X1ibScm

SCM Language X Interface
Version 53

Aubrey Jaffer

This manual documents the X Interface for SCM Language (version 5f3, February 2020).
Copyright (©) 1999 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the author.

Table of Contents

1 XlibScm.... 1
2 Display and Screens............................. 2
3 Drawables............ 6
3.1 Windows and Pixmaps ... 6
3.2 Window Attributes......... ... i 8
3.3 Window Properties and Visibility....................o..L. 13
4 Graphics Context 16
B CUISOT ... 23
6 Colormap................ ... 24
7 Rendering.............. 28
8 Imagescooiiiiii 31
9 Event..... 32
Indexes 37
Procedure and Macro Index........... .. i 37
Variable Index. ... 37

Concept Index vviii i e 38

1 XlibScm

Xl1ibScm is a SCM interface to X. The X Window System is a network-transparent window
system that was designed at MIT. SCM is a portable Scheme implementation written in C.
The interface can be compiled into SCM or, on those platforms supporting dynamic linking,
compiled separately and loaded with (require ’X1ib).

The most recent information about SCM can be found on SCM’s WWW home page:
http://people.csail.mit.edu/jaffer/SCM

Much of this X documentation is dervied from:
Xlib - C Language X Interface
X Consortium Standard
X Version 11, Release 6.3

The X Window System is a trademark of X Consortium, Inc.
TekHVC is a trademark of Tektronix, Inc.
Copyright (C) 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software without
prior written authorization from the X Consortium.

Copyright (C) 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright (C) 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in all copies,
and that the names of Digital and Tektronix not be used in in advertising or publicity
pertaining to this documentation without specific, written prior permission. Digital and
Tektronix makes no representations about the suitability of this documentation for any
purpose. It is provided “as is” without express or implied warranty.

http://people.csail.mit.edu/jaffer/SCM

2 Display and Screens

x:open-display display-name [Function]
display-name Specifies the hardware display name, which determines the display and
communications domain to be used. On a POSIX-conformant system, if the display-
name is #f, it defaults to the value of the DISPLAY environment variable.

The encoding and interpretation of display-name is implementation-dependent. On
POSIX-conformant systems, the display-name or DISPLAY environment variable can
be a string in the format:

hostname :number.screen-number [Special Form]
hostname specifies the name of the host machine on which the display is phys-
ically attached. Follow the hostname with either a single colon (:) or a double
colon (::).
number specifies the number of the display server on that host machine. You
may optionally follow this display number with a period (.). A single CPU can
have more than one display. Multiple displays are usually numbered starting
with zero.

screen-number specifies the screen to be used on that server. Multiple screens
can be controlled by a single X server. The screen-number sets an internal
variable that can be accessed by using the x:default-screen procedure.

x:close display [Function]
display specifies the connection to the X server.

The x:close function closes the connection to the X server for the display specified
and destroys all windows, resource IDs (Window, Font, Pixmap, Colormap, Cursor,
and GContext), or other resources that the client has created on this display, unless
the close-down mode of the resource has been changed (see x: set-close-down-mode).
Therefore, these windows, resource IDs, and other resources should not be used again
or an error will be generated. Before exiting, you should call x:close-display or x:flush
explicitly so that any pending errors are reported.

x:protocol-version display [Function]
Returns cons of the major version number (11) of the X protocol associated with the
connected display and the minor protocol revision number of the X server.

x:server-vendor display [Function]
Returns a string that provides some identification of the owner of the X server im-
plementation. The contents of the string are implementation-dependent.

x:vendor-release display [Function]
Returns a number related to a vendor’s release of the X server.

A display consists of one or more Screens. Each screen has a root-window, default-graphics-
context, and colormap.

Chapter 2: Display and Screens 3

:screen-count display [Function]
Returns the number of available screens.

:default-screen display [Function]
Returns the default screen number specified by the x:open-display function. Use
this screen number in applications which will use only a single screen.

:root-window display screen-number [Function]

:root-window display [Function]
screen-number, if givien, specifies the appropriate screen number on the host server.
Otherwise the default-screen for display is used.

Returns the root window for the specified screen-number. Use x:root-window for
functions that need a drawable of a particular screen or for creating top-level windows.

:root-window window [Function]
Returns the root window for the specified window’s screen.

:default-colormap display screen-number [Function]

:default-colormap display [Function]

:default-colormap window [Function]
Returns the default colormap of the specified screen.

:default-ccc display screen-number [Function]

:default-ccc display [Function]

:default-ccc window [Function]
Returns the default Color-Conversion-Context (ccc) of the specified screen.

:default-gc display screen-number [Function]

:default-gc display [Function]

:default-gc window [Function]
Returns the default graphics-context of the specified screen.

:screen-depths display screen-number [Function]

:screen-depths display [Function]

:screen-depths window [Function]

Returns an array of depths supported by the specified screen.

The Visual type describes possible colormap depths and arrangements.

MMM

™

:default-visual display screen-number [Function]

:default-visual display [Function]

:default-visual window [Function]
Returns the default Visual type for the specified screen.

:make-visual display depth class [Function]

:make-visual window depth class [Function]

The integer depth specifies the number of bits per pixel. The class argument specifies
one of the possible visual classes for a screen:

e x:Static-Gray

Chapter 2: Display and Screens

x:Static-Color
x:True-Color
x:Gray-Scale
x:Pseudo-Color
x:Direct-Color

X:make-visual returns a visual type for the screen specified by display or window if
successful; #f if not.

x:visual-class visual
X:visual-class screen
x:visual-class display

Returns the (integer) visual class of its argument.

x:visual-geometry visual

x:visual-geometry screen

x:visual-geometry display
Returns a list of the:

x:screen-cells display screen-number

red_mask
green_mask
blue_mask

colormap_size

x:screen-cells display
x:screen-cells window

Returns the number of entries in the default colormap.

x:screen-depth display screen-number
Returns the depth of the root window of the specified screen.

x:screen-depth display
x:screen-depth window
x:screen-depth visual

Returns the depth of argument.

[Function]
[Function]
[Function]

[Function]
[Function]
[Function]

[Function]
[Function]
[Function]

[Function]

[Function]
[Function]
[Function]

The depth of a window or pixmap is the number of bits per pixel it has. The depth
of a graphics context is the depth of the drawables it can be used in conjunction with
graphics output.

x:screen-size display screen-number

x:screen-size display
x:screen-size window

Returns a list of integer height and width of the screen in pixels.

x:screen-dimensions display screen-number
x:screen-dimensions display
x:screen-dimensions window

Returns a list of integer height and width of the screen in millimeters.

[Function]
[Function]
[Function]

[Function]
[Function]
[Function]

:screen-white display screen-number
:screen-white display
:screen-white window

Returns the white pixel value of the specified screen.

:screen-black display screen-number
:screen-black display
:screen-black window

Returns the black pixel value of the specified screen.

[Function]
[Function]
[Function]

[Function]
[Function]
[Function]

3 Drawables

A Drawable is either a window or pixmap.

3.1 Windows and Pixmaps

x:create-window window position size border-width depth class [Function]
visual field-name value . . .
Creates and returns an unmapped Input-Output subwindow for a specified parent
window and causes the X server to generate a CreateNotify event. The created
window is placed on top in the stacking order with respect to siblings. Any part of
the window that extends outside its parent window is clipped. The border-width for
an x:Input-Only window must be zero.

The coordinate system has the X axis horizontal and the Y axis vertical with the
origin [0, 0] at the upper-left corner. Coordinates are integral, in terms of pixels, and
coincide with pixel centers. Each window and pixmap has its own coordinate system.
For a window, the origin is inside the border at the inside, upper-left corner.

Class can be x:Input-Output, x:Input-Only, or x:Copy-From-Parent. For class
x:Input-Output, the visual type and depth must be a combination supported for the
screen. The depth need not be the same as the parent, but the parent must not be a
window of class x:Input-Only. For an x:Input-Only window, the depth must be zero,
and the visual must be one supported by the screen.

