93.72 98.61 98.61 92.46 .033–.081
SMOTE K = 12 99.89 99.79 100 96.20 93.51 98.89 98.73 92.54 .032–.082
SMOTE K = 12 + KPCA 100 96.78 98.11 97.11 97.35 98.42 99.50 95.55 .020–.072

the best model reached a specificity of 99.33% compared to 83.35% during testing, which
indicates overfitting issues.

To address the model’s low predictive ability in the negative class (BBB−), a SMOTE
resampling technique was used (Nakamura et al., 2013). SMOTE demonstrated remarkable
enhancement of the negative class; the specificity results improved from 83.35 to 98.61,
as shown in Table 3. SMOTE transformed the dataset from 2,350 compounds, 1,803 and
547 in the positive and negative classes, respectively, to 1,803 compounds in each class.
In our proposed models, SMOTE created new points in such a way that all synthesized
points are on the line between two original minority points as illustrated in Fig. 7B. This
figure represents the majority class with red big points and the minority class with big
blue points. Because we have many red data points and only four blue points, SMOTE was
used to create new small blue points located between the original instances. This SMOTE
resampling technique transformed the data set from 1,803 and 547 compounds in the
positive and negative classes, respectively, to 1,803 compounds in each class, as shown in
Fig. 7A.

To further understand how the distribution of the dataset was transformed after
employing KPCA, we used visual encoding to visualize the data distribution. We designed
a scatter plot of the BBB dataset before and after using KPCA. As shown in Figs. 8A and
8B, the data points in the original dataset are positively correlated with respect to two
features. This is an undesirable quality that indicates redundancy in the feature space and
does not necessarily improve the model’s learning. Figure 8B shows the transformation
of the data-points with respect to PC1 and PC2 after the application of KPCA. KPCA
was able to separate and scatter compounds with respect to PC1 and PC2, achieving low
positive correlation. The classes were clearly separable even before being inputted into the
classification model. KPCA transformed the high-dimensional datset to a low dimensional
space and improved the classifier’s ability to separate classes. The enhanced FFDNN with
SMOTE and KPCA achieved an overall accuracy of 97.11%, a specificity score of 98.42%,
and a sensitivity score of 97.35% on the testing set.

The CNNmodel was inputted a balanced dataset delivered by the SMOTE oversampling
technique. The high-dimensional dataset was reducedwith KPCA. Themodels fitted during
training delivered a near perfect score, which shows they learned well during the training
process. The CNN model achieved an overall score of 97.76% with 10-fold validation. In
predicting compounds that penetrate the BBB, the best CNN model achieved a sensitivity
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Figure 7 SMOTE oversampling technique. (A) Class labels transformation. (B) Synthesizing new in-
stance.

Full-size DOI: 10.7717/peerjcs.515/fig-7

Figure 8 Dataset transformation with Kernel PCA. (A) Original dataset. (B) After kernel PCA.
Full-size DOI: 10.7717/peerjcs.515/fig-8

Table 4 Performance evaluation of the proposed DLmodels in comparison withMLmethods and
benchmark.

Model Training set Test set

ACC Sens. Spec. ACC Sens. Spec. AUC MCC ACC-Ext

FFDNN 100 96.78 98.11 97.11 97.35 98.42 97.7 95.55 96.5
CNN 100 98.76 99.87 97.76 94.50 98.31 99.71 92.85 97.0
XGBoost 98.67 96.23 92.34 94.32 92.34 95.66 93.22 83.44 92.00
SVM 99.32 98.30 95.62 95.94 95.30 96.62 93.3 93.92 93.90
RF 99.47 90.21 97.15 93.61 90.21 97.15 93.68 87.46 92.04

Notes.
ACC, Overall accuracy; Sens, Sensitivity scores; Spec, Specificity scores; MCC, Matheow correlation coefficient; AUC,
Area under the curves; ACC-Ext, Overall accuracy on external dataset.

score of 94.50% and a specificity score of 98.31%. The obtained area under the curve of the
CNN model was 99.71%. As seen in Table 4, the classification accuracy with an external
dataset was 0.97 overall with the CNN model and 0.965 with FFDNN.