The returned window will have the attributes specified by field-names and value.

x:create-window window position size border-width border [Function]
background
The returned window inherits its depth, class, and visual from its parent. All other
window attributes, except background and border, have their default values.

x:create-pixmap drawable size depth [Function]

x:create-pixmap display size depth [Function]
size is a list, vector, or pair of nonzero integers specifying the width and height desired
in the new pixmap.

x:create-pixmap returns a new pixmap of the width, height, and depth specified. It is
valid to pass an x:Input-Only window to the drawable argument. The depth argument
must be one of the depths supported by the screen of the specified drawable.

x:close window [Function]
Destroys the specified window as well as all of its subwindows and causes the X server
to generate a DestroyNotify event for each window. The window should not be used
again. If the window specified by the window argument is mapped, it is unmapped
automatically. The ordering of the DestroyNotify events is such that for any given
window being destroyed, DestroyNotify is generated on any inferiors of the window
before being generated on the window itself. The ordering among siblings and across
subhierarchies is not otherwise constrained. If the window you specified is a root
window, an error is signaled. Destroying a mapped window will generate x:Expose
events on other windows that were obscured by the window being destroyed.

Chapter 3: Drawables 7

x:close pixmap [Function]
Deletes the association between the pixmap and its storage. The X server frees the
pixmap storage when there are no references to it.

x:window-geometry drawable [Function]
Returns a list of:

coordinates
list of x and y coordinates that define the location of the drawable. For
a window, these coordinates specify the upper-left outer corner relative
to its parent’s origin. For pixmaps, these coordinates are always zero.

size list of the drawable’s dimensions (width and height). For a window,
these dimensions specify the inside size, not including the border.

border-width
The border width in pixels. If the drawable is a pixmap, this is zero.

depth The depth of the drawable (bits per pixel for the object).

x:window-geometry-set! window field-name value . . . [Function]
Changes the Configuration components specified by field-names for the specified
window.

These are the attributes settable by x:window-geometry-set!. That these attributes are
encoded by small integers — just like those of the next section. Be warned therefore that
confusion of attribute names will likely not signal errors, just cause mysterious behavior.

x:CWX [Attribute]
x:CWY [Attribute]
x:CW-Width [Attribute]
x:CW-Height [Attribute]

The x:CWX and x:CYY members are used to set the window’s x and y coordinates,
which are relative to the parent’s origin and indicate the position of the upper-left
outer corner of the window. The x:CW-Width and x:CW-Height members are used
to set the inside size of the window, not including the border, and must be nonzero.
Attempts to configure a root window have no effect.

If a window’s size actually changes, the window’s subwindows move according to their
window gravity. Depending on the window’s bit gravity, the contents of the window
also may be moved

x:CW-Border-Width [Attribute]
The integer x:CW-Border-Width is used to set the width of the border in pixels. Note
that setting just the border width leaves the outer-left corner of the window in a fixed
position but moves the absolute position of the window’s origin. It is an error to set
the border-width attribute of an InputOnly window nonzero.

x:CW-Sibling [Attribute]
The sibling member is used to set the sibling window for stacking operations.

Chapter 3: Drawables 8

x:CW-Stack-Mode [Attribute]
The x:CW-Stack-Mode member is used to set how the window is to be restacked and
can be set to x:Above, x:Below, x:Top-If, x:Bottom-If, or x:Opposite.

If a sibling and a stack-mode are specified, the window is restacked as follows:

x:Above The window is placed just above the sibling.

x:Below The window is placed just below the sibling.

x:Top-If If the sibling occludes the window, the window is placed at the top of the stack.

x:Bottom-If
If the window occludes the sibling, the window is placed at the bottom of the
stack.

x:0pposite
If the sibling occludes the window, the window is placed at the top of the stack.
If the window occludes the sibling, the window is placed at the bottom of the
stack.

If a stack-mode is specified but no sibling is specified, the window is restacked as follows:
x:Above The window is placed at the top of the stack.

x:Below The window is placed at the bottom of the stack.

x:Top-If If any sibling occludes the window, the window is placed at the top of the stack.

x:Bottom-If
If the window occludes any sibling, the window is placed at the bottom of the
stack.

x:0pposite
If any sibling occludes the window, the window is placed at the top of the stack.
If the window occludes any sibling, the window is placed at the bottom of the
stack.

3.2 Window Attributes

x:window-set! window field-name value . .. [Function]
Changes the components specified by field-names for the specified window. The
restrictions are the same as for x: create-window. The order in which components are
verified and altered is server dependent. If an error occurs, a subset of the components
may have been altered.

The x:create-window and x:window-set! procedures take five and one argument (respec-
tively) followed by pairs of arguments, where the first is one of the property-name symbols
(or its top-level value) listed below; and the second is the value to associate with that

property.

x:CW-Back-Pixmap [Attribute]
Sets the background pixmap of the window to the specified pixmap. The background
pixmap can immediately be freed if no further explicit references to it are to be made.

Chapter 3: Drawables 9

"o

If x:Parent-Relative is specified, the background pixmap of the window’s parent is
used, or on the root window, the default background is restored. It is an error to
perform this operation on an x:Input-Only window. If the background is set to #f or
None, the window has no defined background.

:CW-Back-Pixel [Attribute]
Sets the background of the window to the specified pixel value. Changing the back-
ground does not cause the window contents to be changed. It is an error to perform
this operation on an x:Input-Only window.

:CW-Border-Pixmap [Attribute]
Sets the border pixmap of the window to the pixmap you specify. The border pixmap
can be freed if no further explicit references to it are to be made. If you specify x:Copy-
From-Parent, a copy of the parent window’s border pixmap is used. It is an error to
perform this operation on an x:Input-Only window.

:CW-Border-Pixel [Attribute]
Sets the border of the window to the pixel value. It is an error to perform this
operation on an x:Input-Only window.

:CW-Bit-Gravity [Attribute]

:CW-Win-Gravity [Attribute]

The bit gravity of a window defines which region of the window should be retained
when an x:Input-Output window is resized. The default value for the bit-gravity
attribute is x:Forget-Gravity. The window gravity of a window allows you to define
how the x:Input-Output or x:Input-Only window should be repositioned if its parent
is resized. The default value for the win-gravity attribute is x:North-West-Gravity.

If the inside width or height of a window is not changed and if the window is moved
or its border is changed, then the contents of the window are not lost but move with
the window. Changing the inside width or height of the window causes its contents to
be moved or lost (depending on the bit-gravity of the window) and causes children to
be reconfigured (depending on their win-gravity). For a change of width and height,
the (x, y) pairs are defined:

Gravity Direction Coordinates
x:North-West-Gravity (0, 0)
x:North-Gravity (Wldth/2 0)
x:North-East-Gravity (Width, 0)

x: West-Gravity (0, Height/2)
x:Center-Gravity (Width/2, Height/2)
x:Bast-Gravity (Width, Height/2)
x:South-West-Gravity (0, Height)
x:South-Gravity (Width/2, Height)

x:South-East-Gravity (Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding
pair defines the change in position of each pixel in the window. When a window
with one of these win-gravities has its parent window resized, the corresponding pair

Chapter 3: Drawables 10

defines the change in position of the window within the parent. When a window is
so repositioned, a x:Gravity-Notify event is generated (see section 10.10.5).

A bit-gravity of x:Static-Gravity indicates that the contents or origin should not move
relative to the origin of the root window. If the change in size of the window is coupled
with a change in position (x, y), then for bit-gravity the change in position of each
pixel is (-x, -y), and for win-gravity the change in position of a child when its parent
is so resized is (-x, -y). Note that x:Static-Gravity still only takes effect when the
width or height of the window is changed, not when the window is moved.

A bit-gravity of x:Forget-Gravity indicates that the window’s contents are always dis-
carded after a size change, even if a backing store or save under has been requested.
The window is tiled with its background and zero or more x:Expose events are gener-
ated. If no background is defined, the existing screen contents are not altered. Some X
servers may also ignore the specified bit-gravity and always generate x:Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity.
A server is permitted to ignore the specified bit-gravity and use x:Forget-Gravity
instead.

A win-gravity of x:Unmap-Gravity is like x:North-West-Gravity (the window is
not moved), except the child is also unmapped when the parent is resized, and an
x:Unmap-Notify event is generated.

x:CW-Backing-Store [Attribute]
Some implementations of the X server may choose to maintain the contents of x:Input-
Output windows. If the X server maintains the contents of a window, the off-screen
saved pixels are known as backing store. The backing store advises the X server on
what to do with the contents of a window. The backing-store attribute can be set to
x:Not-Useful (default), x:When-Mapped, or x:Always. A backing-store attribute of
x:Not-Useful advises the X server that maintaining contents is unnecessary, although
some X implementations may still choose to maintain contents and, therefore, not
generate x:Expose events. A backing-store attribute of x:When-Mapped advises the
X server that maintaining contents of obscured regions when the window is mapped
would be beneficial. In this case, the server may generate an x:Expose event when the
window is created. A backing-store attribute of x:Always advises the X server that
maintaining contents even when the window is unmapped would be beneficial. Even
if the window is larger than its parent, this is a request to the X server to maintain
complete contents, not just the region within the parent window boundaries. While
the X server maintains the window’s contents, x:Expose events normally are not
generated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions
obscured by noninferior windows are included in the destination of graphics requests
(and source, when the window is the source). However, regions obscured by inferior
windows are not included.

x:CW-Backing-Planes [Attribute]
x:CW-Backing-Pixel [Attribute]
You can set backing planes to indicate (with bits set to 1) which bit planes of an
x:Input-Output window hold dynamic data that must be preserved in backing store

Chapter 3: Drawables 11

and during save unders. The default value for the backing-planes attribute is all bits
set to 1. You can set backing pixel to specify what bits to use in planes not covered
by backing planes. The default value for the backing-pixel attribute is all bits set to
0. The X server is free to save only the specified bit planes in the backing store or
the save under and is free to regenerate the remaining planes with the specified pixel
value. Any extraneous bits in these values (that is, those bits beyond the specified
depth of the window) may be simply ignored. If you request backing store or save
unders, you should use these members to minimize the amount of off-screen memory
required to store your window.

x:CW-0Override-Redirect [Attribute]
To control window placement or to add decoration, a window manager often needs to
intercept (redirect) any map or configure request. Pop-up windows, however, often
need to be mapped without a window manager getting in the way. To control whether
an x:Input-Output or x:Input-Only window is to ignore these structure control facil-
ities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this win-
dow should override a x:Substructure-Redirect-Mask on the parent. You can set the
override-redirect flag to #t or #f (default). Window managers use this information
to avoid tampering with pop-up windows.

x:CW-Save-Under [Attribute]
Some server implementations may preserve contents of x:Input-Output windows under
other x:Input-Output windows. This is not the same as preserving the contents of a
window for you. You may get better visual appeal if transient windows (for example,
pop-up menus) request that the system preserve the screen contents under them, so
the temporarily obscured applications do not have to repaint.

You can set the save-under flag to True or False (default). If save-under is True, the
X server is advised that, when this window is mapped, saving the contents of windows
it obscures would be beneficial.

x:CW-Event-Mask [Attribute]
The event mask defines which events the client is interested in for this x:Input-Output
or x:Input-Only window (or, for some event types, inferiors of this window). The event
mask is the bitwise inclusive OR of zero or more of the valid event mask bits. You can
specify that no maskable events are reported by setting x:No-Event-Mask (default).

The following table lists the event mask constants you can pass to the event-mask
argument and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

x:No-Event-Mask No events wanted
x:Key-Press-Mask Keyboard down events wanted
x:Key-Release-Mask Keyboard up events wanted
x:Button-Press-Mask Pointer button down events wanted
x:Button-Release-Mask Pointer button up events wanted
x:Enter-Window-Mask Pointer window entry events wanted

x:Leave-Window-Mask Pointer window leave events wanted

Chapter 3: Drawables

x:Pointer-Motion-Mask
x:Pointer-Motion-Hint-Mask

x:Buttonl-Motion-Mask
x:Button2-Motion-Mask
x:Button3-Motion-Mask
x:Button4-Motion-Mask
x:Buttonb-Motion-Mask
x:Button-Motion-Mask
x:Keymap-State-Mask

x:Exposure-Mask
x:Visibility-Change-Mask
x:Structure-Notify-Mask
x:Resize-Redirect-Mask
x:Substructure-Notify-Mask
x:Substructure-Redirect-Mask
x:Focus-Change-Mask
x:Property-Change-Mask
x:Colormap-Change-Mask
x:Owner-Grab-Button—Mask

x:CW-Dont-Propagate

12

Pointer motion events wanted

If x:Pointer-Motion-Hint-Mask is selected in
combination with one or more motion-masks,
the X server is free to send only one x:Motion-
Notify event (with the is_hint member of
the X:Pointer-Moved-Event structure set to
x:Notify-Hint) to the client for the event win-
dow, until either the key or button state
changes, the pointer leaves the event window,
or the client calls X:Query-Pointer or X:Get-
Motion-Events. The server still may send
x:Motion-Notify events without is_hint set to
x:Notify-Hint.

Pointer motion while button 1 down

Pointer motion while button 2 down

Pointer motion while button 3 down

Pointer motion while button 4 down

Pointer motion while button 5 down

Pointer motion while any button down
Keyboard state wanted at window entry and fo-
cus in

Any exposure wanted

Any change in visibility wanted

Any change in window structure wanted
Redirect resize of this window

Substructure notification wanted

Redirect structure requests on children

Any change in input focus wanted

Any change in property wanted

Any change in colormap wanted

Automatic grabs should activate with
owner_events set to True

[Attribute]

The do-not-propagate-mask attribute defines which events should not be propagated
to ancestor windows when no client has the event type selected in this x:Input-Output
or x:Input-Only window. The do-not-propagate-mask is the bitwise inclusive OR of
zero or more of the following masks: x:Key-Press, x:Key-Release, x:Button-Press,

x:Button-Release, x:Pointer-Motion,

x:Buttonl1Motion, x:Button2Motion,

x:Button3Motion, x:Button4dMotion, x:Button5Motion, and x:Button-Motion. You
can specify that all events are propagated by setting x:No-Event-Mask (default).

x:CW-Colormap

[Attribute]

The colormap attribute specifies which colormap best reflects the true colors of the
x:Input-Output window. The colormap must have the same visual type as the window.
X servers capable of supporting multiple hardware colormaps can use this information,

Chapter 3: Drawables 13

and window managers can use it for calls to X:Install-Colormap. You can set the
colormap attribute to a colormap or to x:Copy-From-Parent (default).

If you set the colormap to x:Copy-From-Parent, the parent window’s colormap is
copied and used by its child. However, the child window must have the same visual
type as the parent. The parent window must not have a colormap of x:None. The
colormap is copied by sharing the colormap object between the child and parent, not
by making a complete copy of the colormap contents. Subsequent changes to the
parent window’s colormap attribute do not affect the child window.

x:CW-Cursor [Attribute]
The cursor attribute specifies which cursor is to be used when the pointer is in the

x:Input-Output or x:Input-Only window. You can set the cursor to a cursor or x:None
(default).

If you set the cursor to x:None, the parent’s cursor is used when the pointer is in the
x:Input-Output or x:Input-Only window, and any change in the parent’s cursor will
cause an immediate change in the displayed cursor. On the root window, the default
cursor is restored.

x:window-ref window field-name . .. [Function]
Returns a list of the components specified by field-names for the specified window.
Allowable field-names are a subset of those for x:window-set!:

o x:CW-Back-Pixel

o x:CW-Bit-Gravity

e x:CW-Win-Gravity

o x:CW-Backing-Store
o x:CW-Backing-Planes
o x:CW-Backing-Pixel
o x:CW-Override-Redirect
o x:CW-Save-Under

o x:CW-Event-Mask

o x:CW-Dont-Propagate
e x:CW-Colormap

3.3 Window Properties and Visibility

x:get-window-property window property [Function]
Returns the (string or list of numbers) value of property of window.

x:get-window-property window property #t [Function]
Removes and returns the (string or list of numbers) value of property of window.

x:list-properties window [Function]
Returns a list of the properties (strings) defined for window.

Chapter 3: Drawables 14

In X parlance, a window which is hidden even when not obscured by other windows is
unmapped; one which shows is mapped. It is an unfortunate name-collision with Scheme,
and is ingrained in the attribute names.

x:map-window window [Function]
Maps the window and all of its subwindows that have had map requests. Mapping
a window that has an unmapped ancestor does not display the window but marks it
as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and
will be visible on the screen if it is not obscured by another window. This function
has no effect if the window is already mapped.

If the override-redirect of the window is False and if some other client has selected
x:Substructure-Redirect-Mask on the parent window, then the X server generates
a MapRequest event, and the x:map-window function does not map the window.
Otherwise, the window is mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the
X server tiles the window with its background. If the window’s background is unde-
fined, the existing screen contents are not altered, and the X server generates zero
or more x:Expose events. If backing-store was maintained while the window was un-
mapped, no x:Expose events are generated. If backing-store will now be maintained,
a full-window exposure is always generated. Otherwise, only visible regions may be
reported. Similar tiling and exposure take place for any newly viewable inferiors.