Table 4 summarizes the performance of the CNN and FFDNN models using 10-fold
cross-validation and an independent external validation. For the dimensionality reduction
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task, different kernels were tested. Cosine and polynomial kernel extracted the best features
for the CNN and the FFDNN models, respectively. The CNN model achieved an overall
accuracy of 97.76%, a sensitivity score of 94.5% and a specificity score of 98.31%.The
FFDNN model achieved an overall accuracy of 97.11%, sensitivity value of 97.35%, and
specificity value of 98.42%. Following Tropsha’s (2010) best practices for validating a
QSAR predictive model, an independent external dataset was acquired from Drugbank
(http://www.drugbank.ca/) (Drugbank, 2005) with 86 BBB+ instances. The overall accuracy
achieved on the external dataset was 97.0% for the CNN model and 96.5% for the FFDNN
model.

Comparative results: DL vs. ML models
To validate the performance of the proposed deep learning approach in comparison with
traditional machine learning models, we run few experiments with three widely used
machine learning models. We run the experiments under the same configuration and
environment to ensure a fare comparison. The same descriptors set extracted by KPCA is
used for the deep learning and machine learning models. We also compare our results with
the benchmark study byWang et al. (2018).

Three additional ML models were developed: XGboost, SVM, and RF. For the SVM
model, the main goal of the kernel was to separate classes in the higher dimension. A
non-linear sigmoid kernel was employed. SVM achieved an overall accuracy of 95.94, a
sensitivity of 95.30%, and a specificity of 96.62%. XGboost achieved an overall accuracy
of 94.32, a sensitivity of 92.34%, and a specificity of 95.66%. RF generates an ensemble of
decision trees, which is usually trained with a ‘‘bagging method’’. RF employs randomness
when searching for features among a random subset of features, which ensures diversity in
choosing features. The number of estimators was set to 10, which indicates the number of
trees in the forest. The maximum feature parameter was set to ‘‘auto’’. RF scored 93.61%
in overall accuracy, 90.21% in sensitivity, and 97.15%in specificity.

XGBoost is an ensemble learning algorithm that stands for extreme gradient boosting.
Ensemble learning has the advantage of using the prediction capabilities of multiple
learning models. XGBoost uses a gradient descent algorithm to minimize loss when adding
new models (Wang, Deng & Wang, 2020). Parameters such as the tree booster and number
of features were set to default. The number of threads was set to the maximum available.
XGboost achieved an overall accuracy of 94.32%, a sensitivity of 92.34%, and a specificity
of 95.66%.

Figure 9 illustrated the comparison between the deep learning approach with
the traditional machine learning models. However, the FFDNN and CNN models
outperformed the three studied models in all accuracy measures.

AUC is used in validating the performance of binary classification models. AUC shows
the classifiers ability to separate compounds classified as BBB+ or BBB−. The closest to
the top left corner near 1, the more the model is capable of separating the two class labels.
The proposed DL models achieved an AUC score of 98.6% for the FFDNN model and
98.9% for the CNNmodel. The ROC plots of the DL models are shown in Fig. 10, with the
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Figure 9 DL vs. MLmodels.
Full-size DOI: 10.7717/peerjcs.515/fig-9

Figure 10 ROC plots for DLmodels. (A) ROC Enhanced FFDNN. (B) ROC CNN.
Full-size DOI: 10.7717/peerjcs.515/fig-10

FFDNN ROC demonstrating the best performance. The ROC graphs are plotted near the
top left corner, which indicates a better balance between sensitivity and specificity.

The AUC scores of SVM, XGBoost and RF models are 93.3%, 94.2% and 93.8%,
respectively as shown in Fig. 11. SVM demonstrated similar AUC score as RF and XGBoost
although it scored a higher overall accuracy. This is an indication of a high rate of false
positive.

DISCUSSION
In this section, we discuss the main finding of the proposed enhanced FFDNN model
and the CNN model. delivered adequate results. Many steps were taken to prepare the
data for the experiments including employing SMOTE and KPCA. Based on the results
obtained by our FFDNN and CNN models, several valuable observations have been made.