If the window is an Input-Output window, x:map-window generates x:Expose events
on each Input-Output window that it causes to be displayed. If the client maps and
paints the window and if the client begins processing events, the window is painted
twice. To avoid this, first ask for x:Expose events and then map the window, so
the client processes input events as usual. The event list will include x:Expose for
each window that has appeared on the screen. The client’s normal response to an
x:Expose event should be to repaint the window. This method usually leads to simpler
programs and to proper interaction with window managers.

x :map-subwindows window [Function]
Maps all subwindows of a specified window in top-to-bottom stacking order. The X
server generates x:Expose events on each newly displayed window. This may be much
more efficient than mapping many windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each
window.

X :unmap-window window [Function]
Unmaps the specified window and causes the X server to generate an UnmapNotify
event. If the specified window is already unmapped, x:unmap-window has no effect.
Normal exposure processing on formerly obscured windows is performed. Any child
window will no longer be visible until another map call is made on the parent. In
other words, the subwindows are still mapped but are not visible until the parent is
mapped. Unmapping a window will generate x:Expose events on windows that were
formerly obscured by it.

15

X :unmap-subwindows window [Function]
Unmaps all subwindows for the specified window in bottom-to-top stacking order.
It causes the X server to generate an UnmapNotify event on each subwindow and
x:Expose events on formerly obscured windows. Using this function is much more
efficient than unmapping multiple windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each
window.

16

4 Graphics Context

Most attributes of graphics operations are stored in GCs. These include line width, line
style, plane mask, foreground, background, tile, stipple, clipping region, end style, join style,
and so on. Graphics operations (for example, drawing lines) use these values to determine
the actual drawing operation.

x:create-gc drawable field-name value . . . [Function]
Creates and returns graphics context. The graphics context can be used with any
destination drawable having the same root and depth as the specified drawable.

x:gc-set! graphics-context field-name value . . . [Function]
Changes the components specified by field-names for the specified graphics-context.
The restrictions are the same as for x: create-gc. The order in which components are
verified and altered is server dependent. If an error occurs, a subset of the components
may have been altered.

x:copy-gc-fields! gcontext-src gcontext-dst field-name . . . [Function]
Copies the components specified by field-names from gcontext-src to gcontext-dst.
Gceontext-src and gcontext-dst must have the same root and depth.

x:gc-ref graphics-context field-name . . . [Function]
Returns a list of the components specified by field-names ... from the specified
graphics-context.

GC Attributes

Both x:create-gc and x:change-gc take one argument followed by pairs of arguments,
where the first is one of the property-name symbols (or its top-level value) listed below; and
the second is the value to associate with that property.

x:GC-Function [Attribute]
The function attributes of a GC are used when you update a section of a drawable
(the destination) with bits from somewhere else (the source). The function in a GC
defines how the new destination bits are to be computed from the source bits and
the old destination bits. x:G-Xcopy is typically the most useful because it will work
on a color display, but special applications may use other functions, particularly in
concert with particular planes of a color display. The 16 functions are:

x:G-Xclear 0

x:G-Xand (AND src dst)
x:G-Xand-Reverse (AND src (NOT dst))
x:G-Xcopy src

x:G-Xand-Inverted (AND (NOT src) dst)
x:G-Xnoop dst

x:G-Xxor (XOR src dst)

x:G-Xor (OR src dst)

x:G-Xnor (AND (NOT src) (NOT dst))

Chapter 4: Graphics Context 17

x:G-Xequiv (XOR (NOT src) dst)
x:G-Xinvert (NOT dst)
x:G-Xor-Reverse (OR src (NOT dst))
x:G-Xcopy-Inverted (NOT src)
x:G-Xor-Inverted (OR (NOT src) dst)
x:G-Xnand (OR (NOT src) (NOT dst))
x:G-Xset 1
x:GC-Plane-Mask [Attribute]

Many graphics operations depend on either pixel values or planes in a GC. The
planes attribute is an integer which specifies which planes of the destination are to be
modified, one bit per plane. A monochrome display has only one plane and will be
the least significant bit of the integer. As planes are added to the display hardware,
they will occupy more significant bits in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed
bitwise on corresponding bits of the pixels. That is, a Boolean operation is performed
in each bit plane. The plane-mask restricts the operation to a subset of planes.
x:Al1-Planes can be used to refer to all planes of the screen simultaneously. The
result is computed by the following:

(OR (AND (FUNC src dst) plane-mask) (AND dst (NOT plane-mask)))

Range checking is not performed on a plane-mask value. It is simply truncated to the
appropriate number of bits.

x:GC-Foreground [Attribute]

x:GC-Background [Attribute]
Range checking is not performed on the values for foreground or background. They
are simply truncated to the appropriate number of bits.

Note that foreground and background are not initialized to any values likely to be
useful in a window.

x:GC-Line-Width [Attribute]
The line-width is measured in pixels and either can be greater than or equal to one
(wide line) or can be the special value zero (thin line).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified,
device-dependent algorithm. There are only two constraints on this algorithm.

e If a line is drawn unclipped from [x1,y1] to [x2,y2] and if another line is drawn
unclipped from [x1+dx,y1+dy] to [x2+dx,y2+dy], a point [x,y] is touched by draw-
ing the first line if and only if the point [x+dx,y+dy] is touched by drawing the
second line.

e The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a wide line
drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style. It is recommended
that this property be true for thin lines, but this is not required. A line-width of zero

Chapter 4: Graphics Context 18

may differ from a line-width of one in which pixels are drawn. This permits the use of
many manufacturers’ line drawing hardware, which may run many times faster than
the more precisely specified wide lines.

In general, drawing a thin line will be faster than drawing a wide line of width
one. However, because of their different drawing algorithms, thin lines may not mix
well aesthetically with wide lines. If it is desirable to obtain precise and uniform
results across all displays, a client should always use a line-width of one rather than
a linewidth of zero.

x:GC-Line-Style [Attribute]
The line-style defines which sections of a line are drawn:

x:Line-Solid
The full path of the line is drawn.

x:Line-Double-Dash
The full path of the line is drawn, but the even dashes are filled differently
from the odd dashes (see fill-style) with x:Cap-Butt style used where even
and odd dashes meet.

x:Line-0n-0ff-Dash
Only the even dashes are drawn, and cap-style applies to all internal ends
of the individual dashes, except x:Cap-Not-Last is treated as x:Cap-Butt.

x:GC-Cap-Style [Attribute]
The cap-style defines how the endpoints of a path are drawn:

x:Cap-Not-Last
This is equivalent to x:Cap-Butt except that for a line-width of zero the
final endpoint is not drawn.

x:Cap-Butt
The line is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

x:Cap-Round
The line has a circular arc with the diameter equal to the line-width,
centered on the endpoint. (This is equivalent to x:Cap-Butt for line-
width of zero).

x:Cap-Projecting
The line is square at the end, but the path continues beyond the endpoint
for a distance equal to half the line-width. (This is equivalent to x:Cap-
Butt for line-width of zero).

x:GC-Join-Style [Attribute]
The join-style defines how corners are drawn for wide lines:

x:Join-Miter
The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a x:Join-Bevel join-style is used
instead.

Chapter 4: Graphics Context 19

x:Join-Round
The corner is a circular arc with the diameter equal to the line-width,
centered on the x:Join-point.

x:Join-Bevel
The corner has x:Cap-Butt endpoint styles with the triangular notch
filled.

x:GC-Fill-Style [Attribute]
The fill-style defines the contents of the source for line, text, and fill requests. For all
text and fill requests (for example, X:Draw-Text, X:Fill-Rectangle, X:Fill-Polygon,
and X:Fill-Arc); for line requests with linestyle x:Line-Solid (for example, X:Draw-
Line, X:Draw-Segments, X:Draw-Rectangle, X:Draw-Arc); and for the even dashes for
line requests with line-style x:Line-On-Off-Dash or x:Line-Double-Dash, the following

apply:
x:Fill-Solid
Foreground
x:Fill-Tiled
Tile
x:Fill-Opaque-Stippled
A tile with the same width and height as stipple, but with background

everywhere stipple has a zero and with foreground everywhere stipple has
a one

x:Fill-Stippled
Foreground masked by stipple

When drawing lines with line-style x:Line-Double-Dash, the odd dashes are controlled
by the fill-style in the following manner:

x:Fill-Solid

Background
x:Fill-Tiled

Same as for even dashes
x:Fill-Opaque-Stippled

Same as for even dashes
x:Fill-Stippled

Background masked by stipple

x:GC-Fill-Rule [Attribute]
The fill-rule defines what pixels are inside (drawn) for paths given in X:Fill-Polygon
requests and can be set to x:Even-Odd-Rule or x:Winding-Rule.

x:Even-0dd-Rule
A point is inside if an infinite ray with the point as origin crosses the path
an odd number of times.

Chapter 4: Graphics Context 20

x:Winding-Rule
A point is inside if an infinite ray with the point as origin crosses an un-
equal number of clockwise and counterclockwise directed path segments.

A clockwise directed path segment is one that crosses the ray from left to right as
observed from the point. A counterclockwise segment is one that crosses the ray from
right to left as observed from the point. The case where a directed line segment is
coincident with the ray is uninteresting because you can simply choose a different ray
that is not coincident with a segment.

For both x:Even-Odd-Rule and x:Winding-Rule, a point is infinitely small, and the
path is an infinitely thin line. A pixel is inside if the center point of the pixel is inside
and the center point is not on the boundary. If the center point is on the boundary,
the pixel is inside if and only if the polygon interior is immediately to its right (x
increasing direction). Pixels with centers on a horizontal edge are a special case
and are inside if and only if the polygon interior is immediately below (y increasing
direction).

x:GC-Tile [Attribute]
x:GC-Stipple [Attribute]

Mo

The tile/stipple represents an infinite two-dimensional plane, with the tile/stipple
replicated in all dimensions.

The tile pixmap must have the same root and depth as the GC, or an error results.
The stipple pixmap must have depth one and must have the same root as the GC, or
an error results. For stipple operations where the fill-style is x:Fill-Stippled but not
x:Fill-Opaque-Stippled, the stipple pattern is tiled in a single plane and acts as an
additional clip mask to be ANDed with the clip-mask. Although some sizes may be
faster to use than others, any size pixmap can be used for tiling or stippling.

:GC-Tile-Stip-X-Origin [Attribute]

:GC-Tile-Stip-Y-Origin [Attribute]
When the tile/stipple plane is superimposed on a drawable for use in a graphics op-
eration, the upper-left corner of some instance of the tile/stipple is at the coordinates
within the drawable specified by the tile/stipple origin. The tile/stipple origin is
interpreted relative to the origin of whatever destination drawable is specified in a
graphics request.

:GC-Font [Attribute]
The font to be used for drawing text.

:GC-Subwindow-Mode [Attribute]

You can set the subwindow-mode to x:Clip-By-Children or x:Include-Inferiors.

x:Clip-By-Children
Both source and destination windows are additionally clipped by all view-
able Input-Output children.

x:Include-Inferiors
Neither source nor destination window is clipped by inferiors. This
will result in including subwindow contents in the source and drawing

Chapter 4: Graphics Context 21

™

"o

™

through subwindow boundaries of the destination. The wuse of
x:Include-Inferiors on a window of one depth with mapped inferiors
of differing depth is not illegal, but the semantics are undefined by the
core protocol.

:GC-Graphics-Exposures [Attribute]

The graphics-exposure flag controls x:Graphics-Expose event generation for X:Copy-
Area and X:Copy-Plane requests (and any similar requests defined by extensions).

:GC-Clip-X-Origin [Attribute]
:GC-Clip-Y-Origin [Attribute]

The clip-mask origin is interpreted relative to the origin of whatever destination draw-
able is specified in a graphics request.

:GC-Clip-Mask [Attribute]

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to
a pixmap, it must have depth one and have the same root as the GC, or an error
results. If clip-mask is set to x:None, the pixels are always drawn regardless of the clip
origin. The clip-mask also can be set by calling X:Set-Region. Only pixels where the
clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has a bit set to 0. The clip-mask affects
all graphics requests. The clip-mask does not clip sources. The clip-mask origin is
interpreted relative to the origin of whatever destination drawable is specified in a
graphics request.

x:GC-Dash-0ffset [Attribute]

Defines the phase of the pattern, specifying how many pixels into the dash-list the
pattern should actually begin in any single graphics request. Dashing is continu-
ous through path elements combined with a join-style but is reset to the dash-offset
between each sequence of joined lines.

The unit of measure for dashes is the same for the ordinary coordinate system. Ide-
ally, a dash length is measured along the slope of the line, but implementations are
only required to match this ideal for horizontal and vertical lines. Failing the ideal
semantics, it is suggested that the length be measured along the major axis of the
line. The major axis is defined as the x axis for lines drawn at an angle of between
-45 and +45 degrees or between 135 and 225 degrees from the x axis. For all other
lines, the major axis is the y axis.

x:GC-Dash-List [Attribute]

There must be at least one element in the specified dash-list. The initial and alternat-
ing elements (second, fourth, and so on) of the dash-list are the even dashes, and the
others are the odd dashes. Each element specifies a dash length in pixels. All of the
elements must be nonzero. Specifying an odd-length list is equivalent to specifying
the same list concatenated with itself to produce an even-length list.

x:GC-Arc-Mode [Attribute]

The arc-mode controls filling in the X:Fill-Arcs function and can be set to x:Arc-Pie-
Slice or x:Arc-Chord.

x:Arc-Pie-Slice
The arcs are pie-slice filled.

x:Arc-Chord
The arcs are chord filled.

22

23

5 Cursor

x:create-cursor display shape [Function]
X provides a set of standard cursor shapes in a special font named cursor. Applica-
tions are encouraged to use this interface for their cursors because the font can be
customized for the individual display type. The shape argument specifies which glyph
of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The initial colors
of a cursor are a black foreground and a white background (see X:Recolor-Cursor).
The names of all cursor shapes are defined with the prefix XC: in x11.scm.

x:create-cursor source-font source-char mask-font mask-char fgc [Function]
bgc

Creates a cursor from the source and mask bitmaps obtained from the specified font
glyphs. The integer source-char must be a defined glyph in source-font. The integer
mask-char must be a defined glyph in mask-font. The origins of the source-char and
mask-char glyphs are positioned coincidently and define the hotspot. The source-
char and mask-char need not have the same bounding box metrics, and there is no
restriction on the placement of the hotspot relative to the bounding boxes.

X:create-cursor source-font source-char #f #f fgc bgc [Function]
If mask-font and mask-char are #f£, all pixels of the source are displayed.

X:create-cursor source-pixmap mask-pixmap fgc bgc origin [Function]
mask-pixmap must be the same size as the pixmap defined by the source-pixmap
argument. The foreground and background RGB values must be specified using
foreground-color and background-color, even if the X server only has a x:Static-Gray
or x:Gray-Scale screen. The hotspot must be a point within the source-pixmap.

X:Create-Cursor creates and returns a cursor. The foreground-color is used for the
pixels set to 1 in the source, and the background-color is used for the pixels set to
0. Both source and mask must have depth one but can have any root. The mask-
pixmap defines the shape of the cursor. The pixels set to 1 in mask-pixmap define
which source pixels are displayed, and the pixels set to 0 define which pixels are
ignored.

X:create-cursor source-pixmap #f fgc bgc origin [Function]
If mask-pixmap is #f£, all pixels of the source are displayed.

24

6 Colormap

A colormap maps pixel values to RGB color space values.

x:create-colormap window visual alloc-policy [Function]
window specifies the window on whose screen you want to create a colormap. visual
specifies a visual type supported on the screen. alloc-policy Specifies the colormap
entries to be allocated. You can pass X:Alloc-None or X:Alloc-All.

The X:Create-Colormap function creates and returns a colormap of the specified
visual type for the screen on which window resides. Note that window is used only
to determine the screen.

‘X:Gray-Scale’
‘X:Pseudo-Color’
‘X:Direct-Color’
The initial values of the colormap entries are undefined.

‘X:Static-Gray’

‘X:Static-Color’

‘X:True-Color’
The entries have defined values, but those values are specific to visual
and are not defined by X. The alloc-policy must be ‘X:Alloc-None’.

For the other visual classes, if alloc-policy is ‘X:Alloc-None’, the colormap initially
has no allocated entries, and clients can allocate them.