Alsenan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.515 19/26

https://peerj.com
https://doi.org/10.7717/peerjcs.515/fig-9
https://doi.org/10.7717/peerjcs.515/fig-10
http://dx.doi.org/10.7717/peerj-cs.515


Figure 11 ROC plots for MLmodels. (A) ROC XGboost. (B) ROC SVM. C) ROC RF.
Full-size DOI: 10.7717/peerjcs.515/fig-11

Employing KPCA significantly affected the classifiers performance positively as many
redundant descriptors were removed and only valuable ones were retained. Compared
with other feature extraction and feature selection methods from the literature, KPCA
delivered adequate results.

The SMOTE resampling technique has been tested in previous BBB permeability studies
using the same benchmark dataset. However, the benchmark study didn’t reach a specificity
score higher than 89.9% (Wang et al., 2018). As for the proposed DL models, SMOTE
was able to transform the imbalanced BBB dataset by oversampling the minority class.
Although the duplicated records from the minority class did not provide new information,
they preserved the model’s ability to predict both class labels. SMOTE achieved a specificity
value of 98.42% and 98.31% for the FFDNN and CNNmodels, respectively. This confirms
that the right hyper-parameters for the classification model have great influence on its
performance. SMOTE and KPCA played an essential role in predicting the negative class
(i.e., compounds with low permeability) without compromising the accuracy scores when
predicting the positive class. The proposed models therefore achieved high accuracy across
all measures, which indicates a promising lead in BBB classification research.
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By a largemargin, the FFDNN and CNNmodels outperformed those used in all previous
BBB permeability studies in the literature in terms of specificity score. The proposed DL
models reached a higher overall accuracy than the benchmark dataset by Wang et al.
(2018). However, evaluating the model’s performance with unseen data provides some
insight into its ability to generalize to new data and highlights any signs of overfitting. The
proposed CNN model achieved a higher overall accuracy score of 97.00% on the external
dataset, compared to that byWang et al. (2018). Both DLmodels obtained higher accuracy,
specificity, and sensitivity scores compared with other ML algorithms in the literature,
such as decision trees and SVM models. Of the three ML models, SVM achieved the most
consistent scores and the highest accuracy, sensitivity, and AUC. When comparing the
CNN and FFDNNmodels, the CNN achieved the highest overall accuracy but the FFDNN
achieved the best balance of sensitivity and specificity.

One of the main issues this study aimed to investigate is how to enhance the prediction
of compounds with low permeability. The proposed enhanced FFDNN and CNN models
reached specificity scores of 98.42% and 98.31%, respectively. The gained improvement
in specificity scores achieves one of the study’s main goals which is to minimize high
false positive rates. False positives occur when the model achieves high BBB+ predictions
accuracy only without regard to the falsely classified positives. The proposed DL models
were consistent in predicting BBB+ and BBB−classes compared to SVM, RF, and XGboost
models. The obtained area under the curve of the CNN model indicates that the model
was successful in separating the two class labels based on the learned features. The CNN
model was able to outperform the best consensus model by Wang et al. (2018), which was
computed by adding extra compounds from DrugBank, without the addition of extra
compounds from DrugBank.

CONCLUSION
BBB permeability is a complex problem that requires a deep understanding of various
dataset characteristics. The construction of the proposed DL models focused on addressing
three main issues: class imbalance, high dimensionality, and high false positive rates
resulting from high sensitivity and low specificity scores. This research shed light on the
importance of resolving issues present in a BBB dataset before applying the classification
task, with a specific focus on exploring a DL approach to solve the BBB permeability
problem.

This study contributes to the body of knowledge by addressing a significant gap in many
BBB permeability models, which is the ability to predict compounds with low permeability.
This reoccurring issue is overlooked, resulting in high false positive rates. The proposed
DL models delivered consistently high scores in all measures and surpassed state-of-the-art
models, such as SVM, RF, and XGboost, in terms of specificity scores and overall accuracy.

We encourage future studies to investigate other non-linear dimensionality reduction
techniques able to fully exploit the different characteristics of QSAR descriptors and
fingerprints. Future studies may also focus on projecting back feature extraction techniques
to identify which descriptors were highly influential to the prediction task.
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