If alloc-policy is ‘X:Alloc-A11’, the entire colormap is allocated writable. The initial
values of all allocated entries are undefined.

‘X:Gray-Scale’

‘X:Pseudo-Color’
The effect is as if an XA1locColorCells call returned all pixel values from
zero to N - 1, where N is the colormap entries value in visual.

‘X:Direct-Color’
The effect is as if an XAllocColorPlanes call returned a pixel value of
zero and red_mask, green_mask, and blue_mask values containing the
same bits as the corresponding masks in the specified visual.

To create a new colormap when the allocation out of a previously shared colormap has
failed because of resource exhaustion, use:

x:copy-colormap-and-free colormap [Function]
Creates and returns a colormap of the same visual type and for the same screen
as the specified colormap. It also moves all of the client’s existing allocation from
the specified colormap to the new colormap with their color values intact and their
read-only or writable characteristics intact and frees those entries in the specified
colormap. Color values in other entries in the new colormap are undefined. If the
specified colormap was created by the client with alloc set to ‘X:Alloc-All’; the
new colormap is also created with ‘X:Al1loc-A11’, all color values for all entries are

Chapter 6: Colormap 25

copied from the specified colormap, and then all entries in the specified colormap are
freed. If the specified colormap was not created by the client with ‘X:Alloc-A11’,
the allocations to be moved are all those pixels and planes that have been allocated
by the client and that have not been freed since they were allocated.

A colormap maps pixel values to elements of the RGB datatype. An RGB is a list or vector
of 3 integers, describing the red, green, and blue intensities respectively. The integers are
in the range 0 - 65535.

x:alloc-colormap-cells colormap ncolors nplanes [Function]

x:alloc-colormap-cells colormap ncolors nplanes contiguous? [Function]
The X:Alloc-Color-Cells function allocates read/write color cells. The number of
colors, ncolors must be positive and the number of planes, nplanes nonnegative. If
ncolors and nplanes are requested, then ncolors pixels and nplane plane masks are
returned. No mask will have any bits set to 1 in common with any other mask or with
any of the pixels. By ORing together each pixel with zero or more masks, ncolors *
2~ nplanes distinct pixels can be produced. All of these are allocated writable by the
request.

‘x:Gray-Scale’

‘x :Pseudo-Color’
Fach mask has exactly one bit set to 1. If contiguous? is non-false and
if all masks are ORed together, a single contiguous set of bits set to 1 is
formed.

‘x:Direct-Color’
Each mask has exactly three bits set to 1. If contiguous? is non-false and
if all masks are ORed together, three contiguous sets of bits set to 1 (one
within each pixel subfield) is formed.

The RGB values of the allocated entries are undefined. X:Alloc-Color-Cells returns
a list of two uniform arrays if it succeeded or #f if it failed. The first array has the
pixels allocated and the second has the plane-masks.

x:alloc-colormap-cells colormap ncolors rgb [Function]

x:alloc-colormap-cells colormap ncolors rgb contiguous? [Function]
The specified ncolors must be positive; and rgb a list or vector of 3 nonnegative
integers. If ncolors colors, nreds reds, ngreens greens, and nblues blues are requested,
ncolors pixels are returned; and the masks have nreds, ngreens, and nblues bits set
to 1, respectively. If contiguous? is non-false, each mask will have a contiguous set of
bits set to 1. No mask will have any bits set to 1 in common with any other mask or
with any of the pixels.

Fach mask will lie within the corresponding pixel subfield. By ORing together sub-
sets of masks with each pixel value, ncolors * 2(nreds+ngreens+nblues) distinct pixel
values can be produced. All of these are allocated by the request. However, in the col-
ormap, there are only ncolors * 2~ nreds independent red entries, ncolors * 2~ ngreens
independent green entries, and ncolors * 2~ nblues independent blue entries.

Chapter 6: Colormap 26

X:Alloc-Color-Cells returns a list if it succeeded or #f if it failed. The first element
of the list has an array of the pixels allocated. The second, third, and fourth elements
are the red, green, and blue plane-masks.

x:free-colormap-cells colormap pixels planes [Function]

x:free-colormap-cells colormap pixels [Function]
Frees the cells represented by pixels whose values are in the pixels unsigned-integer
uniform-vector. The planes argument should not have any bits set to 1 in common
with any of the pixels. The set of all pixels is produced by ORing together subsets
of the planes argument with the pixels. The request frees all of these pixels that
were allocated by the client. Note that freeing an individual pixel obtained from
X:Alloc-Colormap-Cells with a planes argument may not actually allow it to be
reused until all of its related pixels are also freed. Similarly, a read-only entry is not
actually freed until it has been freed by all clients, and if a client allocates the same
read-only entry multiple times, it must free the entry that many times before the
entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even
if one or more pixels produce an error. It is an error if a specified pixel is not
allocated by the client (that is, is unallocated or is only allocated by another client)
or if the colormap was created with all entries writable (by passing ‘x:Alloc-All’ to
X:Create-Colormap). If more than one pixel is in error, the one that gets reported
is arbitrary.

x:colormap-find-color colormap rgb [Function]
rgb is a list or vector of 3 integers, describing the red, green, and blue intensities
respectively; or an integer ‘#xrrggbb’, packing red, green and blue intensities in the
range 0 - 255.

x:colormap-find-color colormap color-name [Function]
The case-insensitive string color_name specifies the name of a color (for example, red)

X:Colormap-Find-Color allocates a read-only colormap entry corresponding to the
closest RGB value supported by the hardware. X:Colormap-Find-Color returns the
pixel value of the color closest to the specified RGB or color_name elements supported
by the hardware, if successful; otherwise X:Colormap-Find-Color returns #f.

Multiple clients that request the same effective RGB value can be assigned the same
read-only entry, thus allowing entries to be shared. When the last client deallocates
a shared cell, it is deallocated.

x:color-ref colormap pixel [Function]
Returns a list of 3 integers, describing the red, green, and blue intensities respectively
of the colormap entry of the cell indexed by pixel.

The integer pixel must be a valid index into colormap.

X:Color-Set! colormap pixel rgbh [Function]
rgb is a list or vector of 3 integers, describing the red, green, and blue intensities
respectively; or an integer ‘#xrrggbb’, packing red, green and blue intensities in the
range 0 - 255.

27

X:Color-Set! colormap pixel color-name [Function]
The case-insensitive string color_name specifies the name of a color (for example, red)

The integer pixel must be a valid index into colormap.

X:Color-Set! changes the colormap entry of the read/write cell indexed by pixel. If
the colormap is an installed map for its screen, the changes are visible immediately.

x:install-colormap colormap [Function]
Installs the specified colormap for its associated screen. All windows associated with
colormap immediately display with true colors. A colormap is associated with a
window when the window is created or its attributes changed.

If the specified colormap is not already an installed colormap, the X server generates
a ColormapNotify event on each window that has that colormap.

x:ccc colormap [Function]
Returns the Color-Conversion-Context of colormap.

28

7 Rendering

x:flush display [Function]

x:flush window [Function]
Flushes the output buffer. Some client applications need not use this function because
the output buffer is automatically flushed as needed by calls to X:Pending, X:Next-
Event, and X:Window-Event. Events generated by the server may be enqueued into
the library’s event queue.

x:flush gc [Function]
Forces sending of GC component changes.

Xlib usually defers sending changes to the components of a GC to the server until a
graphics function is actually called with that GC. This permits batching of component
changes into a single server request. In some circumstances, however, it may be
necessary for the client to explicitly force sending the changes to the server. An
example might be when a protocol extension uses the GC indirectly, in such a way
that the extension interface cannot know what GC will be used.

x:clear-area window (x-pos y-pos) (width height) expose? [Function]
Paints a rectangular area in the specified window according to the specified dimensions
with the window’s background pixel or pixmap. The subwindow-mode effectively is
‘x:Clip-By-Children’. If width is zero, it is replaced with the current width of the
window minus x. If height is zero, it is replaced with the current height of the window
minus y. If the window has a defined background tile, the rectangle clipped by any
children is filled with this tile. If the window has background x:None, the contents of
the window are not changed. In either case, if expose? is True, one or more x:Expose
events are generated for regions of the rectangle that are either visible or are being
retained in a backing store. If you specify a window whose class is x:Input-Only, an
error results.

x:fill-rectangle window gcontext position size [Function]
Draw Strings

x:draw-string drawable gc position string [Function]
Position specifies coordinates relative to the origin of drawable of the origin of the
first character to be drawn.

x:draw-string draws the characters of string, starting at position.

x:image-string drawable gc position string [Function]
Position specifies coordinates relative to the origin of drawable of the origin of the
first character to be drawn.

x:image-string draws the characters and background of string, starting at position.

Chapter 7: Rendering 29

Draw Shapes

x:draw-points drawable gc position . . . [Function]
Position . . . specifies coordinates of the point to be drawn.

x:draw-points drawable gc xy ... [Function]
(x, y) ... specifies coordinates of the point to be drawn.

x:draw-points drawable gc point-array [Function]
point-array is a uniform short array of rank 2, whose rightmost index spans a range
of 2.

The X:Draw-Points procedure uses the foreground pixel and function components
of the gc to draw points into drawable at the positions (relative to the origin of
drawable) specified.

X:Draw-Points uses these gc components: function, planemask, foreground,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

x:draw-segments drawable gc posl pos2 . .. [Function]
Posl, pos2, ... specify coordinates to be connected by segments.

x:draw-segments drawable gc x1 y1 x2 y2 ... [Function]
(x1, y1), (x2, y2) ... specify coordinates to be connected by segments.

x:draw-segments drawable gc point-array [Function]
point-array is a uniform short array of rank 2, whose rightmost index spans a range
of 2.

The X:Draw-Segments procedure uses the components of the specified gc to draw mul-
tiple unconnected lines between disjoint adjacent pair of points passed as arguments.
It draws the segments in order and does not perform joining at coincident endpoints.
For any given line, X:Draw-Segments does not draw a pixel more than once. If thin
(zero line-width) segments intersect, the intersecting pixels are drawn multiple times.
If wide segments intersect, the intersecting pixels are drawn only once, as though the
entire PolyLine protocol request were a single, filled shape. X:Draw-Segments treats
all coordinates as relative to the origin of drawable.

X:Draw-Segments uses these gc components: function, plane-mask, line-width, line-
style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask,
join-style. It also use these gc mode-dependent components: foreground, background,
tile, stipple, tilestipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

x:draw-lines drawable gc posl pos2 ... [Function]
Posl, pos2, ... specify coordinates to be connected by lines.
x:draw-lines drawable gc x1 yl1 x2 y2 ... [Function]

(x1, y1), (x2, y2) ... specify coordinates to be connected by lines.

x:draw-lines drawable gc point-array [Function]

point-array is a uniform short array of rank 2, whose rightmost index spans a range
of 2.

30

The X:Draw-Lines procedure uses the components of the specified gc to draw lines
between each adjacent pair of points passed as arguments. It draws the lines in order.
The lines join correctly at all intermediate points, and if the first and last points
coincide, the first and last lines also join correctly. For any given line, X:Draw-Lines
does not draw a pixel more than once. If thin (zero line-width) lines intersect, the
intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting
pixels are drawn only once, as though the entire PolyLine protocol request were a
single, filled shape. X:Draw-Lines treats all coordinates as relative to the origin of
drawable.

X:Draw-Lines uses these gc components: function, plane-mask, line-width, line-style,
cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask, join-
style. It also use these gc mode-dependent components: foreground, background, tile,
stipple, tilestipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

x:fill-polygon drawable gc posl pos2 . .. [Function]
Posl, pos2, ... specify coordinates of the border path.

x:fill-polygon drawable gc x1 y1 x2 y2 ... [Function]
(x1, y1), (x2, y2) ... specify coordinates of the border path.

x:fill-polygon drawable gc point-array [Function]
point-array is a uniform short array of rank 2, whose rightmost index spans a range
of 2.

The path is closed automatically if the last point in the list or point-array does not
coincide with the first point.

The X:Fill-Polygon procedure uses the components of the specified gc to fill the
region closed by the specified path. X:Fill-Polygon does not draw a pixel of the
region more than once. X:Fill-Polygon treats all coordinates as relative to the origin
of drawable.

X:Fill-Polygon uses these gc components: function, planemask, fill-style, fill-rule,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also use these gc
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, and tile-stipple-y-origin.

31

8 Images

x:read-bitmap-file drawable file [Function]

32

9 Event

These three status routines always return immediately if there are events already in the
queue.

x:q-length display [Function]
Returns the length of the event queue for the connected display. Note that there may
be more events that have not been read into the queue yet (see X:Events-Queued).

x:pending display [Function]
Returns the number of events that have been received from the X server but have not
been removed from the event queue.

x:events-queued display [Function]
Returns the number of events already in the queue if the number is nonzero. If there
are no events in the queue, X:Events—-Queued attempts to read more events out of the
application’s connection without flushing the output buffer and returns the number
read.

Both of these routines return an object of type event.

x:next-event display [Function]
Removes and returns the first event from the event queue. If the event queue is empty,
X:Next-Event flushes the output buffer and blocks until an event is received.

x:peek-event display [Function]
Returns the first event from the event queue, but it does not remove the event from
the queue. If the queue is empty, X:Peek-Event flushes the output buffer and blocks
until an event is received.

Each event object has fields dependent on its sub-type.

x:event-ref event field-name [Function]
window The window on which event was generated and is
referred to as the event window.
root is the event window’s root window.
subwindow If the source window is an inferior of the event win-

dow, the subwindow is the child of the event window
that is the source window or the child of the event
window that is an ancestor of the source window.

Otherwise, ‘None’.

Chapter 9: Event

X-event:type

X-event:serial
X-event:send-event
X-event:time

X-event:x
X-event:y

X-event:x-root
X-event:y-root

33

An integer: x:Key-Press, x:Key-Release,
x:Button-Press, x:Button-Release, x:Motion-Notify,
x:Enter-Notify, x:Leave-Notify, x:Focus-In,

x:Focus-Out, x:Keymap-Notify, x:Expose,
x:Graphics-Expose, x:No-Expose, x:Visibility-
Notify, x:Create-Notify, x:Destroy-Notify,

x:Unmap-Notify, x:Map-Notify, x:Map-Request,
x:Reparent-Notify, x:Configure-Notify, x:Configure-
Request, x:Gravity-Notify, x:Resize-Request,
x:Circulate-Notify, x:Circulate-Request,
x:Property-Notify, x:Selection-Clear, x:Selection-
Request, x:Selection-Notify, x:Colormap-Notify,
x:Client-Message, or x:Mapping-Notify.

The serial number of the protocol request that gen-
erated the event.

Boolean that indicates whether the event was sent
by a different client.

The time when the event was generated expressed in
milliseconds.

For window entry/exit events the x and y members
are set to the coordinates of the pointer position
in the event window. This position is always the
pointer’s final position, not its initial position. If
the event window is on the same screen as the root
window, x and y are the pointer coordinates relative
to the event window’s origin. Otherwise, x and y are
set to zero.

For expose events The x and y members are set to
the coordinates relative to the drawable’s origin and
indicate the upper-left corner of the rectangle.

For configure, create, gravity, and reparent events
the x and y members are set to the window’s co-
ordinates relative to the parent window’s origin and
indicate the position of the upper-left outside corner
of the created window.

The pointer’s coordinates relative to the root win-
dow’s origin at the time of the event.

Chapter 9: Event

X-event:state

X-event:keycode

X-event:same-screen

X-event:button

X-event:is-hint

X-event:mode

X-event:detail

X-event:focus

X-event:width
X-event:height

34

For keyboard, pointer and window entry/exit
events, the state member is set to indicate
the logical state of the pointer buttons and
modifier keys just prior to the event, which is
the bitwise inclusive OR of one or more of the
button or modifier key masks: x:Buttonl-Mask,
x:Button2-Mask, x:Button3-Mask, x:Button4-Mask,
x:Button5-Mask, x:Shift-Mask, x:Lock-Mask,
x:Control-Mask, x:Mod1l-Mask, x:Mod2-Mask,
x:Mod3-Mask, x:Mod4-Mask, and x:Mod5-Mask.

For visibility events, the state of the window’s
visibility: x:Visibility-Unobscured, x:Visibility-
Partially-Obscured, or x:Visibility-Fully-Obscured.

For colormap events, indicates whether the col-
ormap is installed or uninstalled: x:Colormap-
Installed or x:Colormap-Uninstalled.

For property events, indicates whether the property
was changed to a new value or deleted: x:Property-
New-Value or x:Property-Delete.

An integer that represents a physical key on the
keyboard.

Indicates whether the event window is on the same
screen as the root window. If #t, the event and root
windows are on the same screen. If #f, the event
and root windows are not on the same screen.

The pointer button that changed state; can be
the x:Buttonl, x:Button2, x:Buttond, x:Button4, or
x:Button5 value.

Detail of motion-notify events: x:Notify-Normal or
x:Notify-Hint.

Indicates whether the event is a normal event,
pseudo-motion event when a grab activates, or
a pseudo-motion event when a grab deacti-
vates: x:Notify-Normal, x:Notify-Grab, or x:Notify-
Ungrab.

Indicates the notification detail: x:Notify-
Ancestor, x:Notify-Virtual, x:Notify-Inferior,
x:Notify-Nonlinear, or x:Notify-Nonlinear-Virtual.
If the event window is the focus window or an inferior
of the focus window, #t; otherwise #f.

The size (extent) of the rectangle.

Chapter 9: Event

X-event:count

X-event:major-code

X-event:minor-code
X-event:border-width
X-event:override-redirect

X-event:from-configure

X-event:value-mask

X-event:place

X-event:new

35

For mapping events is the number of keycodes al-
tered.

For expose events Is the number of Expose or
GraphicsExpose events that are to follow. If count is
zero, no more Expose events follow for this window.
However, if count is nonzero, at least that number
of Expose events (and possibly more) follow for this
window. Simple applications that do not want to op-
timize redisplay by distinguishing between subareas
of its window can just ignore all Expose events with
nonzero counts and perform full redisplays on events
with zero counts.

The major_code member is set to the graphics re-
quest initiated by the client and can be either
X_CopyArea or X_CopyPlane. If it is X_CopyArea,
a call to XCopyArea initiated the request. If it is
X_CopyPlane, a call to XCopyPlane initiated the
request.

Not currently used.

For configure events, the width of the window’s bor-
der, in pixels.

The override-redirect attribute of the window. Win-
dow manager clients normally should ignore this win-
dow if it is #t.

True if the event was generated as a result of a resiz-
ing of the window’s parent when the window itself
had a win-gravity of x:Unmap-Gravity.

Indicates which components were specified in the
ConfigureWindow protocol request. The corre-
sponding values are reported as given in the request.
The remaining values are filled in from the current
geometry of the window, except in the case of above
(sibling) and detail (stack-mode), which are reported
as None and Above, respectively, if they are not
given in the request.

The window’s position after the restack occurs and
is either x:Place-On-Top or x:Place-On-Bottom. If
it is x:Place-On-Top, the window is now on top of
all siblings. If it is x:Place-On-Bottom, the window
is now below all siblings.

indicate whether the colormap for the specified win-
dow was changed or installed or uninstalled and can
be True or False. If it is True, the colormap was
changed. If it is False, the colormap was installed or
uninstalled.

X-event:format

X-event:request

X-event:first-keycode

36

Is 8, 16, or 32 and specifies whether the data should
be viewed as a list of bytes, shorts, or longs
Indicates the kind of mapping change that oc-
curred and can be x:Mapping-Modifier, x:Mapping-
Keyboard, or x:Mapping-Pointer. If it is x:Mapping-
Modifier, the modifier mapping was changed. If it
is x:Mapping-Keyboard, the keyboard mapping was
changed. If it is x:Mapping-Pointer, the pointer but-
ton mapping was changed.

The X-event:first-keycode is set only if the X-
event:request was set to x:Mapping-Keyboard. The
number in X-event:first-keycode represents the first
number in the range of the altered mapping, and
X-event:count represents the number of keycodes
altered.

Indexes

Procedure and Macro Index

H

hostname:number.screen-number

X

icreate-pixmap............ ..o,
rcreate-window ...t
tdefault-ccc...ov i
:default-colormap............cooviiniinn....
tdefault-gc........oiiii
:default-screen......... ...,
:default-visual

E T T T T I I T I T T T T T - R B B - - I I T o A

Variable Index

x:CW-Back-Pixell
x:CW-Back-Pixmap..............................
x:CW-Backing-Pixel........................... 10
x:CW-Backing-Planes.......................... 10
x:CW-Backing-Store.............. 10
x:CW-Bit-Gravity.............. oo
x:CW-Border-Pixel
x:CW-Border-Pixmap...............oooviiiiin..
x:CW-Border-Width.............................
X:CW=COLOTMAD .+« v v vvvvvveeeeeeeeeeeenn 12
X:CW-Cursor............ 13
x:CW-Dont-Propagate....................ooo.. 12

tcolor-ref 26
:colormap-find-color 26
:copy-colormap-and-free.................... 24
tcopy-ge-fields!........l 16
1Create—Colormapvvvvreiiiiiieeeeeeennn 24
1CTEAate—CUTSOToittiii it 23
icreate—ge.l 16

tdraw-lines.................o oo 29
tdraw-points ool 29
1draw-Segments 29
idraw-string ... 28
tevent-ref 32
revents—queued 32
:fill-polygon ...l 30
:fill-rectangle..............l 28
flush oo 28
:free-colormap-cells 26
tgemref L 16

DA M M M M M MM M M M X M K M M M M M X M M M M M M M X M MM MMM X

37

tge-set! 16
:get-window-property 13
rimage-stringl 28
:install-colormap...............c.ooiiinnnn.. 27
:list-properties................ ... 13
tmake-visual......... ... ool 3
(Map-SUbWIndOWSttt 14
tmap-window........ il 14
tmext-event.............. .ol 32
copen—display 2
tpeek-event........ ...l 32
tpending ... 32
:protocol-version............., 2
:g-length........ ...l 32
:read-bitmap-file.......................... 31
troot-window......... .. 3
iscreen-black ool 5
tscreen—cells ...l 4
ISCTEEN—COUNT .. ovvtttin ettt 3
:screen—-depth 4
:screen-depths 3
:screen-dimensions........... ..o 4
ISCreen—SizZe....... ..o 4
iscreen-whiteol 5
1Server-vendor 2
:unmap-subwindows................L 15
runmap-window 14
:vendor-releaseiiiiiiiiiiiiie 2
1visual-class ...t 4
rvisual-geometryt 4
:window-geometryl 7
:window-geometry-set! 7
cwindow-ref..l 13

:Color-Set! il 26, 27

X:CW-Event-MasKoviiiriininnnnannnn.. 11
x:CW-Height..........l 7
x:CW-0Override-Redirectoun.. 11
x:CW-Save-Underciviniininiunenn.. 11
X:CW-Sibling.ottt 7
x:CW-Stack-Modecovviiiiiniinennn. 8
X:CW-Widtho 7
x:CW-Win-Gravity 9
KWK e 7
KiCWY e 7
X:GC-Arc-Mode ...t 21
x:GC-Backgroundl 17

Indexes

x:GC-Cap-Style ... 18
x:GC-Clip-Mask 21
x:GC-Clip-X-Origin........................... 21
x:GC-Clip-Y-Origin........................... 21
x:GC-Dash-Listoooviiiiiiiiiinn... 21
x:GC-Dash-0ffset.................... ...t 21
x:GC-Fill-Rule it 19
x:GC-Fill-Style.............................. 19
xX:GC-Font 20
x:GC-Foregroundoviiiiiiiiannn. 17
x:GC-Function il 16

Concept Index
C

COLOTIMAD .« .« e 24
(620170) PPN 23

D

depth. ... 4
Drawable 6
drawable.......... ... 6

38
x:GC-Graphics-Exposures..................... 21
x:GC-Join-Stylel 18
x:GC-Line-Style........ ..., 18
x:GC-Line-Width.................... 17
x:GC-Plane-MasKooiiiiiiiin.nn. 17
X:GC-Stipple......... 20
x:GC-Subwindow-Mode................ 20
X:GC-Tileot 20
x:GC-Tile-Stip-X-Origin..................... 20
x:GC-Tile-Stip-Y-Origin..................... 20
RGB ... 24
L0000 00 E-1 o TP 14
unmapped 14
Visual ... 3
visual. ... 3
x:None............. o i 21
X 1
X1ib .o 1

	XlibScm
	Display and Screens
	Drawables
	Windows and Pixmaps
	Window Attributes
	Window Properties and Visibility

	Graphics Context
	Cursor
	Colormap
	Rendering
	Images
	Event
	Indexes
	Procedure and Macro Index
	Variable Index
	Concept Index